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A suggested solution to the problem set

at the exam in Economic Growth, June 15, 2012

(3-hours closed book exam)1

As formulated in the course description, a score of 12 is given if the student’s per-

formance demonstrates precise understanding of the concepts and methods needed for

analyzing the factors that matter for economic growth.

1. Solution to Problem 1 (20 %)

The economy is described by:

 = 
 


 

1−   0 0    1 (1.1)

̇ = 
   0 0    1 0  0 given (1.2)

 =


̄
≡  ̄  0 (1.3)

where  is aggregate output,  the level of technical knowledge,  the labor force (=

population), and  the amount of land (fixed). Time is continuous and it is understood

that a kind of Malthusian population mechanism is operative behind the scene; that is,

(1.3) should be seen as a short-cut.

a) We consider a pre-industrial economy. (1.1) is an aggregate production function

and indicates that the only production factors are labor and land (capital thus ignored).

In accordance with the replication argument, there are CRS w.r.t. these rival inputs. The

factor 
 measures total factor productivity. In view of (1.2), the technology level,  is

rising over time. The increase in  per time unit is seen to be an increasing function of

the size of the population. This reflects the hypothesis that population breeds ideas; these

are non-rival and enter the pool of technical knowledge available for society as a whole.

The rate per capita,  by which population breeds ideas is an increasing function of the

1The solution below contains more details and more precision than can be expected at a three hours

exam. The percentage weights should only be regarded as indicative. The final grade will ultimately be

based on an assessment of the quality of the answers to the exam questions in their totality.



already existing level of technical knowledge. This reflects the hypothesis that the larger

is the stock of ideas, the easier do new ideas arise (perhaps by combination of existing

ideas).

We are told that (1.3) is a short-cut description of a Malthusian population mechanism.

Suppose the true mechanism is

̇ = ( − ̄)   0 ̄  0 (1.4)

where  ≡  is per capita income and ̄ is subsistence minimum (so  in (1.3) is just

a parameter measuring the inverse of the subsistence minimum). A rise in  above ̄will

lead to increases in , thereby generating downward pressure on  and perhaps end

up pushing  below ̄When this happens, population will be decreasing for a while and

so return towards its sustainable level, ̄

The assumption (1.3) is thus a short-cut as if the population instantaneously adjusts

to its sustainable level (as if  →∞). The model hereby gives a long-run picture, ignoring
the Malthusian ups and downs in population and per capita income about the subsistence

minimum. The important feature is that the technology level and thereby  as well as

the sustainable population will be rising over time. This speeds up the arrival of new

ideas and so raises  even faster.

b) By (1.3),  =  = 
 


  normalizing the constant  to 1. Consequently 

1−


= 
 so that

 = 
1

1−


1−
 

Substituting this into (1.2) gives

̇ = 
1

1−
+ 

1−
 ≡ ̂

+ 
1−

  (1.5)

c) We define  ≡ + 
1− and assume   1 Then (1.5) can be written

̇ = ̂

 

which is a nonlinear differential equation in  Let  ≡ 1− Then

̇ = (1− )
−
 ̂


 = (1− )̂ (1.6)

a constant. To find  from this, we only need simple integration (see below). The hint

to 1c) is unfortunately misleading since the formula offered is only valid for the case of

a linear differential equation with constant coefficients where the coefficient to  differs

from zero. In (1.6) the coefficient to  is zero. Hence the offered formula is useless
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Figure 1.1:

and thereby misleading. In the grading this will be taken into account since it may have

delayed some examinees’ problem solving. In addition all examinees are offered the option

to participate at the re-exam in Economic Growth August 15, 2012, including the option

to choose the best grade among the two then obtained.

We now integrate (1.6):

 = 0 +

Z 

0

̇ = 0 + (1− )̂

As  = 
1

1− and 0 = 
1−
0  this implies

 = 
1

1−
 =

h

1−
0 + (1− )̂

i 1
1−

=
1h


1−
0 + (1− )̂

i 1
−1

 (1.7)

d) Yes, we can!

Recall that   1 Although to begin with,  may grow extremely slowly, the growth

in  will be accelerating because of the positive feedback (visible in (1.2)) from both

rising population and rising . Indeed, since   1 the denominator in (1.7) will be

decreasing over time and approach zero in finite time, namely as  approaches the finite

value ∗ = 
1−
0 ((− 1)̂) Fig. 1.1 illustrates.

