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The idea that for small disturbances the full employment equilibrium is stable 
while for large disturbances it is unstable was coined by Leijonhufvud in the 
notion of a "corridor." We discuss the existence of a corridor in the standard 
Keynesian-monetarist textbook macro-model. It turns out that though the full 
employment steady state of this model may be locally stable - -  which is 
the case when the well-known Cagan condition holds - -  the model is never 
globally stable. This is due to the inherent non-linearity in the demand for 
money function, arising from non-negativity of the nominal rate of interest. 
Thus, perhaps surprisingly, the Cagan condition is both necessary and sufficient 
for the existence of a corridor in the Keynesian-monetarist model. 

1. Introduction 

This note is concerned with an unfamiliar implication of a familiar 
macrodynamic model. It is shown that the full employment  equilib- 
r ium of the simple Keynesian-monetar is t  medium-run model has to be 
unstable in the large, whether it is locally stable or not. By Keynes ian-  
monetarist medium-run model we mean the IS-LM model dynamized 

* This note is adapted from a paper presented at the European Meeting 
of the Econometric Society, Bologna, August 1988. I would like to thank 
SCren Bo Nielsen and Peter Birch Scrensen (Copenhagen Business School), 
Thomas Lux (University of Bamberg), and two anonymous referees for helpful 
comments and suggestions. Remaining errors and shortcomings are mine. 
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by adding the expectations-augmented natural rate Phillips curve and 
adaptive expectations. The qualifier "simple" signifies that the con- 
sumption function is of the simple Keynesian type having current in- 
come as the only argument. It is well-known that, depending on the 
parameters, the steady state of this model may be locally stable or un- 
stable (Tobin, 1975; Scarth, 1977; Taylor, 1977; Yarrow, 1977). The 
stability hinges on the celebrated condition found by Cagan in his clas- 
sical study of hyperinflation (Cagan, 1956). 

Tobin (1975) hinted at the possibility that the dynamics might give 
rise to stability for small disturbances, but instability for larger shocks. 
Tobin did not, however, analyze the problem in a rigorous way and left 
the definite conclusion for further investigation. 

Using the geometry of the phase plane we show that Tobin's con- 
jecture is confirmed when the inherent non-linearity in the demand for 
money function, arising from non-negativity of the nominal rate of in- 
terest, is taken into account. Large contractionary disturbances lead to 
a dynamic liquidity trap so that the system never returns to the steady 
state. Hence, in the simple Keynesian-monetarist model deep slumps 
are self-sustaining. In case the Cagan condition holds, i.e., the steady 
state is locally stable, this implies the existence of a "corridor," a notion 
introduced by Leijonhufvud (1973). A corridor is the limited neighbor- 
hood of stability around a steady state which is locally stable but not 
globally stable. Conditions for the existence of a corridor in differ- 
ent models are discussed in Grossman (1974), Howitt (1978), L6fgren 
(1979), Siven (1981), Raymon (1981), Balasko and Royer (1985), and 
van de Klundert and van Schaik (1990). The question of the existence 
of a corridor in the Keynesian-monetarist model was briefly considered 
in Cugno and Montrucchio (1984). They approached the problem by 
means of the Hopf bifurcation theorem. This provided no concise con- 
dition as to the existence of a corridor. We show, however, the global 
result that the Cagan condition is both a necessary and a sufficient 
condition for the existence of a corridor. 

