Indra Astrayuda, Laurence Ball and Sandeep Mazumder: "Inflation Dynamics and the Great Recession: An Update"

Discussion by Henrik Jensen

Department of Economics University of Copenhagen and CEPR hjeconomics.dk

Sveriges Riksbank Workshop on Inflation, Unemployment and Monetary Policy February 15, 2013

- Examination of one of the most central relationships in macroeconomics:
- The Phillips Curve
- Focus is a price-inflation Phillips curve with backward-looking expectations for the US economy
- Focus is the issue of "missing deflation" in the recent crises: Dynamic forecasts of inflation for recent years based on pre-crises estimations suggest lower inflation than experienced

New approaches and results

- Paper extends Ball and Mazumder (2011, BPEA) who suggested two major explanations for the "puzzle":
 - "Core inflation" should be measured by median inflation across industries
 - The slope of the Phillips curve should be allowed to be time-varying (it turns out to be much flatter recently) (so, robust estimations should start in 1980s)
- So, with lower median inflation in 2007q4, and a flatter (and more robustly estimated) Phillips curve, there is no "missing deflation"
 - Except for "now," 2011q1-2012q4, where the model "breaks down", and there is again "missing inflation"
- Current paper suggests, and analyze, three different explanations
 - Anchoring of inflation expectations: Backward-looking expectations seem to be replaced by constant expectations
 - Use of short-term unemployment as driving variable: In 2010-2012 it is lower than long-term unemployment
 - Downward nominal wage rigidity (still in progress)

Comments: An expectations-augmented Phillips curve

• The central equation throughout is

$$\pi_t = \pi_t^e + \alpha \left(u - u^* \right)_t + \epsilon_t$$

- Apart from timing issues, completely conventional
- Expectations modelling "follow a long tradition in applied work that assumes backward-looking expectations"

$$\pi_t^e \equiv \frac{1}{4} \left(\pi_{t-1} + \pi_{t-2} + \pi_{t-3} + \pi_{t-4} \right)$$

• Could also be a place to rethink

Comments: Conventional estimation

 All estimations I do is on core inflation measured as prices on all items excl. food and energy; "XFE" (I call it "XPE" in database for unknown reasons.)

> Dependent Variable: XPE Method: Least Squares Date: 02/15/13 Time: 00:11 Sample (adjusted): 1959Q1 2012Q4 Included observations: 216 after adjustments XPE=C(1)+0.25*(XPE(-1)+XPE(-2)+XPE(-3)+XPE(-4))+C(2)*UNGAPSR

	Coefficient	Std. Error	t-Statistic	Prob.
C(1) C(2)	0.113931 <mark>-0.280891</mark>	0.065092 <mark>0.042676</mark>	1.750324 <mark>-6.582003</mark>	0.0815 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.877326 0.876753 0.922098 181.9565 -287.9676 1530.464 0.000000	Mean depende S.D. dependen Akaike info crit Schwarz criteri Hannan-Quinn Durbin-Watson	nt var t var erion on criter. stat	3.900637 2.626568 2.684885 2.716138 2.697511 0.393812

Comments: Conventional estimation

Discussion by Henrik Jensen (Univ. of Cph.)

Comments: Estimated "adaptiveness"

• $\pi_t^e \equiv c_2 \pi_{t-1} + c_3 \pi_{t-2} + c_4 \pi_{t-3} + (1 - c_2 - c_3 - c_4) \pi_{t-4}$, where $c_i s$ are estimated

Dependent Variable: XPE Method: Least Squares Date: 02/15/13 Time: 00:16 Sample (adjusted): 1959Q1 2012Q4 Included observations: 216 after adjustments XPE=C(1)+C(2)*XPE(-1)+C(3)*XPE(-2)+C(4)*XPE(-3) + (1-C(2)-C(3)-C(4)) *XPE(-4) +C(5)*UNGAPSR

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	0.036764	0.033423	1.099951	0.2726
<mark>C(2)</mark>	1.378024	0.068235	20.19532	0.0000
<mark>C(3)</mark>	-0.381102	0.116852	-3.261396	0.0013
C(4)	0.033715	0.116341	0.289799	0.7723
C(5)	<mark>-0.087193</mark>	0.023200	<mark>-3.758290</mark>	0.0002
R-squared	0.968389	Mean dependent var		3.900637
Adjusted R-squared	0.967790	S.D. dependent var		2.626568
S.E. of regression	0.471397	Akaike info criterion		1.356644
Sum squared resid	46.88740	Schwarz criterion		1.434775
Log likelihood	-141.5175	Hannan-Quinn criter.		1.388209
F-statistic	1615.965	Durbin-Watson stat		<mark>1.957610</mark>
Prob(F-statistic)	0.000000			

Comments: Estimated "adaptiveness"

Discussion by Henrik Jensen (Univ. of Cph.)

