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1 Introduction

A series of papers has analysed the role of non-renewable natural resources for endogenous

growth (Robson 1980, Takayama 1980, Jones and Manuelli 1997, Aghion and Howitt 1998,

Chapter 5, Scholz and Ziemes 1999, Schou 2000, Schou 2002, Grimaud and Rougé 2003).

This literature typically analyses an economy with two sectors, a manufacturing sector

and a “knowledge sector” where a fraction of the labour force is employed in R&D or

education. The conclusions reached are pretty much in conformity with those of the

conventional endogenous growth models without non-renewable resources. In particular,

the cited papers associate sustained per capita growth with the usual (but problematic)

knife-edge condition that the knowledge sector has exactly constant returns to scale with

respect to the producible input(s) (at least asymptotically). And in the R&D-based

models, the controversial scale effect on growth tends to pop up, although sometimes

hidden by the labour force being normalized to one. The general impression is that limited

non-renewable resources may be a drag on long-run growth, but never an impediment.

However, common to these papers is the assumption that labour is the only input

in the growth-generating sector (the “growth engine”). Thus, natural resources do not

appear in the growth-generating sector, not even indirectly in the sense of such resources

being a necessary ingredient in the production of physical capital goods which are then

used in the growth engine (e.g., a research sector). This is clearly an unrealistic feature.

After all, most production sectors, including educational institutions and research labs,

use fossil fuels for heating and transportation purposes or at least they use indirectly

minerals and oil products via the machinery, computers, etc. they employ.

The purpose of this paper is to show that taking this fact into account affects the

conclusions in crucial ways. Thus, we focus on the distinction between models where the

non-renewable resource is growth-essential and models where it is not; by growth-essential

we mean that the non-renewable resource is a necessary input to the growth-generating

sector(s) in the economy, either directly or indirectly. We shall see that this distinction

has important implications for the limits-to-growth question and economic policy issues.

Although we shall primarily be concerned with two-sector models with R&D, an expe-

dient point of departure is the one-sector model by Suzuki (1976), which is introduced in

the next section. This model provides the simplest conceivable framework for displaying

the effects of a growth-essential non-renewable resource. Then Section 3 describes the con-

ventional approach to a two-sector setup with R&D and resource depletion as exemplified
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by the above-mentioned literature. In contrast, Section 4 introduces two-sector models

where the non-renewable resource is growth-essential, either directly or indirectly. In Sec-

tion 5 we consider how limited substitutability in the R&D sector affects the conclusions.

Section 6 concludes.

2 A one-sector model with R&D

It is not always recognised that the research of the 1970s on macro implications of essen-

tial non-renewable natural resources already laid the groundwork for a theory of endoge-

nous and policy-dependent growth with natural resources. Actually, by extending the

Dasgupta-Heal-Solow-Stiglitz (D-H-S-S) model from 1974,1 Suzuki (1976) studied how

endogenous innovation may affect the prospect of overcoming the finiteness of natural

resources. Suzuki insisted that technical innovations are the costly result of intentional

R&D. A part of aggregate output is used as R&D investment and results in additional

technical knowledge and thereby higher productivity. The labour force, L, equals the pop-

ulation and grows according to L = L0e
nt, n ≥ 0, constant. The dating of the variables

is suppressed unless needed for clarity.

2.1 Elements of the Suzuki model

Aggregate manufacturing output is

Y = AεKαLβRγ, ε, α, β, γ > 0, α+ β + γ = 1, (1)

where A is an index of the “stock of knowledge” and K, L and R are inputs of capi-

tal, labour and a non-renewable resource (say oil), respectively, at time t. The stock of

knowledge increases through R&D investment, IA :

Ȧ = IA − δAA, δA ≥ 0. (2)

The interpretation is that the technology for creating new knowledge uses the same inputs

as manufacturing, in the same proportions. The parameter δA is the (exogenous) rate of

depreciation (obsolescence) of knowledge. After consumption and R&D investment, the

remainder of output is invested in physical capital:

K̇ = Y − cL− IA − δKK, δK ≥ 0, (3)

1Dasgupta and Heal (1974), Solow (1974) and Stiglitz (1974).
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where c is per capita consumption and δK is the (exogenous) rate of depreciation (decay)

of capital. Finally, the resource stock, S, of the non-renewable resource (e.g., oil reserves)

diminishes with resource extraction:

Ṡ = −R ≡ −uS, (4)

and u is the rate of depletion. Since we must have S ≥ 0 for all t, there is a finite upper
bound on cumulative resource extraction:Z ∞

0

R(t)dt ≤ S(0). (5)

Uncertainty and costs of extraction are ignored.2

We shall limit our attention to efficient paths, i.e., paths such that consumption can

not be increased in some time interval without being decreased in another time interval.

Assuming, for simplicity, that δA = δK = δ,3 the net marginal productivities of A and K

are equal if and only if εY/A− δ = αY/K − δ, i.e.,

A/K = ε/α.

