
Short Note 1. Economic Growth.

April 11, 2016. Christian Groth

Robustness issues and scale effects

This note adds some conceptual and empirical perspectives to the discussion in Chap-

ter 5 and 9 in Jones and Vollrath (2013).

1 Different growth patterns

Notation: Y = GDP, y ≡ Y/L, and gy ≡ ẏ/y; time is continuous.

Economic growth can take different forms. It can be exponential :

yt = y0e
gt, g > 0. (1)

Ignoring business cycle fluctuations this describes quite well what we have seen in indus-

trialized economies since the industrial revolution (with g ∈ (0.01, 0.02) on annual basis).
When growth is exponential, the growth rate, ẏ/y, is a positive constant, here equal to g.

Growth can alternatively take the form of arithmetic growth:

yt = y0 + αt, α > 0. (2)

Here ẏ = α, the momentum, is a positive constant. So, in spite of the growth rate, ẏ/y,

approaching zero for t going to infinity, we have yt →∞ for t→∞.

More generally, growth can take the form of quasi-arithmetic growth:

yt = y0(1 + αβt)1/β, α > 0, β > 0. (3)

In the special case β = 1 and y0 = 1, this is arithmetic growth. The parameter β is the

damping coeffi cient. The case of strict stagnation, yt = y0 for all t ≥ 0, can be interpreted
as the limiting case β →∞.1 On the other hand, in the limit, when β → 0 (no damping),

the growth path (3) becomes exponential growth, yt = y0e
αt.2

1To see this, use L’Hôpital’s rule for “∞/∞”on ln yt = ln y0 + 1
β ln (1 + αβt). The term stagnation

also covers the case of asymptotic stagnation where in spite of ẏ > 0 for all t ≥ 0, ẏ goes towards zero
fast enough so that there is an upper bound, ȳ, for yt, i.e., yt < ȳ for all t ≥ 0. For instance logistic
growth has this property. (Logistic growth is the growth path generated by the differential equation ẏt
= αyt(1− yt/ȳ), α > 0, 0 < y0 < ȳ.)

2To see this, use L’Hôpital’s rule for “0/0”on ln yt = ln y0 + 1
β ln (1 + αβt).
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These alternative growth patterns can be generated for alternative parameter values

of essentially the same model, namely a model that leads to the differential equation

ẏt = αyβ0 yt
1−β, α > 0, β ≥ 0. (4)

In case β = 0, (4) is a linear differential equation that has the solution (1) with g = α,

which is exponential growth. In case β > 0, (4) is an autonomous Bernoulli equation that

has the solution (3), which is quasi-arithmetic growth.3 For alternative values of β between

0 and infinity, quasi-arithmetic growth covers the whole range between exponential growth

and strict stagnation. We rule out the case of β < 0 which would imply that the model

could only temporarily describe reality, because β < 0 leads to explosive growth: yt

approaching infinity in finite time (the “end of scarcity”).

Several prominent macroeconomists, e.g., Lawrence Summers, Robert Gordon, and our

own Charles Jones, predict that economic growth in the future will be lower than what

we have seen in the 20th century. One of the reasons emphasized by Jones and others

is the slowdown of population growth and thereby, everything else equal, dampening of

growth of the source of new ideas. Along this line, in a coming exercise you will be asked

to show what long-run growth pattern the horizontal innovations model with ϕ < 1 and

n = 0 implies.

2 The term “endogenous growth”and all that

How terms like “endogenous growth”and “semi-endogenous growth”are defined varies

in the literature. In this course we use the following definitions. A model features:

endogenous growth if yt →∞ for→∞, and the source of this evolution is some internal
mechanism in the model (rather than exogenous technology growth);

fully-endogenous growth if growth is endogenous in such way that yt → ∞ for → ∞
occurs even if there is no support by growth in any exogenous factor;4

3It is clear that with 0 < β < ∞, the solution formula (3) can not be extended, without bound,
backward in time. For t = −(αβ)−1 ≡ t̄, we get yt = 0, and thus, according to (4), yt = 0 for all
t ≤ t̄. This should not, however, be considered a necessarily problematic feature. A certain growth
regularity need not be applicable to all periods in history. It may apply only to specific historical epochs
characterized by a particular institutional environment.

