Lecture 2, November 20: **A Classical Model** (Galí, Chapter 2)
Introductory remarks

- The standard neoclassical model for (exogenous) economic growth is the simple Solow model featuring a fixed savings rate (no microfoundations)

- When extended with optimizing savings behavior, we get the Ramsey model
 - Heavily applied model in macroeconomics

- Models have no role for money and monetary policy

- Purpose of this lecture is to introduce money in such a classical model with microfoundations

- How will money and monetary policy affect the economy?
 - Does this type of “workhorse” model give implications and predictions that looks like the real world (so it could be a useful tool)?

- While the end result is not uplifting, we luckily learn a lot of material that are extremely useful in next lectures
A basic classical model

- **Goods market**
 - Demand side: Households consume (based on utility maximization)
 - Supply side: Firms produce consumption good (maximize profits under perfect competition)

- **Labor market**
 - Demand side: Firms hire labor (maximize profits under perfect competition)
 - Supply side: Households supply labor (based on utility maximization)

- **Financial markets**
 - Households optimally invest in a one-period risk-less bond
 - Households also hold money. Why? We just assume it for now

- *All* prices are perfectly flexible
Household behavior

• Household maximize expected utility

\[E_0 \sum_{t=0}^{\infty} \beta^t U(C_t, N_t), \quad 0 < \beta < 1. \]

(1)

• Budget constraint:

\[P_tC_t + Q_tB_t \leq B_{t-1} + W_tN_t - T_t \]

(2)

(and a No-Ponzi Game constraint ruling out explosive debt)

• Household chooses optimal paths of \(C_t, N_t \) and \(B_t \) (taking prices \(P_t, W_t \) and \(Q_t \) as given)

• Let’s solve its maximization problem using a Lagrangian method
\[
\frac{\partial L}{\partial C_t} = 0, \quad U_{c,t} - \lambda_t P_t = 0, \quad U_{c,t} = \lambda_t P_t \quad (*)
\]
\[
\frac{\partial L}{\partial N_t} = 0, \quad U_{n,t} + \lambda_t W_t = 0, \quad U_{n,t} = -\lambda_t W_t \quad (**) \]
\[
\frac{\partial L}{\partial B_t} = 0, \quad \lambda_t Q_t - \beta E_t \{\lambda_{t+1}\} = 0, \quad \lambda_t Q_t = \beta E_t \{\lambda_{t+1}\} \quad (***)
\]

- From (*) and (**):
\[
- \frac{U_{n,t}}{U_{c,t}} = \frac{W_t}{P_t} \quad (4)
\]
- From (*) and (***)
\[
Q_t = \beta E_t \left\{ \frac{U_{c,t+1}}{U_{c,t}} \frac{P_t}{P_{t+1}} \right\} \quad (5)
\]
- With \(U(C_t, N_t) \equiv \frac{C_t^{1-\sigma}}{1-\sigma} - \frac{N_t^\varphi}{1+\varphi}, \sigma, \varphi > 0, \)
\[
C^\sigma N_t^\varphi = \frac{W_t}{P_t} \quad (6)
\]
\[
Q_t = \beta E_t \left\{ \left(\frac{C_{t+1}}{C_t} \right)^{-\sigma} \frac{P_t}{P_{t+1}} \right\} \quad (7)
\]
- Log-linear versions of households’ optimality conditions (lower-case letters are logs or log-deviations from steady state)

- Labor supply:

\[\sigma c_t + \varphi n_t = w_t - p_t \] \hspace{1cm} (8)

- Bonds pay out 1 the period after the purchase at price \(Q_t \). Bond yield is:

\[\text{yield} = \frac{1 - Q_t}{Q_t} \]

\[1 + \text{yield} = Q_t^{-1} \]

\[\log (1 + \text{yield}) = - \log Q_t \]

\[\text{yield} \approx - \log Q_t \]

\[\equiv i_t \]

This is the nominal interest rate

- With this definition, consumption-Euler equation becomes:

\[c_t = E_t \{ c_{t+1} \} - \sigma^{-1} (i_t - E_t \{ \pi_{t+1} \} - \rho) \] \hspace{1cm} (9)

where \(\pi_{t+1} \equiv p_{t+1} - p_t \) and \(\rho \equiv - \log \beta \)

- Money demand is postulated (for now):

\[m_t - p_t = y_t - \eta i_t, \quad \eta > 0 \] \hspace{1cm} (10)
Firms’ behavior

• Production function for the representative firm
 \[Y_t = A_t N_t^{1-\alpha}, \quad 0 < \alpha < 1 \] (11)

• Profits in each period \(t \):
 \[P_t Y_t - W_t N_t \] (12)

• Firms choose \(N_t \) to maximize
 \[P_t A_t N_t^{1-\alpha} - W_t N_t \]

• First-order condition
 \[
 (1 - \alpha) P_t A_t N_t^{-\alpha} = W_t, \\
 (1 - \alpha) A_t N_t^{-\alpha} = \frac{W_t}{P_t} \] (13)

