
Chapter 5

Growth accounting and the
concept of TFP: Some
limitations

5.1 Introduction

This chapter addresses the concepts of Total Factor Productivity, TFP, and
TFP growth.1 We underline the distinction between descriptive accounting
and causal analysis. The chapter ends up with a warning regarding careless
use of the concept of TFP growth in cross-country comparisons − and a
suggested alternative approach.
For convenience, we treat time as continuous (although the timing of the

variables is indicated merely by a subscript).

5.2 TFP growth and TFP level

Let Yt denote aggregate output, in the sense of value added in fixed prices,
at time t in a sector or the economy as a whole. Suppose Yt is determined
via the function

Yt = F (Kt, Ht, t), (5.1)

where Kt is an index of the physical capital input and Ht an index of quality-
adjusted labor input. Natural resources (land, oil wells, coal in the ground,
etc.) constitute a third primary production factor. The role of this factor is
in growth accounting often subsumed under K.

1I thank Niklas Brønager for useful discussions.

87



88
CHAPTER 5. GROWTH ACCOUNTING AND THE CONCEPT

OF TFP: SOME WARNINGS

The “quality-adjustment”of the input of labor (man-hours per year) aims
at taking different levels of education and work experience into account. The
heterogeneity of both types of input, and of output as well, implies huge
measurement and conceptual diffi culties. Here we ignore these problems. The
third argument in (5.1) is time, t, indicating that the production function
F (· , · , t) is time-dependent. This is to open up for “shifts in the production
function”, due to new technology. We assume F is a neoclassical production
function. When the partial derivative of F w.r.t. the third argument is
positive, i.e., ∂F/∂t > 0, technical change amounts to technical progress.2

To simplify, we shall here address TFP and TFP growth without taking
the heterogeneity of the labor input into account. So we just count delivered
work hours per time unit. Then (5.1) is reduced to the simpler case,

Yt = F (Kt, Lt, t), (5.2)

where Lt is the number of man-hours per year. As to measurement of
Kt, some adaptation of the perpetual inventory method3 is typically used,
with some correction for under-estimated quality improvements of invest-
ment goods in national income accounting. Similarly, the output measure is
(or at least should be) corrected for under-estimated quality improvements
of consumption goods.
The notion of Total Factor Productivity at time t, TFPt, is intended

to indicate the level of productivity of the joint input (Kt, Lt). Generally,
productivity of a given input is defined as the output per time unit divided by
this input per time unit. So, considering (5.2), (average) labor productivity
is simply Yt/Lt. The concept of Total Factor Productivity is more complex,
however, because it does not refer to a single input, but to a combination of
several distinct inputs, in the present case two. And these distinct inputs may
over time change their quantitative interrelationship, here the ratio Kt/Lt.
It is then not obvious what can be meant by the “productivity”of the vector
(Kt, Lt).
It is common in the literature to circumvent the problem of a direct

definition of the PTF level and instead go straight away to a decomposition
of output growth and on this basis define TFP growth. This is the approach
we also follow here.

2Sometimes in growth accounting the left-hand side variable, Y, in (5.2) is the gross
product rather than value added. Then non-durable intermediate inputs should be taken
into account as a third production factor and enter as an additional argument of F̃ in
(5.2). Since non-market production is diffi cult to measure, the government sector is of-
ten excluded from Y in (5.2). An alternative name in the literature for “total factor
productivity”is “multifactor productivity”, abbreviated MFP.

3Cf. Section 2.2 in Chapter 2.
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5.2. TFP growth and TFP level 89

5.2.1 TFP growth

Let the growth rate of a variable Z at time t be written gZt (could also be
written with a comma, as gZ,t, but to save notation, we skip the comma
unless needed for clarity). Take the total derivative w.r.t. t in (5.2) to get

Ẏt = FK(Kt, Lt, t)K̇t + FL(Kt, Lt, t)L̇t + Ft(Kt, Lt, t) · 1.

Dividing through by Yt gives

gY t ≡
Ẏt
Yt

=
1

Yt

[
FK(Kt, Lt, t)K̇t + FL(Kt, Lt, t)L̇t + Ft(Kt, Lt, t) · 1

]
=

KtFK(Kt, Lt, t)

Yt
gKt +

LtFL(Kt, Lt, t)

Yt
gLt +

Ft(Kt, Lt, t)

Yt

≡ εKtgKt + εLtgLt +
Ft(Kt, Lt, t)

Yt
, (5.3)

where εKt and εLt are shorthands for εK(Kt, Lt, t) ≡ KtFK(Kt,Lt,t)
F (Kt,Lt,t)

and εL(Kt, Lt, t)

≡ LtFL(Kt,Lt,t)
F (Kt,Lt,t)

, respectively, that is, the partial output elasticities w.r.t. the
two production factors, evaluated at the factor combination (Kt, Lt) at time
t. Finally, Ft(Kt, Lt, t) ≡ ∂F/∂t, that is, the partial derivative w.r.t. the
third argument of the function F , evaluated at the point (Kt, Lt, t).
The equation (5.3) is the basic growth-accounting relation, showing how

the output growth rate can be decomposed into the “contribution” from
growth in each of the inputs and a residual, Ft(Kt, Lt, t)/Yt, which is not
directly measurable. The equation was introduced already by Solow (1957),
and the residual became known as the Solow residual. We have:

Solow residual ≡ gY t − (εKtgKt + εLtgLt) =
Ft(Kt, Lt, t)

Yt
, (5.4)

The Solow residual thus indicates what is left when from the output growth
rate is subtracted the contribution from growth in the factor inputs weighted
by the output elasticities w.r.t. these inputs. In brief:

The Solow residual at time t reveals that part of time-t output
growth which is not attributable to time-t growth in the factor
inputs.

How can the Solow residual be calculated on the basis of empirical data?
The output elasticities w.r.t. capital and labor, εKt and εLt, will, under
perfect competition and absence of externalities in equilibrium equal the
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income shares of capital and labor, respectively. Time series for these income
shares and for Y , K, and L, hence also for gY t, gKt, and gLt, can be obtained
(directly or with some adaptation) from national income accounts. This
allows an indirect measurement of the residual in (5.4). Of course, data are
in discrete time. So to make the calculations in practice, we have to translate
(5.4) into discrete time. The weights εKt and εLt can then be quantified as
two-years moving averages of the output elasticities w.r.t. capital and labor,
respectively, and thus approximated by the respective factor income shares.4

It is not uncommon to identify the TFP growth rate with the Solow
residual. This is unfortunate since, being a residual, the calculated Solow
residual may reflect the contribution of many things. Some of these are what
we want to measure, like effects of current technical innovation in a broad
sense including organizational improvement. But, as Solow himself was quick
to point out, the calculated Solow residual may also reflect the influence of
other factors like absence of perfect competition, varying capacity utilization,
labor hoarding during downturns, measurement errors, and aggregation bias.
Nevertheless, let us assume we have been able to control for these other

factors by extraction of the business cycle elements in the data.5 So we are
ready to replace “Solow residual”in (5.4) with TFP growth rate and write

gTFPt = gY t − (εKtgKt + εLtgLt) =
Ft(Kt, Lt, t)

Yt
. (5.5)

Interpretation:

The TFP growth rate at time t reveals the contribution to time-
t output growth from time-t technical change (in a broad sense
including learning by doing and organizational improvement).

Let yt denote output per unit of labor, i.e., Yt ≡ ytLt, and let kt denote
capital per unit of labor, i.e., Kt ≡ ktLt. Then, gY t = gyt + gLt and gKt
= gkt + gLt. Under constant returns to scale (CRS), we have εLt = 1 − εKt.
Hence, under CRS, (5.5) can be written

gTFPt = gyt + gLt − (εKt(gkt + gLt) + (1− εKt)gLt)
= gyt − εKtgkt. (5.6)

Under CRS, the TFP growth rate at time t thus reveals, under CRS, that
part of time-t labor productivity growth which is not attributable to time-t
growth in the capital-labor ratio. Interpretation:

4See, e.g., Acemoglu (2009, p. 79).
5Solow (1957) adjusted his capital data by assuming that idle capital as a fraction of

total capital was the same as the rate of unemployment.
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5.2. TFP growth and TFP level 91

Under CRS, the TFP growth rate at time t reveals the contri-
bution to time-t labor productivity growth from time-t technical
change (in a broad sense including learning by doing and organi-
zational improvement).

So far we have only addressed the instantaneous Solow residual and the
instantaneous TFP growth rate. To get measures of interest for growth
analysis, one needs to consider these things over long time intervals, prefer-
ably more than a decade. We come back to this aspect at the end of the next
sub-section.

