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May 6, 2016. Christian Groth

The Romer-Jones horizontal
innovations model

Below is a compact version of the Romer-Jones model of horizontal innovations in a

closed industrialized economy. In contrast to Jones and Vollrath, Ch. 5.1-2, we specify

the household sector to be of Ramsey type. There is no uncertainty and households have

perfect foresight. The text is not meant to be a substitute to Jones and Vollrath’s Ch.

5.1-2, but a complement to be read after Jones and Vollrath’s introduction has been read.

The aim is to give a systematic overview and to clarify some of the more technical issues.

Our notation is as in exercises VII.10 - VII.14, thereby only in a few respects deviating

from that in Jones and Vollrath.

1 The household sector

There is a fixed number of infinitely-lived households, all alike. Each household has L(t)

= L(0)ent members, n ≥ 0, and each member supplies inelastically one unit of labor per

time unit. We normalize the number of households to be one. Given θ > 0 and ρ > 0,

the representative household’s problem is to choose a plan (c(t))∞t=0 so as to

max U0 =

∫ ∞
0

c(t)1−θ

1− θ e
−(ρ−n)tdt s.t. (*)

c(t) ≥ 0,

ȧ(t) = (r(t)− n)a(t) + w(t)− c(t), a(0) given,

lim
t→∞

a(t)e−
∫ t
0 (r(s)−n)ds ≥ 0. (NPG)

Here r(t) is the risk-free interest rate, and a(t) is per capita financial wealth, which can

be placed in “raw capital”or perpetual patents, as described below.

The solution to the problem (*) is given by the Keynes-Ramsey rule,

ċ(t)

c(t)
=

1

θ
(r(t)− ρ), (1)
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and the transversality condition,

lim
t→∞

a(t)e−
∫ t
0 (r(s)−n)ds = 0. (2)

This follows from applying Pontryagin’s Maximum Principle to the problem.

2 The production side of the economy

There are three production sectors:

Firms in Sector 1 produce final goods (consumption goods and “raw capital”goods) in

the amount Y (t) per time unit, under perfect competition. The final good is the

numeraire.

Firms in Sector 2 supply specialized capital goods, indexed by j = 1, 2, . . . , A(t). These

specialized capital goods are rented out to firms in Sector 1, under conditions of mo-

nopolistic competition and barriers to entry. Like Jones and Vollrath, we sometimes

refer to these specialized capital good services as “intermediate goods”.1

Firms in Sector 3 perform R&D to develop technical designs (“blueprints”) for new

specialized capital goods under conditions of perfect competition and free entry.

Labor is homogeneous, and also the labor market has perfect competition.

From now on, the explicit timing of the time-dependent variables is omitted unless

needed for clarity; ∀j means j = 1, 2, . . . , A. The basic assumptions and conditions at the

production side (technologies, behavior, use of Sector-1 output, no-arbitrage condition)

can be presented the following way.

Sector 1: Final goods. The representative firm:

Y = L1−αY

A∑
j=1

xαj , 0 < α < 1, (3)

∂Y

∂L
= (1− α)

Y

LY
= w, (FOC1)

∂Y

∂xj
= αL1−αY xα−1j = pj, ∀j, (FOC2)

1By definition, “intermediate goods” are non-human inputs that cannot be stored. Rental services
cannot be stored.
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Uses of Y :

Y = C + IK = cL+ K̇ + δK, δ ≥ 0, K(0) > 0 given. (4)

Sector 2: Specialized capital goods. Given the technical design j, firm j in Sector 2

can effortless transform xj units of “raw capital” into xj units of the specialized capital

good j simply by pressing a button on a computer. Price-setting and accounting profit:

pj =
1

α
(r + δ) ≡ p, ∀j, (5)

πj = (
1

α
− 1)(r + δ)xj ≡ (

1

α
− 1)(r + δ)x ≡ π, ∀j, (6)

Sector 3: All R&D labs in Sector 3 face the same linear “research technology”:

# viable inventions per time unit = η̄`A,

where `A is input of research labor, and η̄ is productivity in R&D, which the individual

R&D lab takes as given.2 Let PA denote the market value of the license to commercial

utilization of a patent, j, forever. In brief, we may refer to PA as the “market value of

a patent”, which in equilibrium turns out to be the same for all j, see below. Then the

single lab’s demand for research labor is

`A =


∞ if w < PAη̄,

undetermined if w = PAη̄,
0 if w > PAη̄.