• Labor demand in logs:
 \[\log (1 - \alpha) + a_t - \alpha n_t = w_t - p_t \] (14)
Equilibrium outcomes

- Goods market clearing (or, resource constraint, or, national account):
 \[y_t = c_t \]
 (*)

- Labor market equilibrium (labor supply equals labor demand):
 \[\sigma c_t + \varphi n_t = \log (1 - \alpha) + a_t - \alpha n_t \]
 (**)

- Bond market clearing (household’s intertemporal consumption decision with goods market clearing)
 \[y_t = E_t \{ y_{t+1} \} - \sigma^{-1}(i_t - E_t \{ \pi_{t+1} \} - \rho) \]
 (***)

- Production function in the aggregate:
 \[y_t = a_t + (1 - \alpha) n_t \]
 (****)

(*) , (**) and (****) gives \(c_t, n_t \) and \(y_t \)

(***) gives subsequently the real interest rate \(r_t \equiv i_t - E_t \{ \pi_{t+1} \} \)
• Typical classical features: Real variables like consumption, output and employment (and thus the real wage) are determined from the economy’s supply side

• No role for monetary policy here
 – We haven’t used the money demand function at all
 – The real interest rate is determined independently of monetary factors
 – Any fluctuation in main macro variables will result from fluctuations in a_t

• We need not even say anything about the nominal interest rate or the price level
 – If we want to determine nominal variables, however, we must specify monetary policy
 Monetary policy and prices

The nominal interest rate as policy instrument

• Most central bank uses the nominal interest rate as policy instrument

• Model Problem: Specifying some exogenous path for the nominal interest rate in the model will not determine the price level. Note the “Fisherian relationship”:

\[E_t \{ \pi_{t+1} \} = i_t - r_t \]

where \(r_t \) is independent of monetary policy

• Hence, (a rational expectations difference equation)

\[E_t \{ p_{t+1} \} = p_t + i_t - r_t \]

\((*)\)

• We can now introduce a shock which has nothing to do with the economy, \(\xi_{t+1} : E_t \{ \xi_{t+1} \} = 0 \). Then any price level satisfying

\[p_{t+1} = p_t + i_t - r_t + \xi_{t+1} \]

is consistent with \((*)\).

• The price level is indeterminate

 – Likewise the money supply: \(m_t = p_t + y_t - \eta i_t \)

 – Likewise the nominal wage
• An exogenous path for the nominal interest rate does not help determine nominal variables in the classical model

• The problem is that the exogeneity leaves the economy without a “nominal anchor”

• A solution is to specify the nominal interest rate as a “feedback rule” where it is specified to be adjusted in response to some nominal variable

• One possibility (out of many!)

\[i_t = \rho + \phi_\pi \pi_t, \quad \phi_\pi > 0 \]

• From the Fisher equation:

\[\phi_\pi \pi_t = E_t \{ \pi_{t+1} \} + r_t - \rho = E_t \{ \pi_{t+1} \} + \hat{\pi}_t \] (22)

• If \(\phi_\pi > 1 \), we have a unique stationary (i.e., non-explosive) solution

\[\pi_t = \sum_{k=0}^{\infty} \phi_\pi^{-1+k} E_t \{ \hat{\pi}_{t+k} \} \] (23)

• If \(\phi_\pi < 1 \), we have that any path of \(\pi_t \) satisfying (24) is an equilibrium (so, we have indeterminacy)

\[\pi_{t+1} = \phi_\pi \pi_t - \hat{\pi}_{t+k} + \xi_{t+1} \] (24)
The Taylor Rule:

\[i_t = \alpha + 1.5 (\pi_t - \pi^*) + 0.5y_t \]

Note the “\(\phi_\pi > 1 \)” feature: This is the “Taylor principle”
The nominal money supply as policy instrument

- In this case the economy has a “nominal anchor”: Consider an exogenous path for m_t
- Combine the money demand equation and the Fisher equation

$$m_t - p_t = y_t - \eta \dot{y}_t$$

$$i_t = E_t \{p_{t+1} - p_t\} + r_t$$

$$p_t = -y_t + \eta (E_t \{p_{t+1} - p_t\} + r_t) + m_t$$

Hence,

$$p_t = \frac{\eta}{1+\eta} E_t p_{t+1} + \frac{1}{1+\eta} m_t + u_t$$

$$u_t \equiv \frac{1}{1+\eta} (\eta r_t - y_t) \text{ (independent of monetary policy)}$$

- Since $\eta > 0$ we have a unique stationary (i.e., non-explosive) solution

$$p_t = \frac{1}{1+\eta} \sum_{k=0}^{\infty} \left(\frac{\eta}{1+\eta} \right)^k E_t \{m_{t+k}\} + u'_t$$

$$u'_t \equiv \sum_{k=0}^{\infty} \left(\frac{\eta}{1+\eta} \right)^k E_t \{u_{t+k}\} \text{ (independent of monetary policy)}$$
• In terms of expected future money growth

\[p_t = m_t + \sum_{k=1}^{\infty} \left(\frac{\eta}{1 + \eta} \right)^k E_t \{ \Delta m_{t+k} \} + u'_t \]

