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DIFFERENT INDECOMPOSABILITY CONCEPTS
FOR A VON NEUMANN TECHNOLOGY: A NOTE (*)

C. Groth

University of Copenhagen

This paper surveys some of the different indecomposability concepts
for a von Neumann technology given in the literature, namely the con-
cepts introduced by Gale (1956, 1960), Weil (1968) and Roemer (1980).
Gale’s concept was defined to give a sufficient condition for uniqueness
of the equilibrium growth rate in a von Neumann growth model. Yet,
Weil gave a weaker sufficient condition for this and he defined indecom-
posability accordingly without, however, relating his definition to Gale’s
definition. In fact, the peculiarity of Gale’s definition is the requirement
that all goods are necessary, directly or indirectly, as input for the produc-
tion of any good. This, however, is not necessary for uniqueness of the
equilibrium growth rate.

1. PRELIMINARIES

We consider the closed von Neumann model. There are n goods
and m elementary processes. The n goods include fixed capital goods
at their different stages of weak and tear. A commodity can serve both
as a capital good and as a consumption good. There is constant returns
to scale. Every good is an output of at least one process. Time is treated
as discrete, t =1, 2,.... Output appears one period after the corre-

(*) A preliminary version of this paper was published in Oekonomiske Essays,
Jubilaeumsbog fra Oekonomisk Institut, Akademisk Forlag, Gopenhagen 1984, The
research is part of a project on technological innovations which was supported by
the Danish Social Science Research Council. See Groth, 1987.
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sponding input is applied. The basic notations are as follows:

A (n>m} input matrix;
B: (n>m) output matrix;
Ayt characteristic element of A4;

b;;: characteristic element of B;
¢» b;i characteristic row vectors of 4 and B respectively;
a’, b’:  characteristic column vectors of A and B respectively:

x: intensity vector (an m-vector};

p: price vector (an mr-vector);

(Bx);:  i-th coordinate in the vector Bx;
e growth factor (1-+ growth rate);

B interest factor (14 interest rate) (1);
o maximum growth factor;

Bo minimum interest factor;

N: the set {1, ..., n};

M: the set {1, ..., m}.

As to the mathematical notations:

XZYE X =¥, = by g

x=yr XEW, XFEy;

X X2y el nid

xy: the scalar product of x and y;

supp (x): the set {i|x, > 0} {called the support of the nonnegative vector x).

The pair (4, B) of two nonnegative (nx m) matrices is called a von Neu-
mann technelogy if they satisfy the following two assumptions:

Ass. 11 =0, j=1, ..., m (i.e., every process needs at least one good
as input).

Ass. 20 b;=0, i=1,...,n (ie., every good is an output of some
process).

Throughout this paper the matrices 4 and B are assumed to satisfy
these assumptions.

() B is sometimes in the literature called the profit factor.
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We say that the vector x is an intensity vector at the growth factor
x>0 if

Bx= adx, A0, (0

(1) 1s a necessary condition for balanced growth at a (x,.;=ax,
t=1,2,..), when the inputs for one period can only be supplied from
the outputs from the preceding period. The maximum growth factor,
denoted a,, is the maximum « with respect to which an intensity vector
exists, i.e.,

og = max {&€ R|3x > 0: Bx= adx}.
The vector p is called a price vector at the interest factor >0 if
pB=fipd,  p=0. 2

(2) is a necessary condition for competitive equilibrium at 8 (as under
constant returns to scale no process can in equilibrium give positive pure
profits). The minimum interest factor, denoted B, is the minimum f with
respect to which a price vector exists, i.e.,

Bo=min{fe R|Ip=>0: pB= fpA4} .