Comments: "Hybrid" "New Keynesian" GMM example

• Alternative would be a bit less traditional:

 $\pi_t^e = \beta c_2 \mathbf{E}_t \pi_{t+1} + (1 - c_2) \pi_{t-1}$

Dependent Variable: XPE Method: Generalized Method of Moments Date: 02/15/13 Time: 00:29 Sample (adjusted): 195803 201203 Included observations: 217 after adjustments Linear estimation & iterate weights Estimation weighting matrix: HAC (Prewhitening with lags = 4 from SIC maxlags = 6, Bartlett kernel, Newey-West automatic bandwidth = 1.9969, NW automatic lag length = 4) Standard errors & covariance computed using estimation weighting matrix Convergence achieved after 10 weight iterations

XPE = C(1) + C(2)*0.99*XPE(+1)+(1-C(2))*XPE(-1) + C(3)*UNGAPSR Instrument specification: XPE(-1) XPE(-2) UNGAPSR(-1) UNGAPSR(-2)

Constant added to instrument list

Discussion by Henrik

		Coefficient	Std. Error	t-Statistic	Prob.
	C(1) <mark>C(2)</mark> C(3)	0.011627 <mark>0.471892</mark> -0.011855	0.005936 <mark>0.023198</mark> 0.007672	1.958784 <mark>20.34193</mark> -1.545092	0.0514 0.0000 0.1238
	R-squared	0.988163	Mean dependent var S.D. dependent var Sum squared resid J-statistic		3.891090
	Adjusted R-squared	0.988052			2.624305
	S.E. of regression	0.286855			17.60915
	Durbin-Watson stat	2.550741			3.700091
	Instrument rank	5	Prob(J-statistic	:)	0.157230
Iensen	(Univ. of Cph.)	Sveriges Riksbank Workshop		n	

Comments: "Hybrid" "New Keynesian" GMM example

Discussion by Henrik Jensen (Univ. of Cph.)

Sveriges Riksbank Workshop

Comments: Dynamic Forecasts?

• There is something schizophrenic about the dynamic forecasts

- Your inflation brain is stuck in 2007q4
- Your unemployment brain keeps track of time and process new information
- With this "mixed" mind you asses inflation in, say, 2012q1. Would a policymaker do this?
- One could consider static forecasts (one-step ahead forecasts), where your inflation brain is rebooted.
 - Then, a model estimated up until 2007q4 does not look that bad

Comments: Static forecasts do not perform too bad

- It is hard to reject a unit root in core inflation
- I would therefore be executed at my department for even contemplating OLS in levels
- I therefore tried an estimation in first differences:

$$\Delta \pi_t = \Delta \pi_t^e + \alpha \Delta \left(u - u^* \right)_{t-1} + \Delta \epsilon_t$$

with π^e_t being backward looking but with estimated weights
And took it to the authors' dynamic forecast test

Comments: Estimation in differences

Dependent Variable: D(XPE) Method: Least Squares Date: 02/15/13 Time: 00:35 Sample (adjusted): 1959Q2 2012Q4 Included observations: 215 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.001009	0.038088	0.026478	0.9789
D(XPE(-1))	0.187876	0.119268	1.575240	0.1167
D(XPE(-2))	0.171731	0.076205	2.253543	0.0253
D(XPE(-3))	0.280224	0.061651	4.545338	0.0000
D(XPE(-4))	-0.387396	0.064996	-5.960341	0.0000
D(UNGAPSR(-1))	<mark>-0.348385</mark>	<mark>0.103766</mark>	<mark>-3.357396</mark>	0.0009
MA(1)	0.308939	0.132034	2.339844	0.0202
R-squared	<mark>0.403193</mark>	Mean dependent var		0.001144
Adjusted R-squared	0.385977	S.D. dependent var		0.544891
S.E. of regression	0.426975	Akaike info criterion		1.167832
Sum squared resid	37.91992	Schwarz criterion		1.277574
Log likelihood	-118.5419	Hannan-Quinn criter.		1.212173
F-statistic	23.42019	Durbin-Watson stat		1.979677
FTOD(T -Statistic)	0.000000			

Comments: Dynamic forecast for difference specification

Concluding comments

- A lot of interesting results is presented for a relationship that is crucial for monetary policymaking
- Some more structure, however, would be welcome to better distinguish the various competing theories
- Also, it could be valuable to reconsider expectations formation; as seen, different specifications change a lot
- I like the parsimonious approach, but since this is about forecasting, a better lag-structure could be considered (unemployment gap and inflation are positively correlated contemporaneously, but the gap *leads* inflation)
- For how long should an empirical model be expected to be able to do well in dynamic simulations?
 - The current relationship may very well "break down" (from a 2007q4 perspective) again in 2015 (or later); if so, then what?
- The approach take by the authors, however, is gutsy and makes the paper a very informative and stimulating read

Discussion by Henrik Jensen (Univ. of Cph.)