4An alternative name for this case is strictly endogenous growth.
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semi-endogenous growth if growth is endogenous in such way that yt → ∞ for → ∞
occurs only if the growth path is supported by growth in some exogenous factor

(for example exogenous growth in the labor force).

If in the above three cases, the weak growth criterion “yt →∞ for→∞”is replaced by
exponential growth, then we speak of endogenous, fully-endogenous, and semi-endogenous

exponential growth, respectively. If instead the weak growth criterion is replaced by,

for instance, arithmetic growth, we speak of endogenous, fully-endogenous, and semi-

endogenous arithmetic growth, respectively,

An example of fully endogenous exponential growth is the endogenous growth gener-

ated in the Romer case (ϕ = 1, n = 0) of the horizontal innovations model. An example

of semi-endogenous exponential growth is the Jones case (ϕ < 1, n > 0) of the horizontal

innovations model.

When Romer’s case is combined with Ramsey households, we get steady-state results

of the following kind: ∂g∗y/∂ρ < 0 and ∂g
∗
y/∂θ < 0 (standard notation). That is, preference

parameters matter for long-run growth. This suggests, at least at the theoretical level,

that taxes and subsidies, by affecting incentives, may have effects on long-run growth.

In any case, fully-endogenous exponential growth is technologically possible if and only

if there are non-diminishing returns (at least asymptotically) to the producible inputs in

the growth-generating sector(s), also called the growth engine. The growth engine in an

endogenous growth model is defined as the set of input-producing sectors or activities

using their own output as input. This set may consist of only one element, for instance

the R&D sector in the horizontal innovations model, the manufacturing sector in the

simple AK model, and the educational sector in the Lucas (1988) model. A model is

capable of generating fully-endogenous exponential growth if the growth engine has CRS

w.r.t. producible inputs.

No argument, however, like the replication argument for CRS w.r.t. the rival inputs ex-

ists regarding CRS w.r.t. the producible inputs. This theoretical limitation, combined with

strong empirically founded skepticism, motivated Jones to introduce his semi-endogenous

version of the horizontal innovations model (Jones1995a, 1995b), where ϕ < 1, n > 0. In

that version, in the long run

gy = gk = gc =
n

1− ϕ ≡ g∗y. (5)
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If a certain degree, ξ, of R&D overlap is added, 0 ≤ ξ < 1, we instead get g∗y = (1 −
ξ)n/(1− ϕ).5

So, in this case, if and only if n > 0, can a positive constant per capita growth rate be

maintained forever. Only when the R&D outcome is assisted by growth in the exogenous

source of ideas, population, is the growth engine strong enough to maintain exponential

growth. The key role of population growth derives from the fact that at the aggregate

level there are increasing returns to scale w.r.t. capital, labor, and knowledge. For the

increasing returns to be suffi ciently exploited to generate exponential growth, population

growth is needed. Note that if the Jones case is combined with Ramsey households, we

get ∂g∗y/∂ρ = 0 = ∂g∗y/∂θ, that is, preference parameters do not matter for long-run

growth (only for the level of the growth path, see Section 4 below). This suggests that

taxes and subsidies do not have long-run growth effects. Yet, in the Jones model and

similar semi-endogenous growth models, economic policy can have important permanent

level effects. Moreover, the only temporary growth effects can be quite durable because

the speed of convergence is low (see Jones, 1995a).

Strangely enough, some textbooks (for example Barro and Sala-i-Martin, 2004) do

not call much attention to the distinction between fully-endogenous growth and semi-

endogenous growth (and even less attention to the distinction between exponential growth

and weaker forms of growth). Rather, they tend to use the term “endogenous growth”

as synonymous with what we here call “fully-endogenous exponential growth”. But there

is certainly no reason to rule out apriori the parameter cases corresponding to semi-

endogenous growth.

In the Acemoglu textbook (Acemoglu, 2009, p. 448), “semi-endogenous growth” is

defined or characterized as endogenous growth where the long-run per capita growth

rate of the economy “does not respond to taxes or other policies”. As an implication,

endogenous growth which is not semi-endogenous is in Acemoglu’s text implicitly defined

as endogenous growth where the long-run per capita growth rate of the economy does

respond to taxes or other policies.