Although the model we consider is very simplistic (and degenerates 
if expectations are rational instead of adaptive) it is one of the core 
models of intermediate macroeconomic textbooks and of discussions of 
economic policy in the press and among policy makers (cf. Mankiw, 
1990; Tobin, 1993). The fact that the model is necessarily unstable in 
the large therefore seems worthy of some attention. 
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2. Keynesian-monetarist Dynamics 

The model is the standard imperfectly flexible prices version of the 
IS-LM model. The symbols are: P price of output, M nominal money 
supply (equal to monetary base), m = M / P  real money supply, y real 
output, [ ' / P  actual rate of inflation, x expected rate of inflation, i nom- 
inal rate of interest, r real rate of interest�9 The model consists of the 
following six equations, Eqs. (3) and (4) being merely identities. 

y = C(y)  + I ( y ,  r), 0 < Cy < Cy q'- ly < 1, /r < 0 , (1) 

m = L(y ,  i), Ly > O, Li < 0 , (2) 

r = i - x , (3) 

M 
m = - -  , (4) 

P 

P 
--=~o(y)+x, q)(y*)=O, rp'>O, (5) 
P 

= b(-~ - x ) .  (6) k 
/ -  

The behavioral functions C, I ,  and L (i.e., consumption, investment, 
and money demand), and the Phillips curve ~o are continuously differ- 
entiable. M, y*, and b are positive constants, y* is the "natural" rate of 
output defined as that level of output which is consistent with a constant 
rate of inflation. We may also speak of y* as "full employment out- 
put" meaning by this no more than the non-accelerating-inflation level 
of output. Given the initial values x (0) and P (0) the model generates 
time paths of the six endogenous variables: y, m, x, i, r,  and P. 

The short run 

In the short run, i.e., for fixed t, there are a historically given money 
supply, a given output price, and given inflation expectations. There- 
fore, when considering the LM equation (2) and the IS equation, 

y = C(y)  § I ( y ,  i - x)  , (7) 

derived from (1) and (3), m and x are given for fixed t. The "IS curve" 
is downward sloping and the "LM curve" upward sloping. The short- 
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run solution (y, i) is therefore unique, and we can write y and i as 
continuously differentiable functions of x and m: 

y =  f ( x , m ) ,  i = g ( x , m )  , (8) 

to be characterized later. The question of existence of this solution (y, i) 
to (2) and (7) calls for a comment since a study of global dynamics 
should take account of a large range of variation of x and m. We assume 
the following boundary conditions: 

A1. (i) C(0)  > 0, and 
(ii) there exists/6, 0 < 13 < 1, such that Cy + Iy < ~ everywhere. 

A2. For all y > 0: 
(i) limi-~0 L(y ,  i) = oo, and 
(ii) limi~oo L(y ,  i) = O. 

Part (ii) of A1, i.e., that the marginal propensity to spend is always 
bounded away from one, strengthens the standard condition 0 < Cy + 
ly < 1 in an economically unimportant, but technically convenient 
way. As for A2 its rationale is: when the rate of interest approaches 
zero, everyone wants to hold his wealth in the form of cash and may 
indeed want to borrow and keep the proceeds in cash. This is because 
some interest reward is needed to compensate for the lower degree of 
liquidity which characterizes bonds and equities. On the other hand, at 
very high rates of interest nobody willingly holds money, and society 
tends to some other means of exchange. 1 

In view of A2 and Li < 0, we can in principle solve (2) with 
respect to i, for given y > 0, m > 0. This gives 

Ly 1 
i = h(y,  m) > 0 with hy = ---~i > O, hm = L---~' < 0, and (9) 

for a l l y > 0 ,  lim h ( y , m ) = O ,  l i m h ( y , m ) = ~  (10) 
m--+eo m - + 0  

by A2. Inserting (9) in (7), it is straightforward to show: 

Property 1: Assume A1 and A2. Then given any x and m, where rn > 0, 
the system (2) and (7) has a unique solution (y, i), as indicated in (8), 
and y and i are positive. 

1 An example of a demand for money function obeying A2 is the case of 
constant interest elasticity: L(y, i) = gr(y)i -~, 7r' > O, E > O. 
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For use later we observe that 

Oy - I r  
- - = f x =  > 0 ,  
a x  1 - Cy  - Iy H- l r L y / L i  

ay Ir/Li 
=fm= > 0 .  