(25)

(where \(\Delta \) is first difference operator)

• For given expected money growth, prices move one for one with the money supply

• The nominal interest rate is found by inserting (25) into the money demand function

\[i_t = \eta^{-1} (y_t - m_t + p_t) = \eta^{-1} \sum_{k=1}^{\infty} \left(\frac{\eta}{1 + \eta} \right)^k E_t \{ \Delta m_{t+k} \} + u''_t \]

\[u''_t = \eta^{-1} (y_t + u'_t) \] (independent of monetary policy)

• The nominal interest rate increases with expected future money growth
An example of a process for nominal money growth

• Let

\[\Delta m_t = \rho_m \Delta m_{t-1} + \varepsilon_t^m \]

• Assume no real shocks (hence \(y_t \) and \(r_t \) does not move; assume they are zero)

• Solution for prices and nominal interest rate

\[p_t = m_t + \frac{\eta \rho_m}{1 + \eta (1 - \rho_m)} \Delta m_t, \]
\[i_t = \frac{\rho_m}{1 + \eta (1 - \rho_m)} \Delta m_t \]

• If money growth is persistent there are large effects on prices and positive effect on interest rates

 – No liquidity effect; i.e., an expansionary money growth shock increases the nominal interest rate
 (and real money falls equivalently)
Do all classical models leave monetary policy “useless”?

- No
- While *money neutrality prevails*, many models with flexible prices can have effects of monetary policy through variations in inflation and the nominal interest rate
 - There will not be monetary *superneutrality*

- Galí presents a model where money enters the utility function
 \[U = U (C_t, M_t, N_t) \]

- Short cut for money’s liquidity services (e.g., saved leisure)
- The model features a micro-founded money demand relation just as postulated before
- Labor supply can now be affected by changes in the nominal interest rate:
 \[\frac{U_{n,t}}{U_{c,t}} = \frac{W_t}{P_t} \]
 is affected if marginal rate of substitution is affected by money
Dynamic effects of money shocks in a classical money-in-the utility function (from Walsh, 2010)

- To assess the quantitative effects of money shocks, a money-in-the-utility function model is calibrated and simulated

 Calibration: Assign empirically plausible values to the parameters of the model

 Simulation:

 - Perform a linearization of the model’s dynamic equations (everything is expressed as percentage deviations from steady state);

 - solve this system by numerical methods (various simulation programs are available on the internet);

 - create artificial time series data from the system

- From the artificial data, one evaluates the properties of the model in terms of:

 - Standard deviations of various relevant variables, and their s.d. relative to output

 - Correlation coefficients of various variables with output

 - Impulse response patterns of variables when shocks hit
• Main results (when $U_{cm} > 0$)

- Steady-state non-superneutrality is of the form of: Higher money growth \Rightarrow higher inflation and nominal interest rate \Rightarrow lower money demand \Rightarrow lower marginal utility of consumption \Rightarrow lower labor supply \Rightarrow output

- If money growth shocks, ε^m_t, shall pay a role, persistence in money growth is necessary ($\rho_m > 0$ is needed). Then, the shock will affects expected next-period inflation, and thus — through the Fisher equation — period t nominal interest rate.

- The effects of money shocks on labor and output are stronger the more persistence in money growth, but the effects are quantitatively very small (nothing compared to what we saw from VARs)

- Main effects of money shocks are on inflation and nominal interest rates

- Positive money shocks lead to higher nominal interest rates. In contrast with liquidity effect seen in VARs (and in contrast with usual IS/LM story where nominal rates fall to increase money demand). Reason is flexible prices:
 * Prices adjust instantaneously so as to reduce real money supply, matching the fall in demand resulting from higher nominal interest rates.
Figure 2.3
Response of output and employment to a positive money growth shock.

Figure 2.4
Response of the nominal interest rate to a positive money growth shock.

Summary

- The classical model has little role for money in determination of real variables
- It should be seen as a model of the long run, or, the average hypothetical evolution of the economy
- I.e., it is important as a benchmark for showing the efficient allocation in a micro-founded economy (i.e., an ideal, but unrealistic, world)
- Some, like the money-in-the-utility function model can be used to assess the optimal long-run inflation rate
 - Optimum: \(U_m = 0 \). This requires \(1 - \exp \{-i\} = 0 \) [cf. eq. (28)], or simply \(i = 0 \) and thus \(\pi = -r \)
 - The Friedman rule; private opportunity cost of money is equal to social costs (zero)

- Model is not suitable for analyzing the short run implications of monetary shocks as the models, by nature, exhibits monetary neutrality (although not necessarily superneutrality). Impulse response patterns are unrealistic