(7)

This reflects that the value of the marginal product of research labor is PAη̄.

At the economy-wide level the accumulated stock of viable inventions, measured by

the level of A, is treated as a continuous and differentiable function of time so that we

can write the increase in A per time unit as

Ȧ ≡ dA(t)

dt
= η̄LA ≡ ηAϕL1−ξA , η > 0, ϕ ≤ 1, 0 ≤ ξ < 1, A(0) > 0 given, (8)

where LA ≡
∑
`A is aggregate employment in Sector 3. Each R&D lab is “small”and

therefore perceives, correctly, its contribution to aggregate Ȧ, hence to η̄, to be negligible.

While in (3) we consider j as a discrete variable taking values in {1, 2, . . . , A} , at the
aggregate level in (8) we “smooth out” the time path of A. This approximation seems

acceptable when A is “large”, and the increases in A per time unit are “small”relative

to the size of A.
2By “viable”we mean non-duplicated.
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3 General equilibrium

In general equilibrium with LA > 0 we have:

(Kd = ) Ax = K (= Ks), (9)

LY + LA = L, (10)

Y = Kα(ALY )1−α, (by (3) and (9)) (11)
1

α
(r + δ) =

∂Y

∂xj
= αL1−αY (

K

A
)α−1 = α

Y

K
=
∂Y

∂K
, (by (5), (FOC2), (9)) (12)

π = (1− α)α
Y

A
, (by (6), (12), and (9)) (13)

w = (1− α)
Y

LY
= PAη̄ = PAηA

ϕL−ξA , (by (FOC1), (7), and (8)) (14)

PAr = π + ṖA. (15)

The equation (15) is the no-arbitrage condition which the market value, PA, of a patent

must satisfy in equilibrium. Assuming absence of asset price bubbles, this condition is

equivalent to a statement saying that the market value of the patent equals the fundamen-

tal value of the patent.3 By fundamental value is meant the present value of the expected

future accounting profits from commercial utilization of the technical design in question.

That is,

PA(t) =

∫ ∞
t

π(s)e−
∫ s
t r(u)duds. (16)

Indeed, in view of no uncertainty and perfect foresight, we may consider the no-arbitrage

condition (15) as a differential equation for the function PA(t). The solution to this dif-

ferential equation, presupposing that there are no bubbles, is given in (16) (as derived

in Appendix A). The convenience of (16) is that, given the expected future profits and

interest rates, the formula directly tells us the market value of a patent. If, for instance,

π grows at a constant rate n, and r is constant, then (16) reduces to

PA(t) =

∫ ∞
t

π(t)en(s−t)e−r(s−t)ds = π(t)

∫ ∞
t

e−(r−n)(s−t)ds = π(t)
1

r − n. (17)

This present-value formula is, among other things, useful for intuitive interpretation

of the effects of a change in the interest rate in the economy (everything else equal: higher

r implies lower present value).

3Because accounting profits, π, per time unit is the same for all j, so is the market value PA.
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The size of per capita financial wealth is now given as

a(t) ≡ K(t) + PA(t)A(t)

L(t)
. (18)

4 National income accounting

At this stage some national income accounting may be useful. From the final use side we

have:

GNP = C + IK + IA = C + IK + wLA = C + K̇ + δK + PAȦ = Y + PAȦ,

where we have applied (4) and the fact that, from (8) and (14), we have, in equilibrium,

PAȦ = PAη̄LA = wLA (no pure profits in R&D).

From the production (value added) side we have:

value added in Sector 1 = Y − pAx,

value added in Sector 2 = pAx,

value added in Sector 3 = PAȦ.

So, total value added = GNP = Y + PAȦ.