5.2.2 The TFP level

Let us see what can be said about the level of TFP, that “something” for
which we have calculated a growth rate without having defined what it ac-
tually is.6

Suppose we know the instantaneous growth rate, g(t), of a variable, x(t),
over the time interval [0, T ] , i.e.,

dx(t)/dt

x(t)
= g(t) for t ∈ [0, T ] . (5.7)

This makes up a simple linear differential equation in x, usually written in
the form dx(t)/dt = g(t)x(t). For a given initial value, x(0), the solution is

x(t) = x(0)e
∫ t
0 g(τ)dτ . (5.8)

This formula applies to TFP as well. Suppose we for all t in the interval
[0, T ] have calculated the growth rate of TFP. Then, in (5.7) we can replace
x(t) by TFPt and g(t) by gTFPt . Applying the solution formula (5.8), we get

TFPt = TFP0e
∫ t
0 gTFPτdτ . (5.9)

For a given initial value TFP0 > 0, the level of TFP at any time t within
the given time interval [0, T ] is determined by the right-hand side of (5.9).
Considering discrete time and interpreting gTFPτ as one-period growth rates,
we similarly have

TFPt = TFP0(1 + gTFP0)(1 + gTFP1) . . . (1 + gTFPt−1). (5.10)

These two formulas at least give us an overall growth factor for TFP from
time 0 to time t:

6It happens that authors make no clear terminological distinction between TFP level
and TFP growth, denoting both just “TFP”. That is bound to cause confusion.
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The TFP level at time t relative to that at time 0 reveals the
cumulative “direct contribution” to output growth since time 0
from technical change since time 0.

Why do we say “direct contribution”? The reason is that the cumulative
technical change since time 0 may also have an indirect effect on output
growth, namely via affecting the output elasticities w.r.t. capital and labor,
εKt and εLt. Through this channel cumulative technical change affects the
weights attached to the growth of inputs before the residual is obtained.
This possible indirect effect over time of technical change is not included in
the concept of TFP growth.
Anyway, suppose we are interested in the average annual TFP growth

rate calculated on data for, say, T years. Then we may normalize TFP0 to
equal 1 and on the basis of (5.10) calculate TFPt. Next, we look for a ḡTFP
satisfying the equation

TFPt = 1 · (1 + ḡTFP)T .

The solution for ḡTFP is

ḡTFP = antilog
(

logTFPT
T

)
− 1.

This is the annual compound TFP growth rate from year 0 to year T, using
discrete compounding. If we want the annual compound TFP growth rate
from year 0 to year T, using continuous compounding, we consider (5.9) with
t = T , and solve the equation

TFPT = 1 · eĝTFP ·T ,

which gives

ĝTFP =
logTFPT

T
.

Because continuous compounding is more powerful, for a given terminal value
of TFP, we will get ĝTFP < ḡTFP (whenever ḡTFP 6= 0), but the difference will
be negligible (since log(1 + x) / x for x “small”, where “/”means “close
to”, but “less than”unless x = 0).
Jones and Vollrath (2013, p. 47) present growth accounting results for the

US 1948-2010, exposing, among other things, the “productivity slowdown”
that occurred after 1973. Growth accounting results for Denmark and other
countries, 1981-2006, are reported in De økonomiske Råd (2010).
Before proceeding, we note that some analysts take a quick approach

to growth accounting and assume beforehand that the output elasticities
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5.2. TFP growth and TFP level 93

εKt and εLt are constant over time apart from small random disturbances.
This could be because the economy is assumed to be in steady state or
the aggregate production is assumed to be Cobb-Douglas, usually with the
addition of CRS. In the latter case, yt = Btk

α
t , 0 < α < 1, and (5.6) gives

gTFPt = gyt − αgkt = gBt. Then, under balanced growth with gyt = gkt = g,
we have

gTFPt = (1− α)g for all t. (5.11)

Besides exposing a simple way of measuring TFP growth (under certain
conditions), this formula may serve as a prelude to the following reminder
about how not to interpret growth accounting.

5.2.3 Accounting versus causality

Sometimes people interpret growth accounting as telling how much of out-
put growth is explained by technical change and how much is explained by
the contribution from factor growth. Such an identification of a descrip-
tive accounting relationship with deeper causality is misleading. Without a
complete dynamic model it makes no sense to talk about “explanation”and
“causality”.
The result (5.11) illustrates this. On the one hand, one finds from growth

accounting a TFP growth rate equal to (1−α)g, while the remainder, αg, of
labor productivity growth is attributed to growth in the capital-labor ratio.
On the other hand, if for instance a Solow growth model is the theoretical
framework within which the variables are assumed generated, then g will be
the exogenous rate of labor-aumenting technical progress which determines
both gTFPt and gkt = αg. Here the TFP growth rate understates the “con-
tribution”of technical change to productivity growth by a factor 1−α. The
whole of gy is determined − explained − by the assumed rate, g, of exogenous
technical progress. If g were nil, we would have gkt = 0 as well as gTFPt = 0.

Or suppose the theoretical framework within which the variables are as-
sumed generated is the Arrow model of learning by investing.7 Then it is the
interaction between endogenous learning and endogenous investment that ex-
plains both gkt, g, and gTFPt . There is no one-way causal link involved. There
is a mutual relationship between learning and investment, one presupposes
the other. It is like “which comes first, the chicken or the egg?”.
Let us now return to the intricate question what TFP actually measures

in economic terms. We start with a convenient special case.

7Arrow (1962). The model is outlined in Chapter 12 below.
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5.3 The case of Hicks-neutrality*

In the case of Hicks neutrality, by definition, technical change can be repre-
sented by the evolution of a one-dimensional variable, Bt, and the production
function in (5.2) can be specified as

Yt = F (Kt, Lt, t) = BtF̄ (Kt, Lt). (5.12)

Here the TFP level is at any time, t, identical to the level of Bt if we normalize
the initial values of both B and TFP to be the same, i.e., TFP0 = B0 > 0.
Indeed, calculating the TFP growth rate implied by (5.12) gives

gTFPt =
Ft(Kt, Lt, t)

Yt
=
ḂtF̄ (Kt, Lt)

BtF̄ (Kt, Lt)
=
Ḃt

Bt

≡ gBt, (5.13)

where the second equality comes from the fact that Kt and Lt are kept fixed
when the partial derivative of F w.r.t. t is calculated. The formula (5.9) now
gives

TFPt = B0 · e
∫ t
0 gBτdτ = Bt.

The convenient feature of Hicks neutrality is thus that we can write

TFPt =
F (Kt, Lt, t)

F (Kt, Lt, 0)
=
BtF̄ (Kt, Lt)

B0F̄ (Kt, Lt)
= Bt, (5.14)

using the normalization B0 = 1. That is:

Under Hicks neutrality, TFP t appears as the ratio between the
current output level and the hypothetical output level that would
have resulted from the current inputs of capital and labor in case
of no technical change since time 0.

So in the case of Hicks neutrality the economic meaning of the TFP level
is straightforward. The reason is that under Hicks neutrality the output
elasticities w.r.t. capital and labor, εKt and εLt, are independent of technical
change. Moreover, the relationship also holds the opposite way: if the output
elasticities w.r.t. capital and labor, εKt and εLt, are independent of technical
change, then technical change is Hicks neutral.
We now turn to diffi culties regarding interpretation of TFP that arise in

the general case.
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5.4. Absence of Hicks-neutrality* 95

5.4 Absence of Hicks-neutrality*

The above straightforward economic interpretation of TFP only holds under
Hicks-neutral technical change. Neither under general technical change nor
even under Harrod- or Solow-neutral technical change, will the current TFP
level appear as the ratio between the current output level and the hypothet-
ical output level that would have resulted from the current inputs of capital
and labor in case of no technical change since time 0. This is so unless the
production function is Cobb-Douglas in which case both Harrod and Solow
neutrality imply Hicks-neutrality.
To see this, let us return to the general time-dependent production func-

tion in (5.2). Let Xt denote the ratio between the current output level at
time t and the hypothetical output level, F (Kt, Lt, 0), that would have ob-
tained with the current inputs of capital and labor in case of no change in
the technology since time 0, i.e.,

Xt ≡
F (Kt, Lt, t)

F (Kt, Lt, 0)
. (5.15)

So Xt can be seen as a factor of “joint-productivity”growth from time 0 to
time t evaluated at the time-t input combination.
If this Xt should always indicate the level of TFP at time t, the growth

rate of Xt should equal the growth rate of TFP. Generally, it does not,
however. Indeed, defining G(Kt, Lt) ≡ F (Kt, Lt, 0), by the rule for the time
derivative of fractions,8 we have

gX,t ≡ dF (Kt, Lt, t)/dt

F (Kt, Lt, t)
− dG(Kt, Lt)/dt

G(Kt, Lt)

=
1

Yt

[
FK(Kt, Lt, t)K̇t + FL(Kt, Lt, t)L̇t + Ft(Kt, Lt, t) · 1

]
− 1

G(Kt, Lt)

[
GK(Kt, Lt)K̇t +GL(Kt, Lt)L̇t

]
= εK(Kt, Lt, t)gKt + εL(Kt, Lt, t)gLt +

Ft(Kt, Lt, t)

Yt
−(εK(Kt, Lt, 0)gKt + εL(Kt, Lt, 0)gLt) (5.16)

= (εK(Kt, Lt, t)− εK(Kt, Lt, 0)) gKt

+(εL(Kt, Lt, t)− εL(Kt, Lt, 0))gLt + gTFPt

6= gTFPt generally,

where gTFPt is given in (5.5). We see that:

8See Appendix A to Chapter 3.
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The time-t growth rate of the joint-productivity index X equals
the time-t TFP growth rate plus the cumulative impact of techni-
cal change since time 0 on the direct contribution to time-t output
growth from time-t input growth.