Om 1 -- Cy - [y a t- I r L y / L i  

(11) 

Dynamics 

From (5), (6), and (8) we obtain 

= b ~ ( f ( x , m ) ) .  (12) 

Combining (4), (5), and (8) gives 

rh = - [ x  § qg(f (x, m))]m . (13) 

In view of Property 1 the dynamic system (12)-(13) is defined for all 
(x, m), m > 0. The domain of definition of the system will be called U, 
that is U = IR x IR++. 

A steady state is a time path along which x and m, and therefore 
y and i, are constant. The steady state values of x and m are called x* 
and m*, respectively. Now, ~ = 0 implies, by (12) and (5), that output 
equals y*, the natural rate of output. Then, by (13), rh = 0 implies 
x* = 0. Furthermore, m* is the positive solution in m to the equation 
y* = C(y* )+I  (y*, h(y*, m)) which is derived by inserting (9), y = y*, 
and x = 0 into (7). To ensure existence of such a solution we need 
sufficient variability of investment demand. We shall assume 

A3. C(y*) + l (y*, oo) < y* < C(y*) + I (y*, O) . 

I.e., at a low (high) real rate of interest investment is (is not) sufficient 
to absorb full employment savings. Now follows: 

Property 2: Given A1, A2, and A3, the dynamic system (12)-(13) has a 
unique steady state (x*, m*) in its domain of definition, U, and x* = 0. 
Like x*, m* is independent of b, the speed of adjustment of inflation 
expectations, and of qg', the steepness of the short-run Phillips curve. 

Investigating the Jacobian of (12)-(13), evaluated at the steady 
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state, we find that the determinant is b~o~fm > 0 and the trace is ~o'(bfx 
- fmm). Thus, the steady state (0, m*) is locally asymptotically stable 
- -  i.e., a s ink--  ifbfx(O, m*) < fro(0, m*)m*. By (11), this inequality 
is equivalent to 

L* 
- b  - l  < 1 . (14) 

m* 

The steady state is unstable z if this inequality is reversed) This is a 
manifestation of the ambiguous role of price dynamics in relation to 
stability. While falling prices increase real money balances, thereby 
lowering the nominal rate of interest, i, and tending to pull i - x 
downwards, the expectation of falling prices evidently works in exactly 
the opposite direction, tending to increase i - x. 4 The first mentioned 
force is the stronger one when the sensitivity of the nominal rate of 
interest with respect to the money supply, -m*/L*, is high, i.e., when 
-L*/m* (the semi-elasticity of money demand with respect to the 
nominal rate of interest) is low. 

The stability condition (14) is called the Cagan condition because 
it is formally identical to the stability condition found by Cagan (1956) 
in his classical analysis of the purely monetary dynamics in situations 
of hyperinflation. As to the Keynesian-monetarist model the condition 
(14) was, in essentially the same form, discovered by Tobin (1975). 
The condition is mentioned in Dombusch and Fischer (1981, p. 444), 
but - -  strangely enough - -  not explicitly in later editions, and in Scarth 
(1988, p. 60). 5 

3. The Corr idor  

Leaving the merely local stability analysis we turn to global dynam- 
ics. Tobin (1975, p. 201) gave some hints that the stabilizing force, the 

e A steady state which is not locally stable is called unstable. Our defini- 
tions are as in Hirsch and Smale (1974). 

3 While ~o', i.e., the sensitivity of (unanticipated) inflation with respect to 
the activity level in the economy, influences neither the position of the steady 
state nor the question of asymptotic stability, it turns out that oscillations are 
less likely to occur, the larger is ~0'. 

4 This point was already stressed by Keynes (1936, p. 263). 
5 For some extensions, see Groth (1988). From another perspective the 

relation between price flexibility and stability is discussed in De Long and 
Summers (1986) and King (1988). They deal with stability in the sense of 
lack of statistical variance of output rather than as convergence. See also 
Chap. 4 in Sheffrin (1989). 
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Keynes effect, tends to be relatively weaker the further below equi- 
librium output of the system is. We shall prove this conjecture, i.e., 
that the simple Keynesian-monetarist model is necessarily unstable for 
large contractionary disturbances. Deep slumps are not self-correcting. 
This implies that if (14) holds, i.e., the steady state is locally stable, 
then there exists what Leijonhufvud (1973) calls a "corridor." 