Initial stocks, A0 andK0 are historically given. SupposeA0/K0 > ε/α. Then, initially, the

net marginal product of capital is larger than that of knowledge, i.e., capital is relatively

scarce. An investing efficient economy will therefore for a while invest only in capital,

i.e., there will be a phase where IA = 0. This phase of complete specialisation lasts until

A/K = ε/α, a state reached in finite time, say at time t̄. Hereafter, there is investment in

both assets so that their ratio remains equal to the efficient ratio ε/α forever. Similarly,

if initially A0/K0 < ε/α, then there will be a phase of complete specialisation in R&D,

and after a finite time interval the efficient ratio A/K = ε/α is achieved and maintained

forever. Thus, for t > t̄ it is as if there were only one kind of capital, which we may

call “broad capital” and define as K̃ = K + A = (α + ε)K/α. Indeed, substitution of A

= εK/α and K = αK̃/(ε+ α) into (1) gives

Y =
εεαα

(ε+ α)ε+α
K̃ε+αLβRγ ≡ BK̃α̃LβRγ, α̃ ≡ α+ ε, (6)

2Thus the model’s description of resource extraction is trivial. That is why it is natural to classify
the model as a one-sector model notwithstanding there are two activities in the economy, manufacturing
and resource extraction.

3Suzuki (1976) has δA = δK = 0. But in order to comply with the general framework in this article,
we allow δK > 0, hence δ ≥ 0. Chiarella (1980) modifies (2) into Ȧ = IξA, ξ > 0, and focuses on the
resulting quite complicated transitional dynamics.
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so that α̃+ β + γ > 1. Further, adding (2) and (3) gives

·
K̃ = Ȧ+ K̇ = Y − cL− δK̃. (7)

Thus, we can proceed with a model based on broad capital, using (6), (7) and the

resource depletion equation (4). Essentially, this model provides a theoretical basis for

extending the D-H-S-S model to include increasing returns to scale, thereby offering a

simple framework for studying endogenous growth with essential non-renewable resources.

Groth and Schou (2006) study a similar configuration where the source of increasing

returns to scale is not intentional creation of knowledge, but learning as a by-product of

investing as in Arrow (1962) and Romer (1986). Empirically, the evidence furnished by,

e.g., Hall (1990) and Caballero and Lyons (1992) suggests that there are quantitatively

significant increasing returns to scale w.r.t. capital and labour or external effects in US and

European manufacturing. Similarly, Antweiler and Trefler (2002) examine trade data for

goods-producing sectors and find evidence for increasing returns to scale. Whatever the

source of increasing returns to scale we shall call a D-H-S-S framework with α̃+β+γ > 1

an extended D-H-S-S model.

For any positive variable x, let gx ≡ ẋ/x (the growth rate of x). Log-differentiating

(6) w.r.t. t gives the “growth-accounting equation”

gY = α̃gK̃ + βn+ γgR. (8)

A balanced growth path (BGP) is defined as a path along which the quantities Y, C and

K̃ change at constant proportionate rates (some or all of which may be negative). It is

easily shown that along a BGP gK̃ = gY = gC ≡ gc + n and, if nothing of the resource is

left un-utilized forever, gR = gS = −R/S ≡ −u = constant. Then, along a BGP, by (8),
we get

(1− α̃)gc + γu = (α̃+ β − 1)n. (9)

Since u > 0, it follows immediately that:

Result (i) A BGP with gc > 0 is technologically feasible only if

(α̃+ β − 1)n > 0 or α̃ > 1. (10)

This result warrants some remarks from the perspective of new growth theory. We

define endogenous growth to be present if sustained per capita growth (gc > 0) is driven

4



by some internal mechanism (in contrast to exogenous technology growth). Hence, Result

(i) tells us that endogenous growth is theoretically possible, if there are either increasing

returns to the capital-cum-labour input combined with population growth or increasing

returns to capital (broad capital) itself. At least one of these conditions is required in

order for capital accumulation to offset the effects of the inescapable waning of resource

use over time. The reasoning of Mankiw (1995) suggests β to be in the neighbourhood of

0.25. And Barro and Sala-i-Martin (2004, p. 110) argue that, given the “broad capital”

interpretation of capital, α̃ being around 0.75 accords with the empirical evidence. In

view of this, α̃ and β summing to a value above 1 cannot be excluded (but it is, on the

other hand, not assured). Hence, (α̃+ β − 1)n > 0 seems possible when n > 0.

We define fully endogenous growth to be present if the long-run growth rate in per

capita output is positive without the support of growth in any exogenous factor. Result

(i) shows that only if α̃ > 1, is fully endogenous growth possible. Although the case α̃ > 1

has potentially explosive effects on the economy, if α̃ is not too much above 1, these effects

can be held back by the strain on the economy imposed by the declining resource input.4

In some sense this is “good news”: fully endogenous steady growth is theoretically pos-

sible and no knife-edge assumption is needed. As we saw in Section 2, in the conventional

framework, without non-renewable resources, fully endogenous growth requires constant

returns to the producible input(s) in the growth engine. In our one-sector model the

growth engine is the manufacturing sector itself, and without the essential non-renewable

resource, fully endogenous growth would require the knife-edge condition α̃ = 1 (α̃ being

above 1 is excluded in this case, because it would lead to explosive growth in a setting

without some countervailing factor). When non-renewable resources are an essential input

in the growth engine, they entail a drag on the growth potential. In order to offset this

drag, fully endogenous growth requires increasing returns to capital.

However, the “bad news” is that even in combination with essential non-renewable

resources, an assumption of increasing returns to capital seems too strong and too opti-

mistic. A technology having α̃ just slightly above 1 can sustain any per capita growth

rate - there is no upper bound on gc.5 This appears overly optimistic.

4It is shown in Groth (2004) that “only if” in Result (i) can be replaced by the stronger “if and only if”.
Note also that if some irreducibly exogenous element in the technological development is allowed in the
model by replacing the constant B in (6) by eτt, where τ ≥ 0, then (10) is replaced by τ+(α̃+β−1)n > 0
or α̃ > 1. Both Stiglitz (1974, p. 131) and Withagen (1990, p. 391) ignore implicitly the possibility α̃ > 1.
Hence, from the outset they preclude fully endogenous growth.