From the income side:

GNP = wLY + (r + δ)K + Aπ + wLA = wLY + (r + δ)K + (1− α)αY + wLA

= (1− α)Y + α2Y + (1− a)αY + wLA =
(
1− α + α2 + α− α2

)
Y + wLA

= Y + wLA,

where, as noted above, wLA = PAȦ.

5 Balanced growth

Taking logs and then time derivatives in (11), we get

gY = αgK + (1− α)(gA + gLY ). (19)

Now assume balanced growth. Since we have here two endogenous state variables, the

capital stock, K, and the knowledge stock, A, we extend our definition from Lecture
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Notes, Chapter 4, of a balanced growth path, BGP, to be a path along which gY , gC , gK ,

and gA are constant.4 From the balanced growth equivalence theorem of Lecture Notes,

Chapter 4, we know that, given the capital accumulation equation (4) and given that

IK > 0, a BGP will satisfy that

gY = gK = gC .

In view of gY = gK , (19) implies that along a BGP

gY = gA + gLY = constant. (20)

Since gA is constant along a BGP, so is gLY .

In addition to c ≡ C/L, we define y ≡ Y/L and k ≡ K/L. From now on we have to

distinguish between two alternative cases, the Romer case and the Jones case.

5.1 The Romer case: ϕ = 1, n = 0, and ξ = 0

Since here ϕ = 1, we have gA = ηLA. So, along the BGP, LA must be constant and so

must LY = L− LA since L is constant. Along the BGP, therefore,

gY = gy = gk = gc = gA = ηLA. (21)

To determine LA we need to take the household behavior, described in the Keynes-

Ramsey rule (1) and the transversality condition (2), into account. Isolating r in (1) along

a BGP immediately gives

r∗ = ρ+ θg∗A, (22)

using that gc = gA by (21); an asterisk signifies that a value in steady state or balanced

growth is considered. With this in mind, it can be shown (Exercise VII.14) that an

equilibrium path featuring balanced growth with active R&D has

0 < LA =
αηL− ρ
(θ + α)η

≡ L∗A, and (23)

0 < gA =
αηL− ρ
θ + α

≡ g∗A ≡ g∗c . (24)

This is the “fully-endogenous growth”case.

4Recall that, on the one hand, the immediate interpretation of our symbol A is that it makes up an
index for the most recently invented capital good type. On the other hand, we may also see A as an
index of the stock of technical knowledge in society. In that context we treat A as a continuous and
differentiable function of time.
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The result is derived under the pre-condition that the transversality condition of the

representative household is satisfied along the BGP and that LA is positive along the

path. Let us check what the necessary and suffi cient parameter conditions are for this to

hold.

It can be shown (Exercise VII.14) that the transversality condition (2) with n = 0, in

combination with (18), holds if and only if ρ > (1− θ)g∗A. By inserting (24) and isolating
ρ, this inequality is equivalent to

ρ >
(1− θ)αηL

1 + α
. (A1-R)

From (24) follows immediately that L∗A > 0 if and only if

ρ < αηL. (A2)

Note that the right-hand side of (A1-R) is always smaller than the right-hand side of

(A2) (since both θ and α are positive). Hence, (A1-R) and (A2) can hold at the same

time. To assume both (A1-R) and (A2) is equivalent to assuming

(1− θ)αηL
1 + α

< ρ < αηL. (**)

So for a BGP to be an equilibrium path in the Romer case, it is needed both that

households are not too patient (in which case (A1-R) would be violated), and that they

are not too impatient (in which case (A2) would be violated). On the one hand, being

“too patient”means that households tend to save so much that the interest rate in the

economy (implied by combining the result (24) with the Keynes-Ramsey rule along the

BGP) would be larger than the growth rate of labor income. Because of the infinite time

horizon of the households, this would imply that they had infinite human wealth, in which

case it is a paradox that they do not consume much more than they do. When (A1-R)

is violated, this paradox in unavoidable with Ramsey households. So general equilibrium

within the Ramsey framework is in that case impossible.5

On the other hand, the meaning of being “too impatient”, and thus violating (A2),

is more straightforward. It simply means that households are not willing to deliver the

saving needed to finance capital accumulation and R&D. Indeed, when ρ ≥ αηL, the

willingness to save is so low that in the long run the economy will be in a stationary state

5This reflects one of the limitations of the Ramsey framework.
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with just enough saving to maintain the capital stock and no saving left to finance R&D

and net capital investment.6

It can be shown that the transitional dynamics of the model in the Romer case can be

reduced to a three-dimensional dynamic system in z1 ≡ Y/K, z2 ≡ C/K, and z3 ≡ LY .