To be more precise we introduce the following definitions. Remem- 
ber that the domain of definition, IR x IR++, of our dynamic system 
(12)-(13) is called U. The steady state (x*, m*) of the system (12)-(13) 
is called globally asymptotically stable if every solution (x(t), m(t)) 
with (x(0), m(0)) in U converges to (x*, m*) for t --+ +co.  A neigh- 
borhood N of (x*, m*) in U is called a neighborhood of asymptotic sta- 
bility if any solution starting in N converges to (x*, m*) for t ~ +co.  
Given a steady state which is locally asymptotically stable but not 
globally asymptotically stable, the union of all its neighborhoods of 
asymptotic stability is called a corridor. 6 

By using the strict notion of asymptotic stability as a criterion we 
diverge from Howitt who found this notion inappropriate. He argued 
that "for the concept of asymptotic stability corridor-effects seem un- 
likely to occur" (Howitt, 1978, p. 268). We do not agree since in reality 
non-linearities of some kind are always present and may cause a system 
which is locally asymptotically stable to be unstable in the large. 

In the present case it is the non-linearity in the demand for real 
balances that is important. This non-linearity follows from the fact that 
zero is an absolute floor to the nominal rate of interest (as expressed 
in A2). Whatever the value of the interest elasticity, increases in real 
money supply become less and less effective in reducing the nominal 
rate of interest. To see the implication of this we draw the phase portrait 
of the system (12)-(13) (cf. Fig. 1). The slopes of the 2 = 0 and rh = 0 
loci are given by 

dm ~ = o  - -  fx , dm rh=o = ___fx 1 
(Ix fm dx fm ~Otfrn 

At the point of intersection the slope of the rh = 0 locus is therefore 
smaller than the slope of the 2 ---- 0 locus. Observe that above the 2 ---- 0 
locus we have y > y* and below the 2 = 0 locus y < y*. Moving 
north-east in the diagram is associated with rising output. 

6 A corridor is thus a basin (Hirsch and Smale, 1974, p. 190) which does 
not contain the whole of U \ {(x*, m*)}. The intuitive meaning of the term 
"corridor" is perhaps clearest if we think of the economy in (x, m, t)-space 
rather than in (x, m)-space. 
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Now, whatever the specific shape of the demand for money func- 
tion, as long as A2 (i) holds, the 2 = 0 locus in the phase diagram tends 
to become vertical as x declines towards some critical value. Indeed, 
along the 2 = 0 locus, y = y* and therefore, by (1), the real rate of 
interest, r ,  has a constant value, the steady state value r* = h(y*, m*). 
Thus, along the ~ = 0 locus we have i = r* -4-x = h(y*, m), by (2) 
and (9). Hence, as x tends to - r *  along the ~ = 0 locus, h(y*, m) 
tends to zero and m tends to - t -~ ,  by (10), as shown in Fig. 1. This 
is a manifestation of the non-negativity of  the nominal rate of interest, 
and instability in the large follows immediately. If the initial position 
(x(0), m(0)) of  the system is on the vertical line x = - r * ,  then the 
solution (x(t), m (t)) moves north-west and never returns to the steady 
state. 

m 

- 1  ~ Y>Y* 

y=y* 

- Zo ~ 0  y<y,  

Z3 

--r* 0 

Fig. 1 

X 

However, one might be more interested in the movement of  the 
system, when the initial position is at some point on the vertical line 
x = 0 below the steady state point. This corresponds to a situation 
where the system has been in the steady state for all t < 0, but at t = 0 
it is disturbed by a contractionary shock, say a downward shift of the 
investment schedule I (y, r )  caused by a fall in long-run optimism. The 
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effect of this is that the new steady state point (0, m*) has a higher m* 
than the old, because r* in the new steady state has to be lower than in 
the old, due to the shift of I (y, r) .  Thus, immediately after the shock 
the economy is at a point, say z0 = (0, m0), below the new steady state 
point (0, m*), as indicated in Fig. 1, now interpreted as showing the 
situation after the shock. Hence, at t = 0, y < y*. Will this recession 
be self-correcting? 