5See Groth (2004).
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Essentially, this leaves us with semi-endogenous growth as the only plausible form of

endogenous growth (as long as n is not endogenous). We say there is semi-endogenous

growth when 1) per capita growth is driven by some internal mechanism (as distinct

from exogenous technology growth), but 2) sustained per capita growth requires support

in the form of growth in some exogenous factor. In innovation-based growth theory, this

factor is typically the size of population. Result (i) indicates that semi-endogenous growth

corresponds to the case 1−β < α̃ ≤ 1. In this case sustained per capita growth driven by
some internal mechanism is possible, but only if supported by n > 0, that is, by growth

in an exogenous factor, here population (the source of new ideas).

2.2 Growth policy and conservation

Result (i) is about as far as Suzuki’s analysis takes us, since his focus is only on whether

the technology as such allows the growth rate to be positive or not.6 That is, he does

not study the size of the growth rate. A key issue in new growth theory is to explain the

size of the growth rate and how it can temporarily or perhaps permanently be affected

by economic policy. The simple growth-accounting relation (9) immediately shows:

Result (ii) Along a BGP, policies that decrease (increase) the depletion rate u (and only

such policies) will increase (decrease) the per capita growth rate (here we presuppose

ã < 1, the plausible case).

This observation is of particular interest in view of the fact that changing the per-

spective from exogenous to endogenous technical progress implies bringing a source of

numerous market failures to light. On the face of it, the result seems to run against

common sense. Does high growth not imply fast depletion (high u)? Indeed, the answer

is affirmative, but with the addition that exactly because of the fast depletion such high

growth will only be temporary - it carries the seeds to its own obliteration. For faster

sustained growth there must be sustained slower depletion. The reason for this is that

with protracted depletion, the rate of decline in resource input becomes smaller; hence,

so does the drag on growth caused by this decline.

As a statement about policy and long-run growth, (ii) is a surprisingly succinct con-

clusion. It can be clarified in the following way. For policy to affect long-run growth,

6Suzuki’s (1976) article also contains another model, with a resource externality. That model is
analyzed and extended in Groth and Schou (2007).
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it must affect a linear differential equation linked to the basic-goods sector in the model

(Romer 1995). In the present framework the resource depletion relation,

Ṡ = −uS,

is such an equation. In balanced growth gS = −R/S ≡ −u is constant so that the propor-
tionate rate of decline in R must comply with, indeed be equal to, that of S. Through the

growth accounting relation (8), given u, this fixes gY and gK̃ (equal in balanced growth)

and thereby also gc = gY − n. The conventional wisdom in the endogenous growth lit-

erature is that interest income taxes impede economic growth and investment subsidies

promote economic growth. Interestingly, this is not so when non-renewable resources are

an essential input in the growth engine (which is here the manufacturing sector itself).

Then, generally, only those policies that interfere with the depletion rate u in the long run

(like a profits tax on resource-extracting companies or a time-dependent tax on resource

use) can affect long-run growth. This is further explored in Groth and Schou (2007). It

is noteworthy that this long-run policy result holds whether gc > 0 or not and whether

growth is exogenous, semi-endogenous or fully endogenous.7 The general conclusion is

that with non-renewable resources entering the growth-generating sector in an essential

way, conventional policy tools receive a different role and there is a role for new tools

(affecting long-run growth through affecting the depletion rate).

2.3 Further implications

In order to be more specific we introduce household preferences and a “social planner”.

The resulting resource allocation will coincide with that of a decentralized economy with

appropriate subsidies and taxes. As in Stiglitz (1974), let the utilitarian social planner

optimize

U0 =

Z ∞

0

c(t)1−θ − 1
1− θ

L(t)e−ρtdt, θ > 0, ρ ≥ n ≥ 0, (11)

subject to the constraints given by technology ((6), (7) and (4)) and initial conditions.

Here, θ is the (numerical) elasticity of marginal utility (desire for consumption smoothing)

and ρ is a constant rate of time preference (impatience).8

7This is a reminder that the distinction between fully endogenous growth and semi-endogenous growth
is not the same as the distinction between policy-dependent and policy-invariant growth.

8If ρ = n, the improper integral U0 tends to be unbounded and then the optimization criterion is not
maximization, but “overtaking” or “catching-up” (see Seierstad and Sydsaeter, 1987). For simplicity we
have here ignored (as does Stiglitz) that also environmental quality should enter the utility function.
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Using the Pontryagin Maximum Principle, the first order conditions for this problem

lead to, first, the Ramsey rule,9

gc =
1

θ
(
∂Y

∂K̃
− δ − ρ) =

1

θ
(α̃

Y

K̃
− δ − ρ), (12)

second, the Hotelling rule,10

d(∂Y/∂R)

dt
=

∂Y

∂R
(
∂Y

∂K̃
− δ) = γ

Y

R
(α̃

Y

K̃
− δ). (13)

The first rule says: as long as the net return on investment in capital is higher than the rate

of time preference, one should let current c be low enough to allow positive net saving

(investment) and thereby higher consumption in the future. The second rule is a no-

arbitrage condition saying that the return (“capital gain”) on leaving the marginal unit of

the resource in the ground must equal the return on extracting and using it in production

and then investing the proceeds in the alternative asset (reproducible capital).11

Using the Cobb-Douglas specification, we may rewrite the Hotelling rule as gY − gR

= α̃Y/K̃ − δ. Along a BGP gY = gC = gc + n and gR = −u, so that the Hotelling rule
combined with the Ramsey rule gives