Unless the partial output elasticities w.r.t. capital and labor, respectively,
are unaffected by technical change, the conclusion is that TFPt tend to differ
from our Xt defined in (5.15). So:

In the absence of Hicks neutrality, current TFP does not gener-
ally appear as the ratio between the current output level and the
hypothetical output level that would have resulted from the cur-
rent inputs of capital and labor in case of no technical change
since time 0.

Consider the difference between gX,t and gTFPt :

gX,t −gTFPt = (εK(Kt, Lt, t)− εK(Kt, Lt, 0)) gKt+(εL(Kt, Lt, t)−εL(Kt, Lt, 0))gLt.

Under CRS, the coeffi cients to the growth rates inK and L will be of the same
absolute value but have opposite sign. This is an implication of εK(Kt, Lt, ·)+
εL(Kt, Lt, ·) = 1 under CRS. Since usually gKt exceeds gLt considerably, the
difference between gX,t and gTFPt may be substantial.
Balanced growth at the aggregate level, hence Harrod neutrality, seems

to characterize the growth experience of the UK and US over at least a
century (Kongsamut et al., 2001; Attfield and Temple, 2010). At the same
time the aggregate elasticity of factor substitution is generally estimated to
be significantly less than one (cf. Chapter 2.7). This amounts to rejection of
the Cobb-Douglas specification of the aggregate production function. So, at
the aggregate level, Harrod neutrality rules out Hicks neutrality.
Since at least at the aggregate level Hicks-neutrality is empirically doubt-

ful, the level of TFP can usually not be identified with the intuitive joint-
productivity measure Xt, defined in (5.15) above. Then, to my knowledge
there is no simple economic interpretation of what the TFP level actually
measures.

A closer look at Xt vs. TFPt

The fact that in the absence of Hicks-neutrality, TFP and the index X differ
is the reason that we in Section 2.2 characterized the time-t TFP level rel-
ative to the time-0 level as the cumulative “direct contribution”on output
growth since time 0 from cumulative technical change, thus excluding the
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5.5. A warning regarding cross-country TFP growth comparisons 97

possible indirect contribution coming about via the potential effect of tech-
nical change on the output elasticities w.r.t. capital and labor and thereby
on the contribution to output from input growth.
Given that the joint-productivity index X is the more intuitive joint-

productivity measure, why is TFP the more popular measure? There are at
least two reasons for this. First, it can be shown that the TFP measure has
more convenient balanced growth properties. Second, X is more diffi cult to
measure. To see the reason for this, we substitute (5.3) into (5.16) to get

gXt = gY t − (εK(Kt, Lt, 0)gKt + εL(Kt, Lt, 0)gLt). (5.17)

The relevant output elasticities, εK(Kt, Lt, 0)≡ KtFK(Kt,Lt,0)
F (Kt,Lt,0)

and εL(Kt, Lt, 0)

≡ LtFL(Kt,Lt,0)
F (Kt,Lt,0)

, are hypothetical constructs, referring to the technology as it
was at time 0, but with the factor combination observed at time t, not at time
0. The nice thing about the Solow residual is that under the assumptions
of perfect competition and absence of externalities, it allows measurement
by using data on prices and quantities alone, that is, without knowledge
of the production function. To evaluate gX , however, we need estimates
of the hypothetical output elasticities, εK(Kt, Lt, 0) and εL(Kt, Lt, 0). This
requires knowledge about how the output elasticities depend on the factor
combination and time, respectively, that is, knowledge about the production
function.

5.5 A warning regarding cross-country TFP
growth comparisons

When Harrod neutrality applies, relative TFP growth rates across sectors
or countries can be quite deceptive. Consider a group of n countries that
share some structural characteristics. Country i has the aggregate production
function

Yit = F (i)(Kit, AtLit) i = 1, 2, ..., n,

where F (i) is a neoclassical production function with CRS, and At is the level
of labor-augmenting technology which we assume shared by all the countries
(these are open and “close”to each other). Technical progress is thus Harrod-
neutral. Let the growth rate of A be a constant g > 0.
Define k̃it ≡ Kit/(AtLit) ≡ kit/At and ỹit ≡ Yit/(AtLit) ≡ yit/At. Suppose

the countries feature (within-country) convergence, i.e.,

k̃it → k̃∗i and ỹit → ỹ∗i = f (i)(k̃∗i ) for t→∞,
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where f (i) is the production function in intensive form. Since kit ≡ k̃itAt and
yit ≡ ỹitAt, we thus have

gki → gA (= g) and gyi → gA for t→∞.

So in the long run gki and gyi tend to the constant g.
Formula (5.6) then gives the TFP growth rate of country i in the long

run as
gTFPi = gyi − α∗i gki = (1− α∗i )g, (5.18)

where α∗i is the output elasticity w.r.t. capital, f
(i)′(k̃i)k̃i/f

(i)(k̃i), evaluated
at k̃i = k̃∗i . Under labor-augmenting technical progress, the TFP growth rate
thus varies negatively with the output elasticity w.r.t. capital (the capital
income share under perfect competition). Owing to differences in product
and industry composition, the countries have different α∗i’s. In view of (5.18),
for two different countries, i and j, we therefore get

TFPi
TFPj

→


∞ if α∗i < α∗j ,
1 if α∗i = α∗j ,
0 if α∗i > α∗j ,

(5.19)

for t→∞.9
In spite of long-run growth in the essential variable, y, being the same

across the countries, their TFP growth rates are very different. Countries
with low α∗ appear to be technologically very dynamic and countries with
high α∗ appear to be lagging behind. The explanation is simply that a higher
α∗ means that a larger fraction of gy = gk = g becomes driven by (“explained
by”) gk in the growth accounting (5.18), leaving a smaller residual. But it is
the exogenous technology growth rate g that drives both gk and gTFP. The
level of α∗ is just the long-run output elasticity w.r.t. capital and reflects
neither technological dynamism nor its opposite. Notwithstanding the coun-
tries’different α∗, their long-run growth rates of per capita consumption will
be the same, namely g. Moreover, if the economies can be described, for
instance, by a Solow model with the same s, δ, and n (standard notation)
across the countries, and the ratio s/(δ + g + n) happens to equal 1, then
even the level of per capita consumption in the countries will in the long run
be the same growth rate. Nevertheless there will be persistent differences in
their TFP growth rates, and (5.19) remains true.
We conclude that comparison of TFP growth rates across countries may

misrepresent the intuitive meaning of productivity and technical progress
9If F is Cobb-Douglas with output elasticity w.r.t. capital equal to αi, the key re-

sult, (5.18), can be derived more directly by first defining Bt = A1−αi
t , then writing the

production function in the Hicks-neutral form (5.12), and finally use (5.13).
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when output elasticities w.r.t. capital differ and technical progress is Harrod-
neutral (even if technical progress were at the same time Hicks-neutral as is
the case with a Cobb-Douglas specification).
On this background let us briefly consider a different decomposition than

the one made in standard growth accounting. Under CRS, equation (5.10)
holds. Subtracting εKtgyt on both sides, dividing through by 1 − εKt, and
rearranging gives

gyt =
εKt

1− εKt
g k
y
t +

1

1− εKt
gTFPt. (5.20)

This says that increases in the capital-output ratio as well as TFP contribute
to growth in labor productivity via the “multipliers”εKt/(1−εKt) and 1/(1−
εKt), respectively. This may speak for focusing on gTFPt/(1 − εKt) rather
than gTFPt it self. A growth path along which the capital-output ratio is
constant (as it tends to be in the long run according to Kaldor’s ‘stylized
facts”) will feature labor productivity growth equal to the TFP growth rate
multiplied by the inverse of the output elasticity w.r.t. labor (since, under
CRS, 1− εKt = εLt).

10

Thus, in the comparison of the n countries above, where in the long run
the capital-output ratios are indeed constant (k̃∗i /f(k̃∗i ) is constant), it makes
sense to focus on

gTFPi
1− α∗it

= gyt −
εKt

1− εKt
g k
y
t =

1

1− εKt
gyt −

εKt
1− εKt

gkt. (5.21)

This measure of the contribution of technical change ends up in the long run
equal to the rate of Harrod-neutral technical progress, g, cf. (5.18).11

Since this “corrected TFP growth rate” in many models, including the
one considered above, ultimately becomes identical to the labor productivity
growth rate in the long run, it is not unreasonable in simple international
comparisons to just compare levels and growth rates of Y/L across countries.

Remark on levels accounting

In growth accounting we consider productivity of a single country at different
points in time. Another discipline is named levels accounting, where one
compares productivity across different countries at a single point in time.
See Caselli (2005), Acemoglu (2009, Chapter 3.5), and Jones and Vollrath
(2013, Chapter 3).