It is well known that the numbers &, and f, exist and satisfy the inequali-
ties

0<fo=oq 3

(see, e.g., Gale 1960).
We call the quadruplet (p, x, «, #) a competitive equilibrium if it sat-
isfies (1) and (2) as well as the following two rules:

pB—ad)x =10 (the Rule of Free Goods),

4)
p(B—pA)x=0 (the Rule of Unprofitable Processes) .
One easily sees that if the total value of output is positive, i.e.,
pBx >0, (5)

which is a natural condition for an economic system, then f§ = « in any
competitive equilibrium for this model. For this reason and because the
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condition f# = « (interest factor equal to growth factor) is in accordance
with the Golden Rule, we are especially interested in von Neumann equi-
libria. A von Neumann equilibrium is a triplet (p, x, ) satisfying (1) and
(2) with f =oa. Notice, that a von Neumann equilibrium necessarily
satisfies the two rules in (4) and is thus a competitive equilibrium. The
number « in a von Neumann equilibrium is called an equilibrium growth
Jactor. An economic von Neumann equilibrium is a von Neumann equi-
librium satisfying (5).

The price-interest pair (p, &) of a von Neumann equilibrium is said
to sustain or support growth at the rate «— 1 because it will permit con-
tinual growth at this rate. There will be no loss incurred in meeting the
interest charge (assumed to be the only obstacle to investment) and there
exists no other intensity vector which, by yielding a positive profit, would
lure resources away from this growth path (?).

The von Neumann-KMT-Theorem (?): If the (nXm) matrices 4 and B
satisfy Ass. 1 and Ass. 2, then:

(i) For any e e [f,, o] there exists a von Neumann equilibrium.

(i) For « = ff;, and for & = «, there exists an economic von Neu-
mann equilibrium.

(iii) There are at most min (n, m) different «’s for which an econ-
omic von Neumann equilibrium exists.

Proof: See, e.g., Nikaido 1968, Morgenstern and Thompson 1976 (%).
A lemma which is many contexts is very useful is the following.

Lemma 1: If x is an intensity vector at o and p is a price vector at f,
where f << a, then for any y € [p, o] the triplet (p, x,y) is a von Neu-
mann equilibrium.

Proof: For y e [p, «] x satisfies (1) with e =y, and p satisfies (2) with
=y Q.E.D.

(®) Koopmanns (1964) and Morishima (1969) contain detailed introductions to
the von Neumann model, viewing it in a broader economic context.

(®) « KMT » stands for Kemeny, Morgenstern and Thompson (cf. their funda-
mental paper from 1956).

() The same authors also prove that there exist central von Neumann solutions,
i.e. solutions where a good has zero price only if the good is overproduced and where
a process is not used only if it involves a loss.
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2. DIFFERENT INDECOMPOSABILITY CONCEPTS

On certain conditions we have that oy =, so that the equilibrium
growth factor, «, where o< o< fi;, is unigue. In Gale (1956, 1960) it
was shown that a sufficient condition for uniqueness is that the technology
is irreducible in the following sense:

Definition 1: Given a von Neumann technology (4, B) the nonempty
set of goods Sc N is called an independant subset if there exists a set
Tc M such that a;; =0 for i¢ S and je T and for all ie S, b,; >0 for
some jeT. An independant subset Sc N is called irreducible if there
is no proper independant subset contained in S. The technology is called
irreducible if the total set of goods, W, is irreducible. Otherwise the tech-
nology is called reducible.

In economic terms: a proper subset of goods is independant if these
goods can be produced without consuming (directly or indirectly) goods
outside the set. If the technology is reducible we can reorder the columns
of A and B and the rows of 4 and B in such a way that 4 and B take
the form

A B
T T
—x, e
S{ Ay S{ By, i By,

6y

where the elements of the submatrix 0 are all zero and the rows of By,
are all semipositive. To say that the technology is irreducible is equi-
valent to saying that such a decomposition is not possible. Such impos-
sibility derives from all goods being necessary (directly or indirectly) as
input in order that the economy can sustain itself (see Proposition 4
below).

Although Gale’s irreducibility is sufficient for o, = f,, Weil (1968,
1970) provided a slightly weaker condition, called indecomposability,
which is also sufficient. This condition is related to the concept of a
subtechnology.

Definition 2: Given a von Neumann technology (4, B) and the non-
empty subsets Sc N, Tc M, the restriction of (4, B) to SXT, ie.