(θ − 1)gc − u = n− ρ. (14)

This linear equation in gc and u combined with the growth-accounting relationship (9)

constitutes a linear two-equation system in the growth rate and the depletion rate. The

determinant of this system is D ≡ 1− α̃−γ+θγ.We assume D > 0, which seems realistic

and is in any case necessary (and sufficient) for stability.12 Then

gc =
(α̃+ β + γ − 1)n− γρ

D
, and (15)

u =
[(α̃+ β − 1)θ − β]n+ (1− α̃)ρ

D
. (16)

9After Ramsey (1928).
10After Hotelling (1931). Assuming perfect competition, the real resource price becomes pR = ∂Y/∂R

and the real rate of interest is r = ∂Y/∂K − δ. Then the rule takes the more familar form ṗR/pR = r. If
there are extraction costs at rate C(R,S, t), then the rule takes the form ṗS − ∂C/∂S = rpS , where pS
is the price of the unextracted resource (whereas pR = pS + ∂C/∂R).
It is another thing that the rise in resource prices and the predicted decline in resource use have not yet

shown up in the data (Krautkraemer 1998, Smil 2003); this may be due to better extraction technology
and discovery of new deposits. But in the long run, if non-renewable resources are essential, this tendency
inevitably will be reversed.
11After the initial phase of complete specialization described in Section 2.1, we have, due to the pro-

portionality between K,A and K̃, that ∂Y/∂K = ∂Y/∂A = ∂Y/∂K̃ = α̃Y/K̃. Notice that the Hotelling
rule is independent of preferences; any path that is efficient must satisfy the Hotelling rule (as well as
the exhaustion condition limt→∞ S(t) = 0).
12As argued above, α̃ < 1 seems plausible. Generally, θ is estimated to be greater than one (see, e.g.,

Attanasio and Weber 1995); hence D > 0. The stability result as well as other findings reported here are
documented in Groth and Schou (2002).

8



Interesting implications are:

Result (iii) If there is impatience (ρ > 0), then even when a non-negative gc is techno-

logically feasible ((10) satisfied), a negative gc can be optimal and stable.

Result (iv) Population growth is good for economic growth. In its absence, when ρ > 0,

we get gc < 0 along an optimal BGP; if ρ = 0, gc = 0 when n = 0.

Result (v) There is never a scale effect on the growth rate.

Result (iii) reflects that utility discounting and consumption smoothing weaken the

“growth incentive”. Result (iv) is completely contrary to the conventional (Malthusian)

view and the learning from the D-H-S-S model. The point is that two offsetting forces

are in play. On the one hand, higher n means more mouths to feed and thus implies

a drag on per capita growth (Malthus). On the other hand, a growing labour force

is exactly what is needed in order to exploit the benefits of increasing returns to scale

(anti-Malthus).13 And in the present framework this dominates the first effect.14 This

feature might seem to be contradicted by the empirical finding that there is no robust

correlation between gc and population growth in cross-country regressions (Barro and

Sala-i-Martin 2004, Ch. 12). However, the proper unit of observation in this context is

not the individual country. Indeed, a positive association between n and gc as in (15)

should not, in an internationalized world with technology diffusion, be seen as a prediction

about individual countries, but rather as pertaining to larger regions, perhaps the global

economy. In any event, the second part of Result (iv) is a dismal part - in view of the

projected long-run stationarity of world population (United Nations 2005).

A somewhat surprising result appears if we imagine (unrealistically) that α̃ is suffi-

ciently above one to make D a negative number. If population growth is absent, D < 0

is in fact needed for gc > 0 along a BGP. However, D < 0 implies instability. Hence this

would be a case of an instable BGP with fully endogenous growth.15

13This aspect will become more lucid in the two-sector models of the next section, where the non-rival
character of technical knowledge is more transparent.
14This as well as the other results go through if a fixed resource like land is included as a nec-

essary production factor. Indeed, letting J denote a fixed amount of land and replacing (1) by Y
= AεKαLβRγJ1−α−β−γ , where now α+ β + γ < 1, leave (8)-(10), (15) and (16) unchanged.
15Thus, if we do not require D > 0 in the first place, (iv) could be reformulated as: existence of a stable

optimal BGP with gc > 0 requires n > 0. This is not to say that reducing n from positive to zero renders
an otherwise stable BGP instable. Stability-instability is governed solely by the sign of D. Given D > 0,
letting n decrease from a level above the critical value, γρ/(α̃ + β + γ − 1), given from (15), to a level
below, changes gc from positive to negative, i.e., growth comes to an end.
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Result (v) is about the absence of the problematic scale effect (larger population,

larger growth rate) that appears in many R&D-based endogenous growth models. It is

noteworthy that this absence holds for any value of α̃, including α̃ = 1.16

A pertinent question now is: are the above results just an artifact of the one-sector

set-up? This leads us to consider two-sector models.

3 The standard two-sector framework with R&D and
resource depletion

The conclusions (i), (ii), (iii) and (v) above (and partly also (iv)) differ from most of

the new growth literature,17 including most of the contributions that deal explicitly with

non-renewable resources and endogenous growth (Jones and Manuelli 1997, Aghion and

Howitt 1998 (Chapter 5), Scholz and Ziemes 1999, Schou 2000, Schou 2002, Grimaud

and Rougé 2003). These contributions extend the first-generation two-sector endogenous

growth models (like Romer 1990 and Aghion and Howitt 1992), by including a non-

renewable resource as an essential input in the manufacturing sector. The non-renewable

resource does not, however, enter the R&D or educational sector in these models (not

even indirectly in the sense of physical capital produced in the manufacturing sector being

used in the R&D sector). As we shall now see, this is the reason that these models give

results quite similar to those from conventional endogenous models without non-renewable

resources.