Under the assumptions (A1-R) and (A2), the system has a unique steady state, z∗1 =

(ρ+θg∗A+δ)/α2, z∗2 = z∗1−g∗A−δ, and z∗3 = L∗Y , given in (23). In the steady state, y, k, c, and

A follow the BGP described above. At least under realistic parameter values, the dynamic

system can be shown to be saddle-point stable so that (z1(t), z2(t), z3(t)) → (z∗1 , z
∗
2 , z
∗
3)

for t → ∞ (Arnold, 2000). The transitional dynamics thus imply convergence towards

the steady state which also means convergence towards balanced growth. Assuming (**),

we thus know that, without recurrent disturbances, the system will in the long run be in

balanced growth with a per capita growth rate equal to g∗A given in (24).

Comments on the BGP solution in the Romer case Imposing both (A1-R) and

(A2), in brief (**), there is in the Romer case a meaningful solution to the model. The

solution features “fully endogenous”exponential growth. Exponential per capita growth

is generated by an internal mechanism, through which labor is allocated to R&D; and this

exponential per capita growth is maintained without support of growth in any exogenous

factor.

Among other things, one can make comparative static analysis on the result in (24).

For instance, we see that ∂g∗A/∂L = αη/(θ+α) > 0. The Romer case thus implies a scale

effect on growth, which is an empirically problematic feature.7 In Exercise VII.14 the

reader is asked to do further comparative static analysis on the result for g∗A.

5.2 The Jones case: ϕ < 1, n > 0, and ξ ∈ [0, 1)

In this case, the “semi-endogenous growth”case, we can immediately determine gA along

a BGP with LA > 0. We have

gA ≡
Ȧ

A
= ηAϕ−1L1−ξA .

6This stationary state is in a sense still a BGP but with gy = gk = gc = gA = 0. Note that when
ρ > αηL, the formulas (23) and (24) cease to hold. This should be no surprise. Indeed, a path with LA < 0
is obviously impossible; moreover, in the derivation of the two formulas we relied on the assumption that
LA > 0.

7If n > 0, the Romer case leads to a forever rising per capita growth rate, an implausible scenario.
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Since, by assumption, LA > 0, also gA > 0, and so we can take logs on both sides and

thereafter time derivatives, using the chain rule to get:

ġA
gA

= (ϕ− 1)gA + (1− ξ)gLA = 0

along a BGP where, by definition, gA must be constant. Hence

gA =
1− ξ
1− ϕgLA =

1− ξ
1− ϕn ≡ g∗A. (25)

The last equality comes from the fact that since along a BGP with LA > 0, gLA must be

a positive constant at the same time as we know from (20) that gLY is a constant along

a BGP. Then, if either gLA or gLY were smaller than n, the other would be larger than

n and sooner or later violate LY + LA = L. Hence, gLY = gLA = n. From (20) then also

follows that along a BGP,

gY = gK = gC = g∗A + n. (26)

The method of solving the model for sR ≡ LA/L along the BGP is somewhat different

from the method in the Romer case. To be able to pin down PA under balanced growth,

we first note that the no-arbitrage condition (15) can be written

PA =
π

r − gPA
. (27)

From (14) follows

gPA + ϕgA − ξgLA = gY − gLY . (28)

We know that along the BGP, gLY = n = gLA , so that (28) implies

gPA = gY − ϕgA − (1− ξ)n = g∗A + n− ϕg∗A − (1− ξ)n = n, (29)

where the second and third equalities build on (26) and (25). From the no-arbitrage

condition (27) then follows that under balanced growth,

PA =
π

r − n = (1− α)α
Y

(r − n)A
, (30)

the last equality following from (13).

By (12), r = α2Y/K − δ. Since under balanced growth, Y/K is a constant, so is r.