It follows from (1.1) that explosive growth in  implies explosive growth in  The

acceleration in the evolution of  will sooner or later make  move fast enough so that

the Malthusian population mechanism (which for biological reasons has to be slow) can

not catch up. Then, what was earlier only a transitory excess of  over ̄ becomes a

permanent excess and takes the form of sustained growth in . As economic history
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has testified and as there are economic theories to explain (higher opportunity costs of

raising children, skill-biased technical change, the quality-quantity trade-off, improved

contraception technology, etc.), this resulted in the demographic transition with fertility

declining faster than mortality.

So the story told by the model (that is, the story told by Michael Kremer, 1993) is the

following. When   1 the Malthusian regime has to come to an end because the battle

between scarcity of land (or natural resources more generally) and technological progress

will inevitably be won by the latter.

2. Solution to Problem 2 (50 %)

For convenience, key equations are repeated here:

̇ =  − −   ≥ 0 0  0 is given. (2.1)

The production function of firm  is

 =  ( ) (2.2)

where  is neoclassical and has CRS. The variable  evolves according to

 =  (2.3)

where  =
P



a)  can be interpreted as the economy-wide technology level. According to the

general hypothesis of learning-by-investing the economy-wide technology level is an in-

creasing function of society’s previous experience, proxied by cumulative aggregate net

investment:

 =

µZ 

−∞
 

¶

= 
  0   ≤ 1 (2.4)

where  is aggregate net investment and  is the “learning parameter”.

The idea is that investment − the production of capital goods − as an unintended
by-product results in experience or what we may alternatively call on-the-job learning.

This adds to the knowledge about how to produce the capital goods in a cost-efficient

way and how to design them so that in combination with labor they are more productive

and better satisfy the needs of the users. The learning is assumed to benefit essentially

all firms in the economy. There are knowledge spillovers across firms and these spillovers

are reasonably fast relative to the time horizon relevant for growth theory.
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b) We suppress the time index when not needed for clarity. Consider firm  We are

told that each firm is small relative to the economy as a whole and perceives it has no

influence on aggregate variables. Hence maximization of profits, Π =  ( )− ( +
) −  leads to the first-order conditions

Π = 1( )− ( + ) = 0 (2.5)

Π = 2( )−  = 0

CRS implies that  is homogeneous of degree one. Hence, by Euler’s theorem, the first-

order partial derivatives, 1 and 2 are homogeneous of degree 0. Thus, we can write

(2.5) as

1( ) =  +  (2.6)

where  ≡ . Since  is neoclassical, 11  0 Therefore (2.6) determines  uniquely.

From this follows that the chosen  will be the same for all firms, say ̄. In equilibriumP
 =  and

P
  =  where  and  are the available amounts of capital and

labor, respectively (both pre-determined). Since  =
P

 =
P

  =
P

 ̄ = ̄

the chosen capital intensity,  satisfies

 = ̄ =



≡   = 1 2   (2.7)

As a consequence we can use (2.6) to determine the equilibrium interest rate:

 = 1( )−  = 1()−  = 1(1 )−  ≡ ̄ (2.8)

where we have inserted (2.3) and used homogeneity of degree zero once again.

The implied aggregate production function is

 =
X


 ≡
X


 =
X


 ( ) =
X


 () (by (2.2) and (2.7))

=  ()
X


 =  () =  () =  () =  (1 ) (by (2.3)),

where we have several times used that  is homogeneous of degree one.

c) The representative household faces the flow budget identity

̇ = ̄ +  −  0 given,

and the NPG condition

lim
→∞


−̄ ≥ 0
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where  is per capita financial wealth. Given the specified preferences, the resulting

consumption-saving plan implies that per capita consumption follows the Keynes-Ramsey

rule,
̇


=
1


(̄ − ) ≡ 

and the transversality condition that the NPG condition is satisfied with strict equality.

To ensure a positive growth rate we need that ̄   i.e.,

1(1 )−    (A1)

We are informed that

  (1− ) and therefore    +  = ̄ (A2)

This ensures boundedness of discounted utility so that the optimization problem of the

household does indeed have a solution.

d) In our closed economy without natural resources and government debt, we have

 =  By proportionality between  and  and constancy of the interest rate (cf.

b)) follows that the model is a reduced-form AK Ramsey model. We know that in such

models there will be no transitional dynamics; the transversality condition ensures that

 (≡ ) from the beginning will grow at the same rate as  that is, the rate  And

so will  (≡ ) in view of  =  (1 )

e) In this model, if  were rising, also the interest rate, hence also  would be rising

over time. This follows from (2.8) since for a two-factor neoclassical CRS production

function  we always have 12(1 )  0 (complementarity between  and ) Rising 

thus implies that the total marginal productivity of capital will be rising over time. Note,

however, that there is no growth “explosion” in the sense of infinite output in finite time.