The following two-sector framework is a prototype of the afore-mentioned contribu-

tions:

Y = AεKαLβ
YR

γ, ε, α, β, γ > 0, α+ β + γ = 1, (17)

K̇ = Y − cL− δK, δ ≥ 0,

Ȧ = μ̄LA, μ̄ = μA, μ > 0, (18)

Ṡ = −R,

LY + LA = L, a constant.

Unlike in the previous model, additions to society’s “stock of knowledge”, A, are now
16More commonplace observations are that increased impatience leads to faster depletion and lower

growth (in the plausible case ã < 1). Further, in the log-utility case (θ = 1) the depletion rate u equals
the effective rate of impatience, ρ− n.
17Here we have in mind the fully endogenous growth literature. The results are more cognate with the

results in semi-endogenous growth models without non-renewable resources, like Jones (1995).
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produced in a separate sector, the R&D sector, with a technology different from that in

manufacturing. The only input in the R&D sector is labour (thus taking to the extreme

the feature that this sector is likely to be relatively intensive in human capital). The

individual research lab, which is “small” in relation to the economy as a whole, takes R&D

productivity, μ̄, as given. At the economy-wide level, however, this productivity depends

positively on the stock of technical knowledge in society, A (this externality is one of

several reasons that the existence of endogenous technical change implies market failures).

Usually, there is no depreciation of knowledge, i.e., δA = 0. Aggregate employment in

the R&D sector is LA. Total employment, L, in the economy is the sum of LA and

employment, LY , in the manufacturing sector. In that sector, the firms take A as given

and the technology they face at the micro level may involve different capital-good varieties

and qualities. There are many interesting details and disparities between the models

concerning these aspects as well as the specifics of the market structure and the policy

questions considered. Yet, whether we think of the “increasing variety” models (or Romer-

style models to which Scholz and Ziemes 1999 and Schou 2002 belong) or the “increasing

quality models” (or quality ladder models to which Aghion and Howitt 1998 and Grimaud

and Rougé 2003 belong), at the aggregate level these models end up with a formal structure

basically like that above.18 The accumulation-based growth models by Jones and Manuelli

(1997) and Schou (2000) are in one respect different - we shall return to this.

Two key features emphasised by new growth theory are immediately apparent. First,

because technological ideas - sets of instructions - are non-rival, what enters both in the

production function for Y and that for Ȧ is total A. This is in contrast to the rival

goods: capital, labour and the resource flow. For example, a given unit of labour can

be used no more than one place at a time. Hence, only a fraction of the labour force

enters manufacturing, the remaining fraction entering R&D. Second, there is a tendency

for increasing returns to scale to arise when knowledge is included in the total set of

inputs. At least when we ignore externalities, the well-known replication argument gives

reason to expect constant returns to scale w.r.t. the rival inputs (here K,LY and R in the

manufacturing sector and LA in R&D). Consequently, as we double these rival inputs and

also double the amount of knowledge, we should expect more than a doubling of Y and

Ȧ. An additional key feature of new growth theory, apparent when the above technology

description is combined with assumptions about preferences and market structure, is the

18Essentialy this structure also characterizes the two-sector models by Robson (1980) and Takayama
(1980), although these contributions do not fully comprehend the non-rival character of knowledge, since
they have LA/L in (18) instead of LA.
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emphasis on incentives as driving R&D investment. When the resource becomes more

scarce and its price rises, the value of resource-saving knowledge increases and R&D is

stimulated.19

Using the principle of growth accounting on (17), taking n = 0 into account, we get,

along a BGP,20

(1− α)gc = εgA − γu, (19)

where

gA = μcAL, cA ≡
LA

L
, constant.

We have gA > 0 if cA > 0. The essential non-renewable resource implies a drag on the

growth of consumption. Yet, by sufficient conservation of the resource (implying a small

u ≡ R/S) it is always possible to obtain gc > 0. And it is possible to increase gc without

decreasing u, simply by increasing cA. These two last conclusions have a quite different

flavour compared to the results (i) and (ii) from the extended D-H-S-S model.

The fraction, cA, of the labour force in R&D will depend on parameters such as α, ε,

μ and those describing preferences and the allocation device, whether this is the market

mechanism in a decentralized economy or the social planner in a centralized economy. To

be specific, let us again consider a social planner and the criterion (11). Along a BGP

we get once more (14) (from the Ramsey rule and the Hotelling rule). Further, efficient

allocation of labour across the two sectors and across time leads to cA = 1 − βu/(εμL).

Combining this with (19) and (14) we find, along a BGP,

cA =
εμL(β + θγ)− β(1− α)ρ

εμLθ(1− α)
,

gc =
εμL− (1− α)ρ

θ(1− α)
, and

u =
(θ − 1)εμL+ (1− α)ρ

θ(1− α)
.

This is an example of fully endogenous growth: given (1− θ)εμL < (1−α)ρ < εμL,21

per capita growth is positive along a BGP without support of growth in any exogenous

19Using patent data, Popp (2002) finds a strong, positive impact of energy prices on energy-saving
innovations.
20In this two-sector framework a BGP means a path along which Y,C, K and N grow at constant rates

(not necessarily positive). It is understood that the path considered is efficient and thus leaves nothing
of the resource unutilized forever.
21The first inequality ensures u > 0 (equivalent with the necessary transversality condition in the

optimal control problem being satisfied), the second ensures gc> 0.
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factor. A caveat is that this result relies on the knife-edge assumption that the growth

engine (the R&D sector) has exactly constant returns to the producible input(s), here A.