— 162 —

(4, B|S, T), is called a subtechnology if a;; = b;; =0 for i¢ S and jeT
and for all i€ S, b; >0 for some jeT. A subtechnology (4, B|S, T)
is a proper subtechnology if S+ N (and therefore T M).

Existence of a proper subtechnology is illustrated in (7), where the
rows of By, are all semipotive.

A B
T T
s, ey,
S{ By, | Mgy S{ By | By
0 Ayy 0 B,

In economic terms the goods in S and the processes in T constitute a
subtechnology if all goods used as input in these processes taken together
are also produced by them and all goods produced by them belong to S.
This means that a subtechnology is itself a von Neumann technology
and as such can function technologically independently from the rest of
the economy (%).

Definition 3: A subtechnology (4, B|S,T) (or the original von Neu-
mann technology) is called indecomposable if it contains no proper sub-
technology (otherwise it is called decomposable). If furthermore for all
jéT, a; + b; >0 for some i¢ S, then we have a maximum indecom-
posable subtechnology. If a technology (A4, B) can be decomposed into
two disjoint subtechnologies, i.e. two subtechnologies, (4, B|S;, T;) and
(4, B|S,, T,), where SN S, =9, T,NT,=0, and T;UT,= M, then
(4, B) is called completely decomposable.

Thus an indecomposable subtechnology is maximum if it is not pos-
sible to include more of the existing elementary processes without ren-
dering it decomposable. Furthermore, the decomposable technology (4, B)

(®) Kemeny, Morgenstern and Thompson (1956) (KMT) showed that a von Neu-
mann technology can always be decomposed into a finite number of subtechnologies,
one for each growth factor, ®, to which an economic von Neumann equilibrium
exists., This can be done in such a way that each subtechnology has an economic
von Neumann equilibrium (x, p, X¥) which by adding the appropriate number of
zero coordinates to p and X can be made identical to an economic von Neumann
equilibrium for the original von Neumann technology. Such subtechnologies are
by KMT called subeconomies. (Some goods or processes may occur in more than
one subeconomy.) This « KMT-decomposition » is thus based not only on the zero-
or-not-character of the matrix entries, but also on their actual sizes (cf. also Morgen-
stern and Thompson 1976, and Moeschlin 1974).
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in (7) is completely decomposable if 4,, = B, = 0. It should also be
noted that any von Neumann technology with only one gocd or only
one process is, assording to Definition 3, indecomposable. Statements
on indecomposable von Neumann technologies usually include this border
case of a one-good or one-process technology, if Ass. 1 is satisfied. But
if we, contrary to Ass. 1, had a one-good or one-process technology
with 4= 0, then assertions on indecomposable technologies would not
necessarily apply. This is so because technologies with 4= 0 have prop-
erties more akin to decomposable technclogies in general than to inde-
composable technologies.

Now, let us look at the inclusion relationship between irreducibility
and indecomposability. Since a;; > 0 implies @;; + b;; > 0, while the con-
verse does not hold, we have:

Proposition 1: A von Neumann technology which is irreducible is
also indecomposable, but the converse is not true.
For example the technology

A B

1 1 2 3
S R A
0 1 I 3
is reducible, but still indecomposable (as 4 + B = 0).
Roemer’s condition of indecomposability (Roemer 1980), which serves
to secure price uniqueness, is even more restrictive than Gale’s irreduci-
bility. In order to avoid confusion with Weil’s concept we will use the

term « connected » when speaking of a technology which is indecom-
posable in the sense of Roemer.

Definition 4: A von Neumann technology (4, B) is connected at f3,
if all intensity vectors at 8, use at least n processes where n is the total
number of goods.

Since for o= f, {x=0|Bx = xAx}C {x = 0|Bx = fiyAx} connectedness
at B, means that selfsustaining growth at any growth factor a € [y, o]
requires that at least » processes are active. As Roemer (1980, p. 450)
shows we have:

Proposition 2: A von Neumann technology which is connected at f
is also irreducible, but the converse is not true.
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In the special case of the Leontief technology (where A is square
and B is the identity matrix) all three concepts, irreducibility, indecom-
posability, and connectedness, reduce to the same, the ordinary indecom-
posability concept from the Frobenius theory on nonnegative square
matrices.