That phenomenon only arises if the exponent,  on the state variable, here  is larger

than one - as is the situation in (1.5) (where the state variable is  not  however).

f) The social planner faces the aggregate production function  =  (1 ) or, in

per capita terms,  =  (1 ) The social planner’s problem is to choose ()
∞
=0 to

maximize

0 =

Z ∞

0

1−

1− 
− s.t.

 ≥ 0

̇ =  (1 ) −  −  0  0 given, (2.9)

 ≥ 0 for all   0 (2.10)
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The current-value Hamiltonian is

(   ) =
1−

1− 
+  ( (1 ) − − ) 

where  =  is the adjoint variable associated with the state variable, which is capital

per unit of labor. Necessary first-order conditions for an interior optimal solution are




= − −  = 0, i.e., − =  (2.11)




= ( (1 )− ) = −̇ +  (2.12)

We guess that also the transversality condition,

lim
→∞


− = 0 (2.13)

must be satisfied by an optimal solution. This guess will be of help in finding a candidate

solution. Having found a candidate solution, we shall invoke a theorem on sufficient

conditions to ensure that our candidate solution is really a solution.

Log-differentiating w.r.t.  in (2.11) and combining with (2.12) gives the social plan-

ner’s Keynes-Ramsey rule,

̇


=
1


( (1 )−  − ) ≡   (2.14)

By Euler’s theorem  (1 ) = 1(1 ) + 2(1 )  1(1 ) It follows that   

The interpretation is that the social planner internalizes the economy-wide learning effect

associated with capital investment To ensure bounded intertemporal utility we sharpen

(A2) to

  (1− )  (A2’)

By a reasoning similar to the one at d), the transversality condition together with the

reduced-form AK structure implies that also in the candidate SP solution does  and

 already from the beginning grow at the same rate as . Moreover, by derivation or

directly from the hint to g), we have that 0 = ( (1 )−  −  )0

Hereby we have completely characterized a candidate solution to the present resource

allocation problem. The next step is to argue that this candidate solution does indeed

satisfy a set of sufficient conditions for an optimal solution. It is enough here to just refer

to Mangasarian’s sufficiency theorem.

We now return to the market economy. Given the investment subsidy,  the firms’

capital costs are (1− )( + ) per unit of capital per time unit. Firm  then chooses 

such that




| fixed = 1() = (1− )( + )
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By Euler’s theorem this implies

1() = (1− )( + ) for all 

so that in equilibrium we must have

1() = (1− )( + )

Thus, the equilibrium interest rate must satisfy

 =
1()

1− 
−  =

1(1 )

1− 
−  (2.15)

again using Euler’s theorem.

It follows that  should be chosen such that the “right”  arises. What is the “right”

? It is that net rate of return which is implied by the production technology at the

aggregate level, namely  −  =  (1 )−  If we can obtain  =  (1 )−  then

there is no wedge between the intertemporal rate of transformation faced by the consumer

and that implied by the technology. The required  thus satisfies

 =
1(1 )

1− 
−  =  (1 )− 

so that

 = 1− 1(1 )

 (1 )
=

 (1 )− 1(1 )

 (1 )
=

2(1 )

 (1 )


g) With consumption taxation the tax revenue will be  which with a balanced

budget must equal the required tax revenue:

 = ( + ) = ( (1 )− 1(1 ))

Thus, the required consumption tax rate is

 =
 (1 )− 1(1 )


=

 (1 )− 1(1 )

 (1 )−  − 
=

2(1 )

 (1 )−  − 
 0 (2.16)

where we have used the hint. Substituting (2.14) into (2.16), the solution for  can be

written

 =
 [ (1 )− 1(1 )]

( − 1)( (1 )− ) + 
=

2(1 )

( − 1)( (1 )− ) + 


h) The required tax rate on consumption is thus a constant. Since there is no utility

from leisure, the consumption tax therefore does not distort the consumption/saving

decision on the margin. The resulting resource allocation is seen to replicate the SP

solution from f). It follows that the allocation obtained by this subsidy-tax policy is

optimal.
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i) An alternative policy would be to pay firms a production subsidy   0 so that

if firm  produces and sells  its revenue is (1 + ). Another alternative would be to

pay households a subsidy,  to raise the rate of return on households’ saving from  to

(1 + ) Such subsidy policies can do the job if  and  respectively, have the optimal

size and the consumption tax rate is adjusted so as to provide the needed tax revenue in

the new situation.