The problematic (empirically unrealistic) scale effect on growth (∂gc/∂L > 0) crops up

(although often hidden by the labour force being normalized to one). Indeed, this is why

these models assume a constant labour force; with n > 0 the growth rate will be forever

rising. In any event, contrary to the implication of (15), sustained growth is conceivable

without population growth and whether ρ = 0 or ρ > 0.

Overall, we have a more optimistic perspective than in the extended D-H-S-S model.

Indeed, the conclusions are quite different from the results (i), (ii) and (v) above (and

partly also different from (iv)). The conclusions are, however, pretty much in conformity

with those of the fully endogenous growth models without non-renewable resources. With

the exception of the scale effect on growth we get similar results in the models by Jones

and Manuelli (1997) and Schou (2000). Jones and Manuelli consider an economy with a

sector producing consumption goods with labour, capital and the non-renewable resource

and a sector producing capital goods with only capital (not even labour). Schou develops a

Lucas-style human-capital-based model extended with a non-renewable resource entering

only the manufacturing sector (with the addition of pollution from this resource). Since

in these models it is no longer the accumulation of a non-rival good that drives growth,

the scale effect on growth disappears, but this is the only difference in relation to the

questions considered here.

The explanation of the optimistic results in all these models is that the growth-

generating sector is presumed not to depend on the non-renewable resource (neither

directly nor indirectly). In reality, however, most sectors, including educational insti-

tutions and research laboratories, use fossil fuels for heating and transportation purposes,

or at least they use indirectly minerals and oil products via the machinery, computers

etc. they employ. The extended D-H-S-S model in the previous section did take this

dependency of the growth engine (in that model the manufacturing sector itself) on the

natural resource into account and therefore gave substantially different results. In the

next section we shall see that a two-sector model with the resource entering (also) the

R&D sector leads to results similar to those of the extended D-H-S-S model from Section

1, but quite different from those of the above two-sector model.
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4 Growth-essential non-renewable resources

When a natural resource is an essential input (directly or indirectly) in the growth engine,

we call the resource growth-essential.

4.1 The resource as input in both sectors

Extending the above two-sector framework as in Groth (2007a), we consider the setup:

Y = AεKαLβ
YR

γ
Y , ε, α, β, γ > 0, α+ β + γ = 1, (20)

K̇ = Y − cL− δK, δ ≥ 0, (21)

Ȧ = μ̄Lη
AR

1−η
A , μ̄ = μAϕ, μ > 0, 0 < η < 1, (22)

Ṡ = −R, (23)

LY + LA = L = L(0)ent, n ≥ 0, (24)

RY +RA = R. (25)

There are three new features. First, only a fraction of the resource flow R is used in

manufacturing, the remainder being used as an essential input in R&D activity. Second,

the knowledge elasticity, ϕ, of research productivity is allowed to differ from one; as argued

in the section on the Jones critique, even ϕ < 0 should not be excluded a priori. Third,

population growth is not excluded.

Along a BGP, using the principle of growth accounting on (20) yields

(1− α)gc = εgA − γ(n+ u). (26)

Applying the same principle on the R&D equation (22) (after dividing by A and presup-

posing the R&D sector is active) and assuming balanced growth we get, after substituting

into (26),

(1− α)gc =

µ
εη

1− ϕ
− γ

¶
n−

µ
ε(1− η)

1− ϕ
+ γ

¶
u. (27)

Since u > 0, from this22 follows that a BGP with gc > 0 is technologically feasible only if

ϕ < 1 +
ε(1− η)

γ
and either (n > 0 and εη > (1− ϕ)γ) or ϕ > 1.

Naturally, the least upper bound for ϕ’s that allow non-explosive growth is here higher

than when the resource is not a necessary input in the R&D sector. We also see that
22For ease of interpretation we have written (27) on a form analogue to (26). In case ϕ = 1, (27) should

be interpreted as (1− ϕ)(1− α)gc = [εη − (1− ϕ)γ]n − [ε(1− η) + (1− ϕ)γ]u.
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for the technology to allow steady positive per capita growth, either ϕ must be above

one or there must be population growth (to exploit increasing returns to scale) and an

elasticity of Y w.r.t. knowledge large enough to overcome the drag on growth caused

by the inevitable decline in resource use. Not surprisingly, in the absence of population

growth, sustained per capita growth requires a higher elasticity of research productivity

with respect to knowledge than when the growth engine does not need the resource as an

input. The “standard” two-sector model of the previous section relied on the aggregate

invention production function having exactly constant returns (at least asymptotically) to

produced inputs, that is, ϕ = 1. Slightly increasing returns w.r.t. A would in that model

lead to explosive growth, whereas slightly decreasing returns lead to growth petering out.

Interestingly, when the resource is growth-essential, the case ϕ = 1 loses much of its

distinctiveness. Yet, the “bad news” for fully endogenous growth is again that ϕ > 1

seems to be a too optimistic and strong assumption. The reason is similar to that given

in Section 1.1 for doubting that α̃ > 1, namely that whenever a given technology has

ϕ > 1, it can sustain any per capita growth rate no matter how high - a rather suspect

implication. Thus, once more we are left with semi-endogenous growth (ϕ ≤ 1) as the
only appealing form of endogenous growth (as long as n is exogenous).