We have defined the distinction between “semi-endogenous growth”and “fully-endogenous

growth” in a different way. In our terminology, this distinction does not coincide with

the distinction between policy-dependent and policy-invariant growth. Indeed, in our ter-

5Of course the model shifts from featuring “semi-”to featuring “fully-endogenous”exponential growth
if the model is extended with an internal mechanism determining the population growth rate. Jones (2003)
takes steps towards such a model.
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minology positive per capita growth may rest on an “exogenous source” in the sense of

deriving from exogenous technical progress and yet the long-run per capita growth rate

may be policy-dependent. In Chapter 16 of the lecture notes we will see an example in

connection with the Dasgupta-Heal-Solow-Stiglitz model, also known as the DHSS model.

There also exist models that according to our definition feature semi-endogenous

growth and yet the long-run per capita growth rate is policy-dependent (Cozzi, 1997;

Sorger, 2010). Similarly, there exist models that according to our definition feature fully-

endogenous exponential growth and yet the long-run per capita growth rate is policy-

invariant (some learning-by-doing models have this property).

Before proceeding, a word of warning. The distinction between “exogenous” and

“endogenous” growth is only meaningful within a given meta-theoretical framework. It

is always possible to make the meta-theoretical framework so broad that the per capita

growth rate must be considered endogenous within that framework. From the perspective

of society as a whole we can imagine many different political and institutional structures−
as witnessed by long-run historical evolution − some of which clearly are less conducive to
economic growth than others. From this broad point of view, growth is always endogenous.

3 Robustness of endogenous growth models

The horizontal innovations model illustrates the fact that endogenous growth models with

exogenous population typically exist in two varieties or cases. One is the fully-endogenous

growth case where a particular value is imposed on a key parameter in the growth engine.

This value is such that there are constant returns (at least asymptotically) to producible

inputs in the growth engine of the economy. In the “corresponding” semi-endogenous

growth case, the key parameter is allowed to take any value in an open interval. The

endpoint of this interval appears as the “knife-edge”value assumed in the fully-endogenous

growth case.

Although the two varieties build on qualitatively the same mathematical model of a

certain growth mechanism (say, research and development or learning by doing, to be

considered later in the course), the long-run results turn out to be very sensitive to which

of the two cases is assumed. In the fully-endogenous growth case a positive per-capita

growth rate is maintained forever without support of growth in any exogenous factor. In

the semi-endogenous growth case, the growth process needs “support”by some growing
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exogenous factor in order for sustained growth to be possible. The established terminology

is somewhat seductive here. “Fully endogenous”sounds as something going much deeper

than “semi-endogenous”. But nothing of that sort should be implied. It is just a matter

of different parameter values.

As Solow (1997, pp. 7-8) emphasizes in connection with learning-by-investing models

(with constant population), the knife-edge case assumed in the fully-endogenous growth

versions is a very special case, indeed an “extreme case, not something intermediate”.

A value slightly above the knife-edge value leads to explosive growth: infinite output in

finite time even when n = 0. And a value slightly below the knife-edge value leads to

growth petering out in the long run when n = 0.

Whereas the strength of the semi-endogenous growth case is its theoretical and empir-

ical robustness, the convenience of the fully-endogenous growth case is that it has much

simpler dynamics. Then the question arises to what extent a fully-endogenous growth

model can be seen as a useful approximation to its semi-endogenous growth “counter-

part”. Imagine that we contemplate applying the fully-endogenous growth case as a basis

for making forecasts or for policy evaluation in a situation where the “true”case is the

semi-endogenous growth case. Then we would like to know: Are the impulse-response

functions generated by a shock in the fully-endogenous growth case an acceptable ap-

proximation to those generated by the same shock in the corresponding semi-endogenous

growth case for a suffi ciently long time horizon to be of interest?6 The answer is “yes”

if the critical parameter has a value “close”to the knife edge value and “no”otherwise.

How close it need be, depends on circumstances. My own tentative impression is that

usually it is “closer”than what the empirical evidence warrants.