An alternative non-distortionary tax in this model would be a labor income tax (since

labor supply is inelastic).

j) Compared with the Solow growth model, a strength of the present model is that

it endogenizes technological change. More, the learning-by-investing hypothesis (in the

form 0    1) has some support in the data.

Among the drawbacks are the following. By relying on the case  = 1 the model

assumes a much stronger and permanent learning effect than supported by the data.

Moreover, the case  = 1 is a knife-edge case in a double sense. First, it imposes a

particular value for a parameter which apriori can take any value within an interval.

Second, the imposed value leads to non-robust results; values in a hair’s breadth distance

result in qualitatively different behavior of the dynamic system.

An additional drawback is that if a growing population is included in the model,

counter-factual growing growth rates appear, cf. e) above.

The model should just be seen as a simple abstract example of endogenous growth.

3. Solution to Problem 3 (30 %)

a) The suggested catching-up hypothesis is that

̇



= 
̃



   0

and

 = () 0  0

where  is the technology level of the considered country, ̃ is the world frontier tech-

nology level, and  is the average human capital,  in the country.

A general health improvement in the country may in the longer run raise  and thereby

the catching-up ability . This may be because a health improvement tends to raise life

expectancy and thereby the incentive to invest in human capital. Or it could be due to
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the fact that undernourishment in the embryonic stage may impede the cognitive abilities

of the child.

b) Yes. Poor countries differ from rich countries in several factors that are comple-

mentary to physical capital, for instance the technology level and the human capital level.

Consider a set of countries,  = 1 2   Country  has the aggregate production

function

 =  ( ) =  (




 1) ≡ (̃)  0  0  00  0

where  is neoclassical with CRS (standard notation). Let  denote the equilibrium net

rate of return on capital in country . Then, under perfect competition,

 =




−  = (̃)− 

Can the countries have the same  in spite of widely differing ? Yes. Differing

 does not rule out that ̃ = ̃ for all . Indeed, as

̃ ≡ 



=





and as countries with low  (the poor countries) also tend to have low  and 

the ̃’s - and therefore also the ’s - may be more or less of the same size.

c) In the Acemoglu textbook there is only one model where long-run productivity

growth is driven by a combination of physical and human capital accumulation, namely

the reduced-form AK model with physical and human capital presented in Chapter 11.2.2

The aggregate production function of the model is

 =  () ≡  ( ) (3.1)

where  is neoclassical with CRS (standard notation).

Whether such an aggregate production function can be defended depends on how

human capital is assumed to be formed. The model in question assumes that human

capital is formed in a way similar to physical capital. Ignoring the explicit timing, the

model assumes that

 =  +  +  

̇ =  −    0

̇ =  −    0 (3.2)

2The MRW (1992) model mentioned in several of Acemoglu’s chapters is not a good example, since

in the MRW model long-run per capita growth is not driven by a combination of physical and human

capital accumulation, but by exogenous technical progress.
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where  and  denote gross investment in physical and human capital, respectively.

One problem is, however, that there is neither theoretical nor empirical reason to

believe that the exponent on  in (3.1) should be exactly 1 when human capital is formed

as in (3.2). The replication argument is of no help here. And from an empirical point

of view, it is difficult to find support for (3.1) when the “stuff’ called human capital is

formed as in (3.2). With such a “production function” for human capital, according to

the Mankiw, Romer and Weil (1992) study the exponent on  should be close to 1
2
.

The model ends up in a fully endogenous growth model which after an initial adjust-

ment process features positive balanced per capita growth forever in a way quite similar

to the simple AK model. This occurs without any improvements in technology. This

seems implausible.

As also mentioned by Acemoglu, a small change in income taxation will in this model

imply a large and permanent change in the per capita growth rate. Also implausible.

Yet, a strength of the model relative to the simple AK model is, of course, that it

is somewhat less extreme since it maintains diminishing marginal productivity of each

kind of capital separately and does not imply zero labor income. Indeed, the model is

consistent with Kaldor’s stylized facts.

–
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