In parallel to Result (ii) above, (27) shows that when ϕ < 1, only policies that decrease

the depletion rate u along a BGP, can increase the per capita growth rate gc. For example,

embedding the just described technology in a Romer (1990)-style market structure, Groth

(2007b) shows that a research subsidy, an interest income tax and an investment subsidy

do not affect long-run growth whereas taxes that impinge on resource extraction do. The

point is that whatever market forms might embed the described technology and whatever

policy instruments are considered, the growth-accounting relation (27) must hold (given

the assumed Cobb-Douglas technologies).

Let us again consider a social planner and the criterion (11). Then, along a BGP we

have once more (14) (from the Ramsey rule and the Hotelling rule). Combining this with

(27) we find, along a BGP,

gc =
εn− [ε(1− η) + (1− ϕ)γ] ρ

D̃
, and

u =

h
(θ − 1)ε− D̃

i
n+ (1− ϕ)(1− α)ρ

D̃
,

where D̃ ≡ (1 − ϕ)(β + θγ) + (θ − 1)ε(1 − η) is assumed positive (this seems to be

the empirically relevant case and it is in any event necessary, though not sufficient, for
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stability).23 We see that in the plausible case ϕ < 1+ ε(1− η)γ the analogy of the results

(iii), (iv) and (v) from the extended D-H-S-S model of Section 1 go through.24

The conclusion is that when a non-renewable resource is an essential input in the

R&D sector, quite different and more pessimistic conclusions arise compared to those of

the previous section. Sustained growth without increasing effort (i.e., without n > 0)

now requires ϕ > 1 in contrast to ϕ = 1 in the previous section. Now policies aimed at

stimulating long-run growth generally have to go via resource conservation.

4.2 Capital in the R&D sector

The results are essentially the same in the case where the resource is a direct input only

in manufacturing, but the R&D sector uses capital goods (apparatus and instruments)

produced in the manufacturing sector. Thus, indirectly the resource is an input also in

the R&D sector, hence still growth-essential. The model is:

Y = AεKα
YL

β
YR

γ, ε, α, β, γ > 0, α+ β + γ = 1, (28)

K̇ = Y − cL− δK, δ ≥ 0,

Ȧ = μ̄K1−η
A Lη

A, μ̄ = μAϕ, μ > 0, 0 < η < 1, (29)

Ṡ = −R,

KY +KA = K, (30)

LY + LA = L = L(0)ent, n ≥ 0.

Possibly, 1 − η < α (since the R&D sector is likely to be relatively intensive in human

capital), but for our purposes here this is not crucial.

Using the growth accounting principle on (28) again gives (26) along a BGP. Applying

the same principle on the R&D equation (29) (presupposing the R&D sector is active)

and assuming balanced growth, we find

(1− ϕ)gA = (1− η)gK + ηn = (1− η)gc + n, (31)

in view of gK = gC = gc + n. This shows that existence of a BGP with positive growth

23A possible reason for the popularity of the model of the previous section is that it has transitional
dynamics that are less complicated than those of the present model (four-dimensional dynamics versus
five-dimensional).
24Although a scale effect on growth is absent, a positive scale effect on levels remains, as shown in

Groth (2007a). This is due to the non-rival character of technical knowledge.
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requires ϕ < 1.25 Both K and A are essential producible inputs in the two sectors; hence,

the two sectors together make up the growth engine.

Substituting (31) into (26) yields

[(1− ϕ)(1− α)− ε(1− η)] gc = [ε− (1− ϕ)γ]n− (1− ϕ)γu. (32)

Since u > 0, we see that a BGP with gc > 0 is technologically feasible only if, in addition

to the requirement ϕ < 1,

either (ε > (1− ϕ)γ and n > 0) or ε >
(1− ϕ)(1− α)

1− η
.

That is, given ϕ < 1, the knowledge elasticity of manufacturing output should be high

enough. These observations generalize Result (i) from the extended D-H-S-S model and

also Result (ii), when we (plausibly) assume ε < (1−ϕ)(1−α)/(1−η), which corresponds
to α̃ < 1 in the one-sector model. The combined accumulation of K and A drives growth,

possibly with the help of population growth.

Again, let us consider a social planner and the criterion (11). Along a BGP we get

once more (14) (from the Ramsey rule and the Hotelling rule). Combining this with (32)

yields, along a BGP,

gc =
εn− (1− ϕ)γρ

D∗ , and

u =
[(θ − 1)ε−D∗]n+ [(1− ϕ)(1− α)− ε(1− η)] ρ

D∗ ,

where D∗ ≡ (1−ϕ)(β + θγ)− ε(1− η) is assumed positive. The results (iii), (iv) and (v)

from the extended D-H-S-S model immediately go through.

Thus, also when the non-renewable resource is only indirectly growth-essential, do we

get conclusions in conformity with those in the previous subsection, but quite different

from those of standard endogenous growth models with non-renewable resources entering

only the manufacturing sector. This is somewhat at variance with the section on growth

and non-renewable resources in Aghion and Howitt (1998). They compare their two-

sector Schumpeterian approach (which in this context is equivalent to what was above

called “the standard approach”) with a one-sector AK model extended with an essential

non-renewable resource and no population growth (which is equivalent to the extended D-

H-S-S model with α = 1 and n = 0). Having established that sustained growth is possible

in the first approach, but not in the second, they ascribe this difference to “the ability

25As soon as ϕ ≥ 1, growth becomes explosive.
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of the Schumpeterian approach to take into account that the accumulation of intellectual

capital is ‘greener’ (in this case, less resource intensive) than the accumulation of tangible

capital” (p. 162). However, as the above example shows, even allowing the R&D sector to

be “greener” than the manufacturing sector, we may easily end up with AK-style results.