Returning now to the example (8) above we see that although the
technology is reducible, it has og = fip = 3 (%). That is, the growth factor
consistent with von Neumann equilibrium is unique. Actually, as Weil
(1970) observes, the following holds:

Proposition 3: A sufficient, though not necessary, condition for the
equilibrium growth factor to be unique. i.c. oty = Py, is that the tech-
nology is indecomposable.

Proof: 0< fly=xy; to prove sufficiency we need only show that
Bo= . Let x be an intensity vector at og and p a price vector at Bo: then
Bx = wyAx and pB= fpA. Therefore

BopAx = pBx = aopAX . ¢

Now, as Bx = apAx, supp (A4x) c supp (Bx), 50 that when the technology
is indecomposable, Bx >0 by Lemma 2 below. Since p=0, it follows
that pBx >0 and therefore, from (9), pAx >0, ie. o= %-

That indecomposability is not a necessary condition can be seen in
the following way. Change the example (8) by putting by = 0. Then
the technology is decomposable; but it still has g = o = 3 (this example
is taken from Weil 1970). Q.E.D.

J.emma 2: For an indecomposable von Neumann technology (4, B),
if x>0 and for this x supp (4x) C supp (Bx), then Bx >0 (ie., in self-
sustaining growth all commodities are produced).

Proof (adapted from Gale 1960, p. 315): Let S = supp (Bx). As
x>0, Ax=0 according to Ass.l. From supp (4x) C supp (Bx), there-
fore, Bx=>0 so that S# . Let T = supp (x) and ¢;; = @y + byss then
¢;; =0 for i¢ S, je T, because otherwise ¢;x > 0, b;x = 0, for i¢ S, and
we could not have supp (4x) C supp (Bx). From indecomposability, then,
S =N, ie. Bx>0. Q.E.D.

2

(%) As only one process (the second) need be active to attain growth at e, the
technology is not connected.
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T.hu? Gale’s irreducibility concept is unnecessarily restrictive. The
restrictiveness of the concept lies in the fact that it requires that e/l goods
are necessary (directly or indirectly) as input for the production of any

good. We may call input goods having thi -t ]
tg ing this property basic goods (cf.
1960). Formally: perty basic gaods (e Sraife

. Definition 5: Given a von Neumann technology (A4, B) the i-th good
is called a basic good if for any x==0 such that supp (Ax) C supp (8x) we

have (4x), = 0. If the i-th good is not a basic good it is cailed a non-
basic good.

Proposia:f'orz 4: A von Neumann technology (A4, B) is irreducible if
and only if all goods are basic goods.

Proof: «Only if». Let x=0 be such that supp (4x)c supp (8x)
The assertion is: irreducibility implies Ax > 0. From Ass. 1 4x=>0 Tht;
assertion is trivially true for n = 1. Assume n > 1. Letting S = ;1p[.)(Ax}
we have 0= ScCsupp (Bx). Therefore, letting T = supp (,x) we have for
all ie S, b;; >0 for some jeT. At the same time,

if i¢S, then (4dx), = ) a,%; =10,
1

=

ie. a; =0 for i¢S, jeT. But this contradicts irr ibili
) ) . educibility unl
S=N, ie. Ax>0. e
«If». Assume the technology is reducible. Then there exist non-
emp.ty sets SC N, and Tc M such that a,; =0 for i¢ S, jeT, and for
all ie S, b; >0 for some jeT. Thus goods not in S cannot be basic
goods. Q.E.D.

'It should be mentioned, that when considering von Neumann models
with consumption one has that the growth rate compatible with a von
Neumann equilibrium with a positive value of consumption is unique
whct‘her or not the technology (4, B) is indecomposable (Fujimoto 1975,
Monshima 1976). But the question of indecomposability or dccomposabi:
lity may, of course, be of importance in other contexts, e.g. when deciding

which processes should be intensified to meet a given change in final
demand.
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