Even if a single growth-generating mechanism, like learning by doing, does not in

itself seem strong enough to generate a reduced-form AK model (the fully-endogenous

growth case), there might exist complementary factors and mechanisms that in total

could generate something close to a reduced-form AK model. The time-series test by, for

instance, Jones (1995b) and Romero-Avila (2006), however, reject this.7

Comment on “growth petering out”when n = 0 The above-mentioned “petering

out”of long-run growth in the semi-endogenous case when n = 0 takes different forms in

6Obviously, the ultimate effects of the shock tend to be very different in the two models.
7For an opposite view, see Kocherlakota and Yi (1997). There is a longstanding discussion about

these time-series econometric issues. See the course website under Supplementary Material.
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different models. When exponential growth cannot be sustained in a model, sometimes

it remains true that nevertheless y → ∞ for t → ∞, for instance in the form of quasi-

arithmetic growth, and sometimes instead asymptotic stagnation results.8

Another issue is whether there exist factors that in spite of n = 0 (or, to be more

precise, in spite of n decreasing, possibly to zero as projected by the United Nations

(2013) to happen within a century from now) may replace the growth-supporting role

of population growth under semi-endogenous parameter conditions like ϕ < 1. Both

urbanization and the evolution of digital information and communication technologies

seem likely for a long time to at least help in that direction.

4 Weak and strong scale effects

The distinction between weak and strong scale effects is important. In the Romer case

(ϕ = 1, n = 0) of the horizontal innovations model there a strong scale effect:

∂g∗y
∂L

> 0. (6)

Interpreting the size (“scale”) of the economy as measured by the size, L, of the labor

force, we call such an effect a strong scale effect, that is, “scale” has an effect on the

long-run growth rate. This kind of scale effect has clearly been rejected by the empirics,

cf. Jones and Vollrath (2013, p. 106).

Scale effects can be of a less dramatic form. In this case we speak of a weak scale effect

or a scale effect on levels. This form arises when ϕ is less than 1. We see from (5) that

in the Jones case (ϕ < 1, n > 0) of the horizontal innovations model, the steady state

growth rate is independent of the size of the economy. Consequently, in Jones’version

there is no strong scale effect. Yet there is a scale effect on levels unless ϕ = 0. If ϕ > 0,

the scale effect is positive in the sense that along a steady state growth path, (y∗t )
∞
t=0,

∂y∗t
∂L0

> 0, (7)

cf. Exercise VII.7.

The result (7) says the following. Suppose we consider two closed economies charac-

terized by the same parameters, including the same n > 0 and the same ϕ ∈ (0, 1). The
economies differ only w.r.t. initial size of the labor force. Suppose both economies are

8See Groth et al., 2010.
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in steady state. Then, according to (7), the economy with the larger labor force has, for

all t, larger output per unit of labor. The background is the increasing returns to scale

w.r.t. capital, labor, and technical knowledge, which in turn is due to technical knowl-

edge being a non-rival good − its use by one firm does not (in itself) limit the amount

of knowledge available to other firms.9 In a large economic system, say an integrated

set of open economies, more people benefit from a given increase in knowledge than in a

small economic system. At the same time the per capita cost of creating the increase in

knowledge is less in the large system than in the small system.

The scale effect on levels displayed by (7) can be shown to be increasing in the para-

meter ϕ, which measures the elasticity of the economy-wide R&D productivity w.r.t. the

stock of knowledge. When ϕ → 1, the scale effect becomes more and more powerful. In

the limit it ends up as a scale effect on the growth rate, as in the Romer case.

5 Discussion

Are there good theoretical and/or empirical reasons to believe in the existence of (positive)

scale effects on levels or perhaps even on growth in the long run?

Let us start with some theoretical considerations.

5.1 Theoretical aspects

From the point of view of theory, we should recognize the likelihood that offsetting forces

are in play. On the one hand, there is the problem of limited natural resources. For

a given level of technology, if there are CRS w.r.t. capital, labor, and land (or other

natural resources), there are diminishing returns to capital and labor taken together. In

this Malthusian perspective, an increased scale (increased population) results, everything

else equal, in lower rather than higher per capita output, that is, a negative scale effect

should be expected.