The crucial distinction is between models where the non-renewable resource is growth-

essential - directly or indirectly - and models where it is not. To put it differently: by not

letting the resource enter the growth engine (not even indirectly), Aghion and Howitt’s

“Schumpeterian approach” seems biased toward sustainability.

5 The case of limited substitutability in the R&D
sector

One might argue that, at least in the R&D sector, the elasticity of substitution between

labour (research) and other inputs must be low. Hence, let us consider the limiting case

of zero substitutability in the models of the two previous subsections. First, we replace

(22) in the model of Section 4.1 by

Ȧ = μAϕmin
¡
LA, A

ψRA

¢
, ψ > 0.

Then, along any efficient path with gA > 0 we have LA = AψRA so that gA = μAϕ−1LA

= μAϕ+ψ−1RA. Log-differentiating this w.r.t. t and setting ġA = 0 gives, along a BGP,

(ϕ− 1)gA+n = 0 = (ϕ+ψ− 1)gA− u. Since n ≥ 0 and u > 0, 1−ψ < ϕ ≤ 1 is required
(if ϕ > 1, growth becomes explosive). In the generic case ϕ < 1, gA = n/(1− ϕ) so that

gA > 0 requires n > 0; we end up with

gc =
ε− γψ

(1− α)(1− ϕ)
n,

u =
ϕ+ ψ − 1
1− ϕ

n.

Thus, both the per capita consumption growth rate and the depletion rate u along a BGP

are in this case technologically determined. As an implication, preferences and economic

policy can have only level effects, not long-run growth effects. If n = 0, no BGP with

gc > 0 exists in this case.

The singular case ϕ = 1 is different. This is the only case where there is scope for

preferences and policy to affect long-run growth. Indeed, in this case, where n = 0 is

needed to avoid a forever increasing growth rate, along a BGP we get gc = (ε− γψ)μLA

and u = ψμLA.
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We get similar results if in the model of Section 4.2 we replace (29) by

Ȧ = μAϕmin
¡
KA, A

ψLA

¢
, ψ > 0.

Along any efficient path with gA > 0, now KA = AψLA so that gA = μAϕ−1KA =

μAϕ+ψ−1LA. Log-differentiating this w.r.t. t and setting ġA = 0 gives, along a BGP,

(ϕ− 1)gA+ gK = 0 = (ϕ+ψ− 1)gA+n. Since n ≥ 0, ϕ ≤ 1−ψ is required (if ϕ > 1−ψ,

growth becomes explosive). In the generic case ϕ < 1− ψ, both the depletion rate u and

the per capita consumption growth rate become technologically determined:

gc =
ψ

1− ϕ− ψ
n,

u =
ε− βψ − γ(1− ϕ)

(1− ϕ− ψ)γ
n,

where the inequalities n > 0 and ε > βψ + γ(1− ϕ) are presupposed. If n = 0, no BGP

with gA > 0 exists in this case.

Only in the singular case ϕ = 1−ψ can preferences and policy affect long-run growth.

Indeed, in this case, where n = 0 is needed to avoid a forever increasing growth rate,

along a BGP we find gc = ψμLA and u = (ε − (1 − α)ψ)μLA, where ε > (1 − α)ψ is

presupposed.

To conclude, with zero substitution between the production factors in the R&D sector,

one “degree of freedom” is lost. As an implication, in the generic case there is no scope

for preferences and policy affecting growth. Only in a knife-edge case can preferences

and policy affect growth. Thus, the robust case is in this regard in conformity with

semi-endogenous growth models without non-renewable resources à la Jones (1995), and

the non-robust case is in conformity with fully endogenous growth models without non-

renewable resources à la Romer (1990).

6 Conclusion

To the extent that non-renewable resources are necessary inputs in production, sustained

growth requires the presence of resource-augmenting technical progress. New growth

theory has deepened our understanding of mechanisms that influence the amount and

direction of technical change. Applying new growth theory to the field of resource eco-

nomics and the problems of sustainability yields many insights. The findings emphasized

in this article are the following. The standard approach to modelling endogenous technical
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change in a set-up with non-renewable resources ignores that also R&D may need the re-

source (directly or indirectly). This implies a bias in favour of sustainability and growth.

Indeed, sustained per capita growth requires stronger parameter restrictions when the

resource is “growth essential”, than when it is not. When the resource is “growth essen-

tial”, then a policy aiming at stimulating long-run growth generally has to reduce the

long-run depletion rate. In this sense promoting long-run growth and “supporting the

environment” go hand in hand.

New growth theory has usually, as a simplifying device, considered population growth

as exogenous. Given this premise, a key distinction - sometimes even controversy -

arises between what is called fully endogenous growth and what is called semi-endogenous

growth. In mainstream new growth theory, where non-renewable resources are completely

left out of the analysis, this distinction tends to coincide with three other distinctions:

(a) that between models that suffer from non-robustness due to a problematic knife-edge

condition and models that do not; (b) that between models that imply a scale effect on

growth and models that do not; and (c) models that imply policy-dependent long-run

growth and models that do not. When non-renewable resources are taken into account

and enter the growth engine (directly or indirectly), these dissimilarities are modified: (i)

the non-robustness problem vanishes because of the disappearance of the critical knife-

edge condition; yet, fully endogenous growth does not become more plausible than before,

rather the contrary; (ii) the problem of a scale-effect on growth disappears; (iii) due to the

presence of two very different assets, producible capital and non-producible resource de-

posits, even in the semi-endogenous growth case there is generally scope for policy having

long-run growth effects.
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