Proposition 1 (No recovery): Assume A1, A2, and A3. Let a recession 
as described above take place. Then there exists 8, 0 < 8 < 1, such that 
for m0 < ~m* the solution (x(t), m(t)) with (x(0), m(0)) = (0, m0) 
never leaves the deflationary region 7 and y does not tend to y* for 
t ----~ ~ .  

For proof, see appendix A. 

Corollary: If and only if the Cagan condition (14) holds, then a corridor 
exists. 

Thus, according to this model the deflationary process set into mo- 
tion by a deep slump does not create a return to full employment. The 
explanation is that the lower the nominal rate of interest has become 
during the slump, the more difficult it is to decrease it further. And as 
actual and expected inflation continue to fall, it becomes more and more 
likely that the real rate of interest will increase instead of  decrease. 8 
In this manner one might say that it is a dynamic liquidity trap which 
causes deep slumps to be self-sustaining. 9 Observe that no postulate 
of a "conventional," static liquidity trap - -  infinite interest elasticity 

7 The deflationary region is the region A = {(x, m) c U [ ~ < 0, rh > 0}, 
cf. Fig. 1. 

8 Interestingly, in the boom there is no similar tendency for the stabilizing 
force to be weaker the further away from equilibrium the system is. On the 
opposite, -Li /L tends to be smaller, or at least not larger, the higher is the 
rate of interest. Indeed, in the case of constant numerical interest elasticity E, 
-Li /L = E/i, which is low when i is high. 

9 Confining his analysis to the problem of local stability, Johnson (1977) 
identified the phenomenon of a dynamic liquidity trap with the case of local 
instability (-bL*/m* > 1). The above shows, however, that even in case of 
local stability - -  and whatever the value of the interest elasticity of the demand 
for money - -  the system falls into a dynamic liquidity trap if subjected to a 
large contractionary disturbance. 
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of money demand - -  is involved. Likewise, no denial of the existence 
of and the possible local stability of a full employment equilibrium 
is involved. Nevertheless, if a recession is large enough, a dynamic 
liquidity trap is set in motion, preventing the recovery. 1~ 

In essentially the same model, Cugno and Montrucchio (1984) ana- 
lyzed, by means of the Hopf bifurcation theorem, the related problem of 
the existence of periodic orbits surrounding the steady state. In view of 
the difficulty of establishing whether the "subcritical" case (the periodic 
orbit is attracting and occurs to the right of the bifurcation value of the 
control parameter, here b) or the "supercritical" case (the periodic orbit 
is repelling and occurs to the left of the bifurcation value) is present, 
this provided no concise condition as to the existence of a corridor. 
However, the Hopf bifurcation theorem is useful to give an idea of the 
boundary of the corridor when it exists. The theorem implies that for 
all b on the one side of the bifurcation value/~ f * m  /f~ = - m * / L *  
and close enough to it, there exists a single periodic orbit surrounding 
the steady state with amplitude approximately proportional to Ib-/~11/2 
(use theorem A.20 in Azariadis, 1993, p. 156). When, in addition, (14) 
holds, we know a corridor exists and we may conjecture that its bound- 
ary can be identified with this periodic orbit. Then, since/~ = i*/E*, 
where E* is the absolute value of the interest elasticity of money de- 
mand, given the equilibrium rate of interest i*, the greater is E* the 
smaller is the "radius" of the corridor. It should be a_dded th_at this is 
only a local claim pertaining to b sufficiently near to b (b < b). I have 
not been able to prove - -  by means of, e.g., the Poincar6-Bendixson 
theorem - -  existence of a periodic orbit for b less than D and thereby 
that the corridor is bounded above. 