10The labor productivity growth rate along a path along which the capital-output ratio
is constant has occationally been called the Harrod-productivity growth rate.
11To focus on this, or a similar, measure was suggested by ....... .
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5.6 Summing up

Growth accounting is − as the name indicates − a descriptive way of present-
ing growth data. So we should not confuse growth accounting with causality
in growth analysis. To talk about causality we need a theoretical model sup-
ported by the data. On the basis of such a model we can say that this or that
set of exogenous factors through the propagation mechanisms of the model
cause this or that phenomenon, including economic growth.
In a complete model with exogenous technical progress, gkt will be in-

duced by this technical progress. If technical progress is endogenous through
learning by investing, as in Arrow (1962), there is mutual causation between
gkt and technical progress. Yet other kinds of models explain both techni-
cal progress and capital accumulation through R&D, cf. Barro (1999) and
Fernald and Jones (2014).
When technical change is not Hicks-neutral, the level of TFP can at best

be approximated by the intuitive joint-productivity measure Xt, defined in
(5.15) above. The approximation may not be good. And in absence of Hicks-
neutrality, there seems to exist no simple economic interpretation of what the
TFP level actually measures.
We also observed that relative TFP growth rates across sectors or coun-

tries can be quite deceptive when output elasticities w.r.t. capital differ. It
may be more reasonable to compare the “corrected TFP growth rate”de-
fined in (5.21) above or just compare levels and growth rates of Y/L across
countries.
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Chapter 6

Transitional dynamics.
Barro-style growth regressions

In this chapter we discuss three issues, all of which are related to the transi-
tional dynamics of a growth model:

• Do poor countries necessarily tend to approach their steady state from
below?

• How fast (or rather how slow) are the transitional dynamics in a growth
model?

• What exactly is the theoretical foundation for a Barro-style growth
regression analysis?

The Solow growth model may serve as the analytical point of departure
for the first two issues and to some extent also for the third.

6.1 Point of departure: the Solow model

As is well-known, the fundamental differential equation for the Solow model
is

·
k̃(t) = sf(k̃(t))− (δ + g + n)k̃(t), k̃(0) = k̃0 > 0, (6.1)

where k̃(t) ≡ K(t)/(A(t)L(t)), f(k̃(t)) ≡ F (k̃(t), 1), A(t) = A0e
gt, and

L(t) = L0e
nt (standard notation). The production function F is neoclassical

with CRS and the parameters satisfy 0 < s < 1 and δ+g+n > 0. The produc-
tion function on intensive form, f, therefore satisfies f(0) ≥ 0, f ′ > 0, f ′′ < 0,
and

lim
k̃→0

f ′(k̃) >
δ + g + n

s
> lim

k̃→∞
f ′(k̃). (A1)
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k̃∗ k̃0

ỹ∗

(δ + g + n)k̃

f
(
k̃
)

sf
(
k̃
)

k̃

ỹ

Figure 6.1: Phase diagram 1 (capital essential).

Then there exists a unique non-trivial steady state, k̃∗ > 0, that is, a unique
positive solution to the equation

sf(k̃∗) = (δ + g + n)k̃∗. (6.2)

Furthermore, given an arbitrary k̃0 > 0, we have for all t ≥ 0,

·
k̃(t) T 0 for k̃(t) S k̃∗, (6.3)

respectively. The steady state, k̃∗, is thus globally asymptotically stable in
the sense that for all k̃0 > 0, limt→∞ k̃(t) = k∗, and this convergence is
monotonic (in the sense that k̃(t) − k̃∗ does not change sign during the
adjustment process).
Figure 6.1 illustrates the dynamics as seen from the perspective of (6.1):

k̃ is rising (falling) when saving per unit of effective labor, AL, is greater
(less) than the amount needed to maintain the effective capital-labor ratio
constant in spite of capital depreciation, more labor and better technology.
Figure 6.2 illustrates the dynamics emerging when we rewrite (6.1) this

way:
·
k̃(t) = s

(
f(k̃(t))− δ + g + n

s
k̃(t)

)
T 0 for k̃(t) S k̃∗.

In Figure 6.3 yet another illustration is exhibited, based on rewriting (6.1)
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k̃∗ k̃0

ỹ∗

(δ + g + n)

s
k̃

f
(
k̃
)

k̃

ỹ

Figure 6.2: Phase diagram 2.

k̃0 k̃∗

δ + g + n

s
f(k̃)

k̃

gk̃

k̃

S
K

Figure 6.3: Phase diagram 3.
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this way:
·
k̃(t)

k̃(t)
= s

f(k̃(t))

k̃(t)
− (δ + g + n),

where sf(k̃(t))/k̃(t) is gross saving per unit of capital, S(t)/K(t) ≡ (Y (t)−
C(t))/K(t).
From now on the dating of the variables is suppressed unless needed for

clarity.

6.2 Do poor countries tend to approach their
steady state from below?

From some textbooks (for instance Barro and Sala-i-Martin, 2004) one gets
the impression that poor countries tend to approach their steady state from
below. But this is not what the Penn World Table data seems to indicate.
And from a theoretical point of view the size of k̃0 relative to k̃∗ is certainly
ambiguous, whether the country is rich or poor. To see this, consider a poor
country with initial effective capital intensity

k̃0 ≡
K0

A0L0

.

Here K0/L0 will typically be small for a poor country (the country has not
yet accumulated much capital relative to its fast-growing population). The
technology level, A0, however, also tends to be small for a poor country.
Hence, whether we should expect k̃0 < k̃∗ or k̃0 > k̃∗ is not obvious apriori.
Or equivalently: whether we should expect that a poor country’s GDP at an
arbitrary point in time grows at a rate higher or lower than the country’s
steady-state growth rate, g + n, is not obvious apriori.
While Figure 6.3 illustrates the case where the inequality k̃0 < k̃∗ holds,

Figure 6.1 and 6.2 illustrate the opposite case. There exists some empirical
evidence indicating that poor countries tend to approach their steady state
from above. Indeed, Cho and Graham (1996) find that “on average, countries
with a lower income per adult are above their steady-state positions, while
countries with a higher income are below their steady-state positions”.
The prejudice that poor countries apriori should tend to approach their

steady state from below seems to come from a confusion of conditional and
unconditional β convergence. The Solow model predicts - and data supports
- that within a group of countries with similar structural characteristics (ap-
proximately the same f, A0, g, s, n, and δ), the initially poorer countries will
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grow faster than the richer countries. This is because the poorer countries
(small y(0) = f(k̃0)A0) will be the countries with relatively small initial
capital-labor ratio, k0. As all the countries in the group have approximately
the same A0, the poorer countries thus have k̃0 ≡ k0/A0 relatively small, i.e.,
k̃0 < k̃∗. From y ≡ Y/L ≡ ỹA = f(k̃)A follows that the growth rate in
output per worker of these poor countries tends to exceed g. Indeed, we have
generally (for instance in the Solow model as well as the Ramsey model)

ẏ

y
=

·
ỹ

ỹ
+ g =

f ′(k̃)
·
k̃

f(k̃)
+ g T g for

·
k̃ T 0, i.e., for k̃ S k̃∗.

So, within the group, the poor countries tend to approach the steady state,
k̃∗, from below.
The countries in the world as a whole, however, differ a lot w.r.t. their

structural characteristics, including their A0. Unconditional β convergence is
definitely rejected by the data. Then there is no reason to expect the poorer
countries to have k̃0 < k̃∗ rather than k̃0 > k̃∗. Indeed, according to the
mentioned study by Cho and Graham (1996), it turns out that the data for
the relatively poor countries favors the latter inequality rather than the first.

6.3 Within-country convergence speed and ad-
justment time

Our next issue is: How fast (or rather how slow) are the transitional dynamics
in a growth model? To put it another way: according to a given growth model
with convergence, how fast does the economy approach its steady state? The
answer turns out to be: not very fast - to say the least. This is a rather
general conclusion and is confirmed by the empirics: adjustment processes
in a growth context are quite time consuming.
In Acemoglu (2009) we meet the concept of speed of convergence at p.

54 (under an alternative name, rate of adjustment) and p. 81 (in connection
with Barro-style growth regressions). Here we shall go more into detail with
the issue of speed of convergence.
Again the Solow model is our frame of reference. We search for a formula

for the speed of convergence of k̃(t) and y(t)/y∗(t) in a closed economy de-
scribed by the Solow model. So our analysis is concerned with within-country
convergence: how fast do variables such as k̃ and y approach their steady
state paths in a closed economy? The key adjustment mechanism is linked
to diminishing returns to capital (falling marginal productivity of capital)
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in the process of capital accumulation. The problem of cross-country con-
vergence (which is what “β convergence” and “σ convergence” are about)
is in principle more complex because also such mechanisms as technological
catching-up and cross-country factor movements are involved.