Hence, (30) shows that gπ = gPA = n under balanced growth. That is, the monopolies’

accounting profit grow at the rate of population growth, n. This relationship reflects that

a larger population growth rate means that the markets for the specialized intermediate

goods grow faster, which in view of increasing returns makes R&D more profitable.
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Now (14) gives

(1− α)
Y

LY
= PAη̄ = (1− α)α

Y

(r − n)A
η̄.

Cancelling out (1− α)Y and multiplying through by LA gives

LA
LY

= α
η̄LA

(r − n)A
= α

gA
r − n,

where the last equality follows from (8). As LA/LY = sR/(1− sR), we get from this,

sR =
1

1 + r−n
αg∗A

(31)

along a BGP with LA > 0.

This is not the final solution for sR since r is endogenous. But again, reordering

the Keynes-Ramsey rule gives, under balanced growth, r = ρ + θg∗A = r∗ as in (22).

Substituting this into (31) yields the solution for sR along the BGP:

sR =
1

1 + 1
α

(ρ−n
g∗A

+ θ)
=

1

1 + 1
α

( ρ−n
1−ξ
1−ϕn

+ θ)
≡ s∗R, (32)

the second equality coming from (25).

Like the Romer results, the Jones results are derived under the pre-condition that

the transversality condition of the representative household is satisfied along the BGP

and that LA (hence also gA) is positive. Let us check what the necessary and suffi cient

parameter conditions (over and above the basic conditions ϕ < 1, n > 0, and ξ ∈ [0, 1))

are for these conditions to hold.

First, as to the transversality condition (2), note that under balanced growth,

a(t) ≡ K(t) + PA(t)A(t)

L(t)
=
K(0)e(g

∗
A+n)t + PA(0)A(0)e(n+g

∗
A)t

L(0)ent
= a(0)eg

∗
At,

where the second equality follows from (26) and (29). Consequently, along a BGP

a(t)e−(r
∗−n)t = a(0)e−(r

∗−n−g∗A)t = a(0)e−(r
∗−n−g∗A)t → 0 if and only if r∗ > g∗A + n,

where r∗ = ρ+ θg∗A by (22) which also holds here. So (2) holds along the BGP if and only

if ρ + θg∗A > g∗A + n, that is, if and only if ρ − n > (1 − θ)g∗A. By (25), this inequality is
equivalent to

ρ > (1− θ)
(

1− ξ
1− ϕ + 1

)
n. (A1-J)
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Second, for gc = gA > 0 to be an outcome in balanced growth, we need r∗ > ρ. In

view of r∗ = ρ + θg∗A, this condition is equivalent to ρ + θg∗A > ρ, which is automatically

satisfied when n > 0, see (25).

We conclude that for a BGP to be an equilibrium path in the Jones case, it is just

needed that households are not too patient, in the sense of violating the parameter condi-

tion (A1-J). For 0 < θ < 1, the right-hand side of (A1-J) defines a positive lower bound

for the rate of impatience. For θ ≥ 1, the condition (A1-J) imposes only a mild constraint

in that it is satisfied whenever just ρ > 0 (θ > 1 even allows a negative ρ, although not

“too large”in absolute value).

So, given the basic conditions ϕ < 1, n > 0, and ξ ∈ [0, 1) , we need only to add the

assumption (A1-J) to ensure that in the Jones case there is a meaningful solution to the

model. It can be shown that the transitional dynamics in the Jones case can be reduced

to a four-dimensional dynamic system, that there is a unique steady state, equivalent to

a balanced growth path, and that the dynamic system is saddle-point stable. Assuming

(A1-J) we thus know that, without recurrent disturbances, the system will in the long

run end up in balanced growth with per capita growth rate equal to g∗A, given in (25).