On the other hand, there is the anti-Mathusian view that repeated improvements

in technology tend to overcome, or rather more than overcome, this Malthusian force,

if appropriate socio-economic conditions are present. Here the theory of endogenous

technical change comes in by telling us that a large population may be good for technical

9By patent protection, secrecy, and copyright some aspects of technical knowledge are sometimes
partially and temporarily excludable, but that is another matter.
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progress if the institutions in society are growth-friendly. A larger population breeds

more ideas, the more so the better its education is; a larger population also promotes

division of labor and larger markets. This helps the creation of new technologies or,

from the perspective of an open economy, it helps the local adoption of already existing

technologies outside the country. In a less spectacular way it helps by furthering day-

by-day productivity increases due to learning by doing and learning by watching. The

non-rival character of technical knowledge is an important feature behind all this. It

implies that output per capita depends on the total stock of ideas, not on the stock per

person. This implies − everything else equal − an advantage of scale.

In the models considered so far in this course, natural resources and the environment

have been more or less ignored. Here only a few remarks about this limitation. The

approach we have followed is intended to clarify certain mechanisms − in abstraction

from numerous things. The models in focus have primarily been about aspects of an

industrialized economy. Yet the natural environment is always a precondition. A ten-

dency to positive scale effects on levels may be more or less counteracted by congestion

and aggravated environmental problems ultimately caused by increased population and a

population density above some threshold.

What can we say from an empirical point of view?

5.2 Empirical aspects

First of all we should remember that in view of cross-border diffusion of ideas and tech-

nology, a positive scale effect (whether weak or strong) should not be seen as a prediction

about individual countries, but rather as pertaining to larger regions, nowadays probably

the total industrialized part of the world. So cross-country regression analysis is not the

right framework for testing for scale effects, whether on levels or the growth rate. The

relevant scale variable is not the size of the country, but the size of a larger region to which

the country belongs, perhaps the whole world; and multivariate time series analysis seems

the most relevant approach.

Since in the last century there has been no clear upward trend in per capita growth

rates in spite of a growing world population (and also a growing population in the in-

dustrialized part of the world separately), most economists do not believe in strong scale

effects. But on the issue of weak scale effects the opinion is definitely more divided.

Considering the very-long run history of population and per capita income of different
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regions of the world, there clearly exists evidence in favour of scale effects (Kremer, 1993).

Whether advantages of scale are present also in a contemporary context is more debated.

Recent econometric studies supporting the hypothesis of positive scale effects on levels

include Antweiler and Trefler (2002) and Alcalá and Ciccone (2004). Finally, considering

the economic growth in China and India since the 1980s, we must acknowledge that this

impressive performance at least does not speak against the existence of positive scale

effects on levels.

Acemoglu seems to find positive scale effects on levels plausible at the theoretical level

(pp. 113-114). At the same time, however, later in his book he seems somewhat skeptical

as to the existence of empirical support for this. Indeed, with regard to the fact that R&D-

based theoretical growth models tend to generate at least weak scale effects, Acemoglu

claims: “It is not clear whether data support these types of scale effects” (Acemoglu,

2009, p. 448).

My personal view on the matter is that we should, of course, recognize that offsetting

forces, coming from our finite natural environment, are in play and that a lot of uncertainty

is involved. Nevertheless it seems likely that at least up to a certain point there are positive

scale effects on levels.

5.3 Policy implications

If this holds true, it supports the view that international economic integration is generally

a good idea. The concern about congestion and environmental problems, in particular

global warming, should probably, however, preclude recommending governments and the

United Nations to try to promote population growth.

Moreover, it is important to remember the distinction between the global and the

local level. The n in the formula (5) refers to a much larger region than a single country;

we may refer to this region as “the set of knowledge-producing countries in the world”.

No recommendation of higher population growth in a single country is implied by this

theoretical formula. When discussing economic policy from the perspective of a single

country, all aspects of relevance in the given local context should be incorporated. For

a developing country with limited infrastructure and weak educational system, family-

planning programs and similar may in many cases make sense from both a social and a

productivity point of view (cf. Dasgupta, 1995).
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