6.3.1 Convergence speed for k̃(t)

The ratio of
·
k̃(t) to (k̃(t)− k̃∗) 6= 0 can be written

·
k̃(t)

k̃(t)− k̃∗
=
d(k̃(t)− k̃∗)/dt

k̃(t)− k̃∗
, (6.4)

since dk̃∗/dt = 0. We define the instantaneous speed of convergence at time

t as the (proportionate) rate of decline of the distance
∣∣∣k̃(t)− k̃∗

∣∣∣ at time t
and we denote it SOCt(k̃).1 Thus,

SOCt(k̃) ≡ −
d
(∣∣∣k̃(t)− k̃∗

∣∣∣) /dt∣∣∣k̃(t)− k̃∗
∣∣∣ = −d(k̃(t)− k̃∗)/dt

k̃(t)− k̃∗
(6.5)

per time unit, where the equality sign is valid for monotonic convergence.
Generally, SOCt(k̃) depends on both the absolute size of the difference k̃

− k̃∗ at time t and its sign. But if the difference is already “small”, SOCt(k̃)
will be “almost”constant for increasing t and we can find an approximate

measure for it. Let the function ϕ(k̃) be defined by
·
k̃ = sf(k̃)−mk̃ ≡ ϕ(k̃),

where m ≡ δ+ g+n. A first-order Taylor approximation of ϕ(k̃) around k̃ =
k̃∗ gives

ϕ(k̃) ≈ ϕ(k̃∗) + ϕ′(k̃∗)(k̃ − k̃∗) = 0 + (sf ′(k̃∗)−m)(k̃ − k̃∗).

For k̃ in a small neighborhood of the steady state, k̃∗, we thus have
·
k̃ = ϕ(k̃) ≈ (sf ′(k̃∗)−m)(k̃ − k̃∗)

= (
sf ′(k̃∗)

m
− 1)m(k̃ − k̃∗)

= (
k̃∗f

′
(k̃∗)

f(k̃∗)
− 1)m(k̃ − k̃∗) (from (6.2))

≡ (ε(k̃∗)− 1)m(k̃ − k̃∗) (from (6.6)),

1Synonyms for speed of convergence are rate of convergence, rate of adjustment or
adjustment speed.
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where ε(k̃∗) is the output elasticity w.r.t. capital, evaluated in the steady
state. So

K

Y

∂Y

∂K
=

k̃

f(k̃)
f ′(k̃) ≡ ε(k̃), (6.6)

where 0 < ε(k̃) < 1 for all k̃ > 0.

Applying the definition (6.5) and the identity m ≡ δ+ g+ n, we now get

SOCt(k̃) = −d(k̃(t)− k̃∗)/dt
k̃(t)− k̃∗

=
−
·
k̃(t)

k̃(t)− k̃∗
≈ (1−ε(k̃∗))(δ+g+n) ≡ β(k̃∗) > 0.

(6.7)
This result tells us how fast, approximately, the economy approaches its
steady state if it starts “close”to it. If, for example, β(k̃∗) = 0.02 per year,
then 2 percent of the gap between k̃(t) and k̃∗ vanishes per year. We also see
that everything else equal, a higher output elasticity w.r.t. capital implies a
lower speed of convergence.

In the limit, for
∣∣∣k̃ − k̃∗∣∣∣ → 0, the instantaneous speed of convergence

coincides with what is called the asymptotic speed of convergence, defined as

SOC∗(k̃) ≡ lim
|k̃−k̃∗|→0

SOCt(k̃) = β(k̃∗). (6.8)

Multiplying through by −(k̃(t)− k̃∗), the equation (6.7) takes the form of
a homogeneous linear differential equation (with constant coeffi cient), ẋ(t) =
βx(t), the solution of which is x(t) = x(0)eβt.With x(t) = k̃(t)− k̃∗ and “=”
replaced by “≈”, we get in the present case

k̃(t)− k̃∗ ≈ (k̃(0)− k̃∗)e−β(k̃∗)t → 0 for t→∞. (6.9)

This is the approximative time path for the gap between k̃(t) and k̃∗ and
shows how the gap becomes smaller and smaller at the rate β(k̃∗).
One of the reasons that the speed of convergence is important is that it

indicates what weight should be placed on transitional dynamics of a growth
model relative to the steady-state behavior. The speed of convergence mat-
ters for instance for the evaluation of growth-promoting policies. In growth
models with diminishing marginal productivity of production factors, suc-
cessful growth-promoting policies have transitory growth effects and perma-
nent level effects. Slower convergence implies that the full benefits are slower
to arrive.
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6.3.2 Convergence speed for log k̃(t)*

We have found an approximate expression for the convergence speed of k̃.
Since models in empirical analysis and applied theory are often based on log-
linearization, we might ask what the speed of convergence of log k̃ is. The
answer is: approximately the same and asymptotically exactly the same as
that of k̃ itself! Let us see why.
A first-order Taylor approximation of log k̃(t) around k̃ = k̃∗ gives

log k̃(t) ≈ log k̃∗ +
1

k̃∗
(k̃(t)− k̃∗). (6.10)

By definition

SOCt(log k̃) = −d(log k̃(t)− log k̃∗)/dt

log k̃(t)− log k̃∗
= − dk̃(t)/dt

k̃(t)(log k̃(t)− log k̃∗)

≈ − dk̃(t)/dt

k̃(t) k̃(t)−k̃∗
k̃∗

=
k̃∗

k̃(t)
SOCt(k̃)→ SOC∗(k̃) = β(k̃∗)(6.11)

for k̃(t) → k̃∗,

where in the second line we have used, first, the approximation (6.10), second,
the definition in (6.7), and third, the definition in (6.8).
So, at least in a neighborhood of the steady state, the instantaneous rate

of decline of the logarithmic distance of k̃ to the steady-state value of k̃
approximates the instantaneous rate of decline of the distance of k̃ itself to
its steady-state value. The asymptotic speed of convergence of log k̃ coincides
with that of k̃ itself and is exactly β(k̃∗).
In the Cobb-Douglas case (where ε(k̃∗) is a constant, say α) it is possible

to find an explicit solution to the Solow model, see Acemoglu (2009, p. 53)
and Exercise II.2. It turns out that the instantaneous speed of convergence in
a finite distance from the steady state is a constant and equals the asymptotic
speed of convergence, (1− α)(δ + g + n).

6.3.3 Convergence speed for y(t)/y∗(t)*

The variable which we are interested in is usually not so much k̃ in itself,
but rather labor productivity, y(t) ≡ ỹ(t)A(t). In the interesting case where
g > 0, labor productivity does not converge towards a constant. We therefore
focus on the ratio y(t)/y∗(t), where y∗(t) denotes the hypothetical value of
labor productivity at time t, conditional on the economy being on its steady-
state path, i.e.,

y∗(t) ≡ ỹ∗A(t). (6.12)
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We have
y(t)

y∗(t)
≡ ỹ(t)A(t)

ỹ∗A(t)
=
ỹ(t)

ỹ∗
. (6.13)

As ỹ(t)→ ỹ∗ for t→∞, the ratio y(t)/y∗(t) converges towards 1 for t→∞.
Taking logs on both sides of (6.13), we get

log
y(t)

y∗(t)
= log

ỹ(t)

ỹ∗
= log ỹ(t)− log ỹ∗

≈ log ỹ∗ +
1

ỹ∗
(ỹ(t)− y∗)− log ỹ∗ (first-order Taylor approx. of log ỹ )

=
1

f(k̃∗)
(f(k̃(t))− f(k̃∗))

≈ 1

f(k̃∗)
(f(k̃∗) + f ′(k̃∗)(k̃(t)− k̃∗)− f(k̃∗)) (first-order approx. of f(k̃))

=
k̃∗f ′(k̃∗)

f(k̃∗)

k̃(t)− k̃∗

k̃∗
≡ ε(k̃∗)

k̃(t)− k̃∗

k̃∗

≈ ε(k̃∗)(log k̃(t)− log k̃∗) (by (6.10)). (6.14)

Multiplying through by −(log k̃(t)− log k̃∗) in (6.11) and carrying out the
differentiation w.r.t. time, we find an approximate expression for the growth
rate of k̃,

dk̃(t)/dt

k̃(t)
≡ gk̃(t) ≈ −

k̃∗

k̃(t)
SOCt(k̃)(log k̃(t)− log k̃∗)

→ −β(k̃∗)(log k̃(t)− log k̃∗) for k̃(t)→ k̃∗, (6.15)

where the convergence follows from the last part of (6.11). We now calculate
the time derivative on both sides of (6.14) to get

d(log
y(t)

y∗(t)
)/dt = d(log

ỹ(t)

ỹ∗
)/dt =

dỹ(t)/dt

ỹ(t)
≡ gỹ(t)

≈ ε(k̃∗)gk̃(t) ≈ −ε(k̃∗)β(k̃∗)(log k̃(t)− log k̃∗). (6.16)

from (6.15). Dividing through by − log(y(t)/y∗(t)) in this expression, taking
(6.14) into account, gives

−
d(log y(t)

y∗(t))/dt

log y(t)
y∗(t)

= −
d(log y(t)

y∗(t) − log 1)/dt

log y(t)
y∗(t) − log 1

≡ SOCt(log
y

y∗
) ≈ β(k̃∗), (6.17)

in view of log 1 = 0. So the logarithmic distance of y from its value on the
steady-state path at time t has approximately the same rate of decline as the
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logarithmic distance of k̃ from k̃’s value on the steady-state path at time t.
The asymptotic speed of convergence for log y(t)/y∗(t) is exactly the same
as that for k̃, namely β(k̃∗).
What about the speed of convergence of y(t)/y∗(t) itself? Here the same

principle as in (6.11) applies. The asymptotic speed of convergence for
log(y(t)/y∗(t)) is the same as that for y(t)/y∗(t) (and vice versa), namely
β(k̃∗).
With one year as our time unit, standard parameter values are: g = 0.02,

n = 0.01, δ = 0.05, and ε(k̃∗) = 1/3.We then get β(k̃∗) = (1−ε(k̃∗))(δ+g+n)
= 0.053 per year. In the empirical Chapter 11 of Barro and Sala-i-Martin
(2004), it is argued that a lower value of β(k̃∗), say 0.02 per year, fits the data
better. This requires ε(k̃∗) = 0.75. Such a high value of ε(k̃∗) (≈ the income
share of capital) may seem diffi cult to defend. But if we reinterpret K in
the Solow model so as to include human capital (skills embodied in human
beings and acquired through education and learning by doing), a value of
ε(k̃∗) at that level may not be far out.