Comments on the BGP solution in the Jones case From the result (25) we see

that exponential growth is in the Jones case not “fully endogenous” since it can only

be sustained if n > 0. In other words, exponential growth can only be sustained if the

growth engine receives an inflow of “energy”from growth in the labor force, an exogenous

source. In this sense the exponential growth in the Jones case is often referred to as

“semi-endogenous”. As mentioned in Short Note 1, p. 6, this terminology is somewhat

seductive. The “semi-endogenous”Jones model sounds as something less deep than the

“fully endogenous”Romer model. But nothing of that sort should be implied. It is just

a matter of different parameter values (in fact, a matter of a “knife-edge”case versus a

robust parameter case).

Before proceeding, note the striking simplicity of the result (25). The growth rate

in income per capita under balanced growth depends only on three parameters: the

growth rate of the labor force, n, the elasticity of research productivity with respect to

the stock of knowledge, A, and the degree of duplication, ξ, in economy-wide research.

Neither household preferences, represented by the parameters ρ and θ, nor for instance

an R&D subsidy that raises the share of labor allocated to R&D, affect g∗A. There will be

a temporarily higher growth rate of A, but in the long run gA will return to the same g∗A
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as before, namely that given in (25), cf. Jones and Vollrath, p. 109-110.

On the basis of the formula (32), long-run level effects on sR of different parameter

shifts can be studied (exercises VII.12 and VII.13). While for instance the preference

parameters ρ and θ do not here have long-run growth effects, they affect the share of

labor allocated to R&D. They thus have level effects on L∗A(t) = s∗RL(t) along a BGP.

As expected, both a rise in ρ and a rise in θ affect L∗A(t) negatively. The intuition is as

follows. A rise in impatience, ρ, implies reduced saving, hence less R&D can be financed

by the saving. We could also say that a rise in impatience means greater scarcity of

finance, which in turn tends to raise the interest rate. This implies lower present value of

expected future accounting profits to be obtained by an invention, cf. (16). In turn, this

means that R&D is less rewarding.

Likewise, a rise in θ (the desire for consumption smoothing) implies reduced saving in

the normal case where r > ρ, cf. the Keynes-Ramsey rule. The level effect on L∗A(t) of a

rise in θ has thus similarity with that of a rise in ρ.

The level effects on L∗A(t) will not affect gA in the long run, since (25) shows that g∗A
only depends on n and ϕ, not on sR. A higher sR will temporarily increase both the growth

rate of A and that of y. But the fact that ϕ < 1 (“diminishing returns to knowledge”in the

growth engine) makes it impossible to maintain the higher growth rate in A forever. The

growth rate will, after a possibly quite durable adjustment process8 return to the same g∗A
as before. But the level of the growth path will generally be permanently affected. This is

like in the Solow model or the original Ramsey model, where an increase in the propensity

to save raises the growth rate only temporarily due to the falling marginal productivity

of capital.

While level effects of shifts in sR on L∗A(t) are straightforward to analyze, level effects

on y∗(t) and c∗(t) are a bit more complicated. Indeed, a shift in sR has ambiguous effects

on both y∗(t) and c∗(t) along a BGP. If sR initially is “low”, a “small”increase in sR will

have a positive level effect on y via the productivity-enhancing effect of more knowledge

creation. But if sR is already quite large initially, LY will be small, which implies that

∂Y/∂LY is large. This large marginal productivity constitutes the opportunity cost of

increasing sR further and dominates the benefit of a higher sR, when sR > 1/(2− ϕ) (in

the case ξ = 0), cf. Exercise VII.7e).

8See Jones (1995).

12



6 Economic policy

The presented version of the Romer-Jones model implies in the Romer case that under

laissez-faire, the decentralized market equilibrium unambiguously leads to too little R&D.

This is due to three circumstances: (a) the positive externality generated by the intertem-

poral knowledge spillover, represented by ϕ = 1; (b) the “surplus appropriability problem”

illustrated in Jones and Vollrath, p. 134; and (c) the demand-reducing monopoly pricing

over and above marginal cost of intermediates. All three circumstances contribute to too

little R&D. And there are no externalities going in the opposite direction. It can be shown

that in combination with a subsidy to R&D, a subsidy to purchases of specialized capital

good services can solve the problem, if these subsidies are financed by lump-sum taxes or

lump-sum-equivalent taxes like, in the present framework, a labor income tax (recall that

the model’s labor supply is inelastic).