4. Conclus ion 

We have established that in the simple Keynesian-monetarist model, 
prevalent in intermediate macroeconomic textbooks, the Cagan condi- 
tion only entails local stability and is in fact, given the non-negativity of 
the nominal rate of interest, both a necessary and a sufficient condition 
for the existence of a corridor. This is an example of the limitations 
of local stability analysis as emphasized by the modem theory of non- 

10 Assumption A2 (i) excludes the Cagan demand for money function 
L(y, i) = ~(y)e-ai; a > 0. However, this function can only be valid for 
i > 0. At i = 0 money dominates bonds as an asset, and any amount of 
money > 7t(y) should willingly be held. Proposition 1 can be extended to 
this case, see Groth (1993). 
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linear dynamical systems (see, e.g., Azariadis, 1993). Of course, the 
scenario of complete collapse of the economy and continuing deflation 
is not plausible. Apart from its all-round simplistic nature the model 
abstracts from monetary growth, the real balance effect, and the infla- 
tion tax. These matters tend to counteract the dynamic liquidity trap so 
that the economy tends sooner or later to be lifted from the floor. The 
model then becomes more like a business cycle model. 

Appendix A 
Proof of Proposition 1 

Letting n = logm, the system (12)-(13) is transformed into the equiv- 
alent system 

2 = b q g ( f ( x ,  en))  , 
(A.1) 

h = - x  - qg ( f ( x ,  en))  , 

which is defined for all (x, n) in IR 2. The steady state of (A.1) is 
(0, n*), where n* = logm*. Imagining that the phase diagram in Fig. 1 
also portraits the third and fourth quadrants, we can think of it as the 
phase diagram of (A.1), interpreting m as n. 

Consider a point on the vertical line x = - r *  in Fig. 1, say the 
point zl = ( - r * ,  nl),  where nl < n*. Let tl be fixed. Denote by z ( t )  
the vector function ( x ( t ) ,  n ( t ) ) ,  and let z ( t ,  Zl) be the solution of (A.1) 
passing through Zl at t = q,  that is Z(t l ,  Zl) = Zl. The slope s of the 
corresponding trajectory in (x, n)-space is 

dn x h - x  1 
s = s ( x ,  n)  = - ~ (  , n)  --  -: --  , (A.2) 

x b ~ o ( f ( x ,  en))  b 

which is negative for (x, n) c A --- {(x, n) 6 IR 2 I x < 0, h > 0}. 
Thus the solution curve z ( t ,  z l )  at (x, n) = zl points to the north- 
west in Fig. 1. Then, clearly x ( t )  < - r *  for all t > q,  for which the 
solution z ( t ,  Zl) is defined. Hence, to prove the proposition it is enough 
to prove tha~t z ( t ,  Zl), when traced backward in time, crosses the half 
line {(x,n) c IR 2 I x = 0, n < n*}. 

Let ZlZ2 be the line segment {(x, n) 6 IR 2 [ - r *  < x < 0, n = n l } .  

The continuous function (x, n) ~ s restricted to the nonempty compact 
set z l z2  has a minimum, say g, and g < 0. Now, from (A.2) 

Os xqg' f m e  n 
< 0  

On b ~ o ( f ( x ,  en)) 2 - 
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for (x, n) c Q - {(x, n) 6 A [ - r *  _< x < 0, n _< nl}. Therefore 0 > 
s _> g for all (x, n) in Q, or [sl < Isl for all (x, n) in Q. The line 
through zl with slope g crosses the vertical line x = 0 at some point z3. 
It follows that the solution z(t, zl) at some time to < tl passes through 
some point, say ~ = (0, h), on the line segment zzz3. Letting ot = n * - h  
and 3 -- e -a ,  the proposition is proved. Indeed, as r(t) = i(t) - x ( t )  > 
- x ( t )  > - x ( q )  > r* for all t > tl, the solution for y(t) is bounded 
away from y*. Q.E.D. 
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