6.3.4 Adjustment time

Let τω be the time that it takes for the fraction ω ∈ (0, 1) of the initial gap
between k̃ and k̃∗ to be eliminated, i.e., τω satisfies the equation∣∣∣k̃(τω)− k̃∗

∣∣∣∣∣∣k̃(0)− k̃∗
∣∣∣ =

k̃(τω)− k̃∗

k̃(0)− k̃∗
= 1− ω, (6.18)

where 1 − ω is the fraction of the initial gap still remaining at time τω. In
(6.18) we have applied that sign(k̃(t) − k̃∗) = sign(k̃(0) − k̃∗) in view of
monotonic convergence.
By (6.9), we have

k̃(τω)− k̃∗ ≈ (k̃(0)− k̃∗)e−β(k̃∗)τω .

In view of (6.18), this implies

1− ω ≈ e−β(k̃∗)τω .

Taking logs on both sides and solving for τω gives

τω ≈ −
log(1− ω)

β(k̃∗)
. (6.19)
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This is the approximate adjustment time required for k̃ to eliminate the
fraction ω of the initial distance of k̃ to its steady-state value, k̃∗, when the
adjustment speed (speed of convergence) is β(k̃∗).
Often we consider the half-life of the adjustment, that is, the time it

takes for half of the initial gap to be eliminated. To find the half-life of the
adjustment of k̃, we put ω = 1

2
in (6.19). Again we use one year as our time

unit. With the parameter values from Section 6.3.3, we have β(k̃∗) = 0.053
per year and thus

τ 1
2
≈ −

log 1
2

0.053
≈ 0.69

0.053
= 13, 1 years.

As noted above, Barro and Sala-i-Martin (2004) estimate the asymptotic
speed of convergence to be β(k̃∗) = 0.02 per year. With this value, the
half-life is approximately

τ 1
2
≈ −

log 1
2

0.02
≈ 0.69

0.02
= 34.7 years.

And the time needed to eliminate three quarters of the initial distance to
steady state, τ 3/4, will then be about 70 years (= 2 ·35 years, since 1−3/4 =
1
2
· 1

2
).
Among empirical analysts there is not general agreement about the size of

β(k̃∗). Some authors, for example Islam (1995), using a panel data approach,
find speeds of convergence considerably larger, between 0.05 and 0.09. Mc-
Quinne and Whelan (2007) get similar results. There is a growing realization
that the speed of convergence differs across periods and groups of countries.
Perhaps an empirically reasonable range is 0.02 < β(k̃∗) < 0.09. Correspond-
ingly, a reasonable range for the half-life of the adjustment will be 7.6 years
< τ 1

2
< 34.7 years.

Most of the empirical studies of convergence use a variety of cross-country
regression analysis of the kind described in the next section. Yet the theoret-
ical frame of reference is often the Solow model - or its extension with human
capital (Mankiw et al., 1992). These models are closed economy models with
exogenous technical progress and deal with “within-country”convergence. It
is not obvious that they constitute an appropriate framework for studying
cross-country convergence in a globalized world where capital mobility and to
some extent also labor mobility are important and where some countries are
pushing the technological frontier further out, while others try to imitate and
catch up. At least one should be aware that the empirical estimates obtained
may reflect mechanisms in addition to the falling marginal productivity of
capital in the process of capital accumulation.
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6.4 Barro-style growth regressions*

Barro-style growth regression analysis, which became very popular in the
1990s, draws upon transitional dynamics aspects (including the speed of con-
vergence) as well as steady state aspects of neoclassical growth theory (for
instance the Solow model or the Ramsey model).
Chapter 3.2 in Acemoglu (2009) presents Barro’s growth regression equa-

tions in an unconventional form, see Acemoglu’s equations (3.12), (3.13), and
(3.14). The left-hand side appears as if it is just the growth rate of y (output
per unit of labor) from one year to the next. But the true left-hand side of a
Barro equation is the average compound annual growth rate of y over many
years. Moreover, since Acemoglu’s text is very brief about the formal links
to the underlying neoclassical theory of transitional dynamics, we will spell
the details out here.
Most of the preparatory work has already been done above. The point of

departure is a neoclassical one-sector growth model for a closed economy:

·
k̃(t) = s(k̃(t))f(k̃(t))− (δ + g + n)k(t), k̃(0) = k̃0 > 0, given, (6.20)

where k̃(t) ≡ K(t)/(A(t)L(t)), A(t) = A0e
gt, and L(t) = L0e

nt as above.
The Solow model is the special case where the saving-income ratio, s(k̃(t)),
is a constant s ∈ (0, 1).
It is assumed that the model, (6.20), generates monotonic convergence,

i.e., k̃(t) → k̃∗ > 0 for t → ∞. Applying again a first-order Taylor approxi-
mation, as in Section 3.1, and taking into account that s(k̃) now may depend
on k̃, as for instance it generally does in the Ramsey model, we find the
asymptotic speed of convergence for k̃ to be

SOC∗(k̃) = (1− ε(k̃∗)− η(k̃∗))(δ + g + n) ≡ β(k̃∗) > 0, (*)

where η(k̃∗) ≡ k̃∗s′(k̃∗)/s(k̃∗) is the elasticity of the saving-income ratio w.r.t.
the effective capital intensity, evaluated at k̃ = k̃∗. (In case of the Ramsey
model, one can alternatively use the fact that SOC∗(k̃) equals the absolute
value of the negative eigenvalue of the Jacobian matrix associated with the
dynamic system of the model, evaluated in the steady state. For a fully
specified Ramsey model this eigenvalue can be numerically calculated by an
appropriate computer algorithm; in the Cobb-Douglas case there exists even
an explicit algebraic formula for the eigenvalue, see Barro and Sala-i-Martin,
2004). In a neighborhood of the steady state, the previous formulas remain
valid with β(k̃∗) defined as in (*). The asymptotic speed of convergence of for
example y(t)/y∗(t) is thus β(k̃∗) as given in (*). For notational convenience,
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we will just denote it β, interpreted as a derived parameter, i.e.,

β = (1− ε(k̃∗)− η(k̃∗))(δ + g + n) ≡ β(k̃∗). (6.21)

In case of the Solow model, η(k̃∗) = 0 and we are back in Section 3.
In view of y(t) ≡ ỹ(t)A(t), we have gy(t) = gỹ(t) + g. By (6.16) and the

definition of β,

gy(t) ≈ g − ε(k̃∗)β(log k̃(t)− log k̃∗) ≈ g − β(log y(t)− log y∗(t)), (6.22)

where the last approximation comes from (6.14). This generalizes Acemoglu’s
Equation (3.10) (recall that Acemoglu concentrates on the Solow model and
that his k∗ is the same as our k̃∗).
With the horizontal axis representing time, Figure 6.4 gives an illustration

of these transitional dynamics. As gy(t) = d log y(t)/dt and g = d log y∗(t)/dt,
(6.22) is equivalent to

d(log y(t)− log y∗(t))

dt
≈ −β(log y(t)− log y∗(t)). (6.23)

So again we have a simple differential equation of the form ẋ(t) = βx(t), the
solution of which is x(t) = x(0)eβt. The solution of (6.23) is thus

log y(t)− log y∗(t) ≈ (log y(0)− log y∗(0))e−βt.

As y∗(t) = y∗(0)egt, this can be written

log y(t) ≈ log y∗(0) + gt+ (log y(0)− log y∗(0))e−βt. (6.24)

The solid curve in Figure 6.4 depicts the evolution of log y(t) in the case
where k̃0 < k̃∗ (note that log y∗(0) = log f(k̃∗) + logA0). The dotted curve
exemplifies the case where k̃0 > k̃∗. The figure illustrates per capita income
convergence: low initial income is associated with a high subsequent growth
rate which, however, diminishes along with the diminishing logarithmic dis-
tance of per capita income to its level on the steady state path.
For convenience, we will from now on treat (6.24) as an equality. Sub-

tracting log y(0) on both sides, we get

log y(t)− log y(0) = log y∗(0)− log y(0) + gt+ (log y(0)− log y∗(0))e−βt

= gt− (1− e−βt)(log y(0)− log y∗(0)).