In the Jones case, the “stepping-on-toes” effect (ξ > 0) is a negative externality

pointing in the opposite direction. And so is the intertemporal knowledge spillover if

ϕ < 0. The different calibrations made by Jones and coauthors use a positive value of

both ϕ and ξ. Even taking to some extent creative destruction into account, Jones and

Williams (1998) estimate the resource allocation to R&D in USA to be only a fourth of

the social optimum, given that discounted utility of the representative household is the

optimality criterion.

7 Concluding remarks

A weakness of the presented Romer-Jones model is the unrealistic feature that obsoles-

cence of specialized capital goods never occurs. The mentioned Jones and Williams (1998)

paper attempts to surmount that problem.

Another weakness is that there are two hidden arbitrary parameter links in the spec-

ification of the production function for final goods. One is related to the way the variety

index A enters the production function. The parameter reflecting “gains to variety”,

sometimes called the “gains to specialization”parameter, below denoted µ, is arbitrarily

identified with the output elasticity w.r.t. labor, 1−α. Another arbitrary parameter link
is that the elasticity of substitution between the different capital good types calculated

from the production function (3) is 1/(1 − α) and thus implies market power equal to

1/α, the monopoly markup. Thereby, effects of a rise in monopoly power can not be

13



studied independently of a fall in the output elasticity w.r.t. capital, α. This arbitrary

parameter link has in the Romer case the implication that a rise in market power reduces

g∗c , an effect arising solely because the positive effect on growth of the rise in the markup

is blurred by a negative effect coming from a diminished output elasticity w.r.t. capital.

A specification of the production function free of these two arbitrary parameter links,

but maintaining power functions throughout, is the following:

Y = AµXαNY
1−α, 0 < α < 1, µ > 0,

whereX is a CES aggregate (with constant returns to scale) of quantities, xj, of specialized

capital goods:

X = A(
1

A

A∑
j=1

xj
ε)

1
ε , 0 < ε < 1.

Here the existing specialized capital goods exhibit an elasticity of substitution equal to

1/(1− ε), implying that the market power, or the monopoly markup, is given by 1/ε > 1.

Now gc∗ generally differs from g∗A and the formulas become more complicated. But a rise

in market power, 1/ε, can be shown to unambiguously raise g∗c . This is the opposite of

what we got above, where market power was arbitrarily linked to the output elasticity

w.r.t. capital, α. For details, see Alvarez-Pelaez and Groth (2005).

8 Appendix: Solving the no-arbitrage equation for
PA(t) in the absence of asset price bubbles

In Section 3 we claimed that in the absence of bubbles, the differential equation implied

by the no-arbitrage equation (15) has the solution

PA(t) =

∫ ∞
t

π(s)e−
∫ s
t r(u)duds. (*)

To prove this, we write the no-arbitrage equation on the standard form for a linear dif-

ferential equation:

ṖA(t)− r(t)PA(t) = −π(t).

The general solution to this (see Appendix B to Chapter 3 of Lecture Notes) is

PA(t) = PA(t0)e
∫ t
t0
r(u)du − e

∫ t
t0
r(u)du

∫ t

t0

π(s)e
−
∫ s
t0
r(u)du

ds.

14



Multiplying through by e−
∫ t
t0
r(u)du gives

PA(t)e
−
∫ t
t0
r(u)du

= PA(t0)−
∫ t

t0

π(s)e
−
∫ s
t0
r(u)du

ds.

Rearranging and letting t→∞, we get

PA(t0) =

∫ ∞
t0

π(s)e
−
∫ s
t0
r(u)du

ds+ lim
t→∞

PA(t)e
−
∫ t
t0
r(u)du

. (33)

The first term on the right-hand side is the fundamental value of the patent, i.e., the

present value of the expected future accounting profits on using the patent commercially.

The second term on the right-hand side thus amounts to the difference between the market

value, PA(t0), of the patent and its fundamental value. By definition, this difference

represents a bubble. In the absence of bubbles, the difference is nil, and the market price,

PA(t0), coincides with the fundamental value. So (*) holds (in (33) replace t by T and t0
by t), as was to be shown.
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