Dividing through by t > 0 gives

log y(t)− log y(0)

t
= g − 1− e−βt

t
(log y(0)− log y∗(0)). (6.25)
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Figure 6.4: Evolution of log y(t). Solid curve: the case k̃0 < k̃∗. Dotted curve: the
case k̃0 > k̃∗. Stippled line: the steady-state path.

On the left-hand side appears the average compound annual growth rate of
y from period 0 to period t, which we will denote ḡy(0, t). On the right-hand
side appears the initial distance of log y to its hypothetical level along the
steady state path. The coeffi cient, −(1− e−βt)/t, to this distance is negative
and approaches zero for t → ∞. Thus (6.25) is a translation into growth
form of the convergence of log yt towards the steady-state path, log y∗t , in the
theoretical model without shocks. Rearranging the right-hand side, we get

ḡy(0, t) = g +
1− e−βt

t
log y∗(0)− 1− e−βt

t
log y(0) ≡ b0 + b1 log y(0),

where both the constant b0 ≡ g +
[
(1− e−βt)/t

]
log y∗(0) and the coeffi cient

b1 ≡ −(1 − e−βt)/t are determined by “structural characteristics”. Indeed,
β is determined by δ, g, n, ε(k̃∗), and η(k̃∗) through (6.21), and y∗(0) is de-
termined by A0 and f(k̃∗) through (6.12), where, in turn, k̃∗ is determined
by the steady state condition s(k̃∗)f(k̃∗) = (δ + g + n)k̃∗, s(k̃∗) being the
saving-income ratio in the steady state.
With data for N countries, i = 1, 2,. . . , N, a test of the unconditional

convergence hypothesis may be based on the regression equation

ḡyi(0, t) = b0 + b1 log yi(0) + εi, εi ∼ N(0, σ2
ε), (6.26)

where εi is the error term. This can be seen as a Barro growth regression
equation in its simplest form. For countries in the entire world, the theoret-
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ical hypothesis b1 < 0 is clearly not supported (or, to use the language of
statistics, the null hypothesis, b1 = 0, is not rejected).2

Allowing for the considered countries having different structural charac-
teristics, the Barro growth regression equation takes the form

ḡyi(0, t) = b0
i + b1 log yi(0) + εi, b1 < 0, εi ∼ N(0, σ2

ε). (6.27)

In this “fixed effects” form, the equation has been applied for a test of the
conditional convergence hypothesis, b1 < 0, often supporting this hypothesis.
That is, within groups of countries with similar characteristics (like, e.g., the
OECD countries), there is a tendency to convergence.
From the estimate of b1 the implied estimate of the asymptotic speed of

convergence, β, is readily obtained through the formula b1 ≡ (1 − e−βt)/t.
Even β, and therefore also the slope, b1, does depend, theoretically, on
country-specific structural characteristics. But the sensitivity on these do
not generally seem large enough to blur the analysis based on (6.27) which
abstracts from this dependency.
With the aim of testing hypotheses about growth determinants, Barro

(1991) and Barro and Sala-i-Martin (1992, 2004) decompose b0
i so as to reflect

the role of a set of potentially causal measurable variables,

b0
i = α0 + α1xi1 + α2xi2 + . . . + αmxim,

where the α’s are the coeffi cients and the x’s are the potentially causal vari-
ables.3 These variables could be measurable Solow-type parameters among
those appearing in (6.20) or a broader set of determinants, including for in-
stance the educational level in the labor force, and institutional variables like
rule of law and democracy. Some studies include the initial within-country
inequality in income or wealth among the x’s and extend the theoretical
framework correspondingly.4

From an econometric point of view there are several problematic features
in regressions of Barro’s form (also called the β convergence approach). These
problems are discussed in Acemoglu pp. 82-85.

2Cf. Acemoglu, p. 16. For the OECD countries, however, b1 is definitely found to be
negative (cf. Acemoglu, p. 17).

3Note that our α vector is called β in Acemoglu, pp. 83-84. So Acemoglu’s β is to be
distinquished from our β which denotes the asymptotic speed of convergence.

4See, e.g., Alesina and Rodrik (1994) and Perotti (1996), who argue for a negative
relationship between inequality and growth. Forbes (2000), however, rejects that there
should be a robust negative correlation between the two.
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Chapter 7

Why the Malthusian era must
come to an end

This chapter presents the population-breeds-ideas model by Michael Kremer
(Kremer, 1993). The point of the model is to show that under certain con-
ditions, the cumulative and nonrival character of technical knowledge makes
it almost inevitable that the Malthusian regime of stagnating income per
capita, close to subsistence minimum, will sooner or later in the historical
evolution be surpassed.
This topic relates to Section 8.2 of Jones and Vollrath (2013). Section 4.2

of Acemoglu (2009) briefly discuss two special cases of the Kremer model.

7.1 The general model

Suppose a pre-industrial economy can be described by:

Yt = Aσt L
α
t Z

1−α, σ > 0, 0 < α < 1, (7.1)

Ȧt = λAεtLt, λ > 0, A0 > 0 given, (7.2)

Lt =
Yt
ȳ
, ȳ > 0, (7.3)

where Y is aggregate output, A the level of technical knowledge, L the labor
force (= population), Z the amount of land (fixed), and ȳ subsistence mini-
mum. By this is not meant some point almost at starvation, but an income
level suffi cient for food, clothing, shelter etc. to the worker, including family
and offspring, thereby enabling reproduction of the labor force.
Both Z and ȳ are considered as constant parameters. Time is continuous

and it is understood that a kind of Malthusian population mechanism (see
below) is operative behind the scene.
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The exclusion of capital from the aggregate production function, (7.1),
reflects the presumption that capital (tools etc.) is quantitatively of minor
importance in a pre-industrial economy. In accordance with the replication
argument, the production function has CRS w.r.t. the rival inputs, labor and
land. The factor Aσt measures total factor productivity. As the right-hand
side of (7.2) is positive, the technology level, At, is rising over time (although
far back in time very very slowly). The increase in At per time unit is seen
to be an increasing function of the size of the population. This reflects the
hypothesis that population breeds ideas; these are nonrival and enter the
pool of technical knowledge available for society as a whole. Indeed, the
use of an idea by one agent does not preclude others’use of the same idea.
Dividing through by L in (7.1) we see that y ≡ Yt/Lt = Aσt (Z/Lt)

1−α. The
nonrival character is displayed by labor productivity being dependent on the
total stock of knowledge, not on this stock per worker. In contrast, labor
productivity depends on land per worker.
The rate per capita by which population breeds ideas is λAε. In case ε > 0,

this rate is an increasing function of the already existing level of technical
knowledge. This case reflects the hypothesis that the larger is the stock of
ideas the easier do new ideas arise (perhaps by combination of existing ideas).
The opposite case, ε < 0, is the one where “the easiest ideas are found first”
or “the low-hanging fruits are picked first”.
Equation (7.3) is a shortcut description of a Malthusian population mech-

anism. Suppose the true mechanism is

L̇t = β(yt − ȳ)Lt T 0 for yt T ȳ, (7.4)

where β > 0 is the speed of adjustment, yt is per capita income, and ȳ >
0 is subsistence minimum. A rise in yt above ȳ will lead to increases in
Lt through earlier marriage, higher fertility, and lower mortality. Thereby
downward pressure on Yt/Lt is generated, perhaps pushing yt below ȳ.When
this happens, population will be decreasing for a while and so return towards
its sustainable level, Yt/ȳ. Equation (7.3) treats this mechanism as if the
population instantaneously adjusts to its sustainable level (i.e., as if β →∞).
The model hereby gives a long-run picture, ignoring the Malthusian ups and
downs in population and per capita income about the subsistence minimum.
The important feature is that the technology level, and thereby Yt, as well
as the sustainable population will be rising over time. This speeds up the
arrival of new ideas and so Yt is raised even faster although per-capita income
remains at its long-run level, ȳ.1

For simplicity, we now normalize the constant Z to be 1.
1Extending the model with the institution of private ownership and competitive mar-

kets, the absence of a growing standard of living corresponds to the doctrine from classical
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7.2 Law of motion

The dynamics of the model can be reduced to one differential equation, the
law of motion of technical knowledge. By (7.3) and (7.1), Lt = Yt/ȳ =
Aσt L

α
t /ȳ. Consequently L

1−α
t = Aσt /ȳ so that

Lt = ȳ
1

α−1A
σ

1−α
t . (7.5)

Substituting this into (7.2) gives the law of motion of technical knowledge:

Ȧt = λȳ
1

α−1A
ε+ σ

1−α
t ≡ λ̂Aµt , (7.6)

where we have defined λ̂ ≡ λȳ1/(α−1) and µ ≡ ε + σ/(1− α). As will appear
in the remainder, the “feedback parameter”µ is of key importance for the
dynamics. We immediately see that if µ = 1, the differential equation (7.6)
is linear, while otherwise it is nonlinear.
The case µ = 1 :When µ = 1, there will be a constant growth rate gA = λ̂

in technical knowledge. By (7.5), this results in a constant population growth
rate gL = [σ/(1− α)] λ̂, which is also the growth rate of output in view of
(7.3). By the definition of λ̂ in (7.6), we see that, as expected, the population
and output growth rate is an increasing function of the creativity parameter
λ and a decreasing function of the subsistence minimum.2

In this case the economy never leaves the Malthusian regime of a more or
less constant standard of living close to existence minimum. Takeoff never
occurs.
The case µ 6= 1. Then (7.6) can be written

Ȧt = λ̂Aµt , (7.7)

which is a nonlinear differential equation in A.3 Let x ≡ A1−µ. Then

ẋt = (1− µ)A−µt λ̂Aµt = (1− µ)λ̂, (7.8)

economics called the iron law of wages. This is the theory (from Malthus and Ricardo)
that scarce natural resources and the pressure from population growth causes real wages
to remain at subsistende level. There may occationally occur a technological improvement,
which leads to a transitory real wage increase, triggering of an increase in population which
ultimately brings down wages.
These classical economists did not recognize any tendency to sustained technical progress

and therefore missed the immanent tendency to sustained population growth at the pre-
industrial stage of economic development. Karl Marx was the first among the classical
economists to really see and emphasize sustained technical progress.

2If σ = 1 − α as in Acemoglu’s analysis, µ = 1 requires ε = 0, and in this case L and
Y grow at the same rate as knowledge.

3The differential equation, (7.7), is a special case of what is known as the Bernoulli
equation. In spite of being a non-linear differential equation, the Bernoulli equation always
has an explicit solution.
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a constant. To find xt from this, we only need simple integration:

xt = x0 +

∫ t

0

ẋτdτ = x0 + (1− µ)λ̂t.

As A = x
1

1−µ and x0 = A1−µ
0 , this implies

At = x
1

1−µ
t =

[
A1−µ

0 + (1− µ)λ̂t
] 1
1−µ

=
1[

A1−µ
0 − (µ− 1)λ̂t

] 1
µ−1

. (7.9)

There are now two sub-cases, µ > 1 and µ < 1. The latter sub-case leads
to permanent but decelerating growth in knowledge and population and the
Malthusian regime is never transcended (see Exercise III.3). The former
sub-case is the interesting one.

7.3 The inevitable ending of the Malthusian
regime when µ > 1

Assume µ > 1. In this case the result (7.9) implies that the Malthusian
regime must come to an end.
Although to begin with, At may grow extremely slowly, the growth in At

will be accelerating because of the positive feedback (visible in (7.2)) from
both rising population and rising At. Indeed, since µ > 1, the denominator
in (7.9) will be decreasing over time and approach zero in finite time, namely
as t approaches the finite value t∗ = A1−µ

0 /((µ − 1)λ̂). As an implication,
according to (7.9), At goes towards infinity in finite time. The stylized
graph in Fig. 7.1 illustrates. The evolution of technical knowledge becomes
explosive as t approaches t∗.
It follows from (7.5) and (7.1) that explosive growth in A implies explosive

growth in L and Y, respectively. The acceleration in the evolution of Y will
sooner or later make Y rise fast enough so that the Malthusian population
mechanism (which for biological reasons has to be slow) can not catch up.
Then, what was in the Malthusian regime only a transitory excess of yt over
ȳ, will at some t = t̂ < t∗ become a permanent excess and take the form of
sustained growth in yt.
We may think of this post-Malthusian phase as describing pre-industrial

Britain. Technological innovations speeded up, helped by market-friendly
institutions, intellectual property rights, and deliberate and systematic ap-
plication of science and engineering. This lead to the takeoff known as the
industrial revolution.
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Figure 7.1: Accelerating growth in A when the feedback parameter µ exceeds one.

Note that Fig. 7.1 illustrates only what the process (7.7), with µ > 1, im-
plies as long as it rules, namely that knowledge goes towards infinity in finite
time. The process necessarily ceases to rule long before time t∗ is reached,
however. This is because the process presupposes that the Malthusian pop-
ulation mechanism keeps track with output growth so as to maintain (7.3)
which at some point before t∗ becomes impossible because of the acceleration
in the latter.

In a neighborhood of this point the takeoffwill occur, featuring sustained
growth in output per capita. According to equation (7.4), the takeoff should
also feature a permanently rising population growth rate. As economic his-
tory has testified, however, along with the rising standard of living the de-
mographics changed radically (in the U.K. during the 19th century). The
demographic transition took place with fertility declining faster than mor-
tality. This results in completely different dynamics, hence the model as it
stands no longer fits.4 As to the demographic transition as such, explanations
suggested by economists include: higher real wages mean higher opportunity
costs of raising children instead of producing; reduced use of child labor;
the trade-off between “quality”(educational level) of the offspring and their
“quantity”(Becker, Galor)5; skill-biased technical change; and improved con-
traception technology.

4Kremer (1993), however, also includes an extended model taking some of these changed
dynamics into account.

5See Acemoglu, Section 21.2.
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7.4 Closing remarks

The population-breeds-ideas model is about dynamics in the Malthusian
regime of the pre-industrial epoch. The story told by the model is the follow-
ing. When the feedback parameter, µ, is above one, the Malthusian regime
has to come to an end because the battle between scarcity of land (or nat-
ural resources more generally) and technological progress (absent natural
catastrophes) will inevitably be won by the latter. The reason is the cumu-
lative and nonrival character of technical knowledge. This nonrivalry implies
economies of scale. Moreover, the stock of knowledge is growing endoge-
nously. This knowledge growth generates output growth and, through the
demographic mechanism (7.3), growth in the stock of people, which implies
a positive feedback to the growth of knowledge and so on. On top of this,
if ε > 0, knowledge growth has a direct positive feedback on itself through
(7.2). When the total positive feedback is strong enough (µ > 1), it generates
an explosive process.6

On the basis of demographers’estimates of the growth in global popu-
lation over most of human history, Kremer (1993) finds empirical support
for µ > 1. Indeed, in the opposite case, µ ≤ 1, there would not have been
a rising world population growth rate since one million years B.C. to the
industrial revolution. The data in Kremer (1993, p. 682) indicates that the
world population growth rate has been more or less proportional to the size
of population until recently.

Final remark. Compared with Kremer’s version of the model, we have
allowed σ 6= 1, but at the same time introduced a simplification relative to
Kremer’s setup. Kremer starts from a slightly more general ideas-formation
equation, namely Ȧt = λAεtL

ψ
t with ψ > 0, while in our (7.2) we have assumed

ψ = 1. If ψ > 1, the ideas-creating brains reinforce one another. This only
fortifies the acceleration in knowledge creation and thereby “supports” the
case µ > 1.7 If on the other hand 0 < ψ < 1, the idea-creating brains partly
offset one another, for instance by simultaneously coming up with more or
less the same ideas (the case of “overlap”). This generalization does not
change the qualitative results. By assuming that the number of new ideas
per time unit is proportional to the stock of brains, we have chosen to focus
on an intermediate case in order to avoid secondary factors blurring the main
mechanism.

6In the appendix the explosion result is considered in a general mathematical context.
7Kremer’s calibration suggests ψ ≈ 6/5.
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7.5 Appendix

A. The mathematical background

Mathematically, the background for the explosion result is that the solution
to a first-order differential equation of the form ẋ(t) = α + bx(t)c, c > 1,
b 6= 0, x(0) = x0 given, is always explosive. Indeed, the solution, x = x(t),
will have the property that x(t) → ±∞ for t → t∗ for some t∗ > 0 where t∗

depends on the initial conditions; and thereby the solution is defined only on
a bounded time interval which depends on the initial condition.
Take the differential equation ẋ(t) = 1 + x(t)2, x(0) = 0,as an example.

As is well-known, the solution is x(t) = tan t = sin t/ cos t, defined for t ∈
(−π/2, π/2).

B. Comparison with the two special cases considered in Acemoglu
(2009)

At pp. 113-14 Acemoglu presents two versions of this framework, both of
which assume σ = 1 − α. This assumption is arbitrary; it is included as a
special case in our formulation above. As to the other parameter relating to
the role of knowledge, ε, Acemuglu assumes ε = 0 in his first version of the
framework. This leads to constant population growth but a forever stagnat-
ing standard of living (Acemoglu, p. 113). In his second version, Acemoglu
assumes ε = 1. This leads to many centuries of slow but (weakly) accelerating
population growth and then ultimately a “takeoff”with sustained rise in the
standard of living, to be followed by the “demographic transition”(outside
the model). This latter outcome arises for a much larger set of parameter
values than ε = 1 and is therefore theoretically more robust than appears in
Acemoglu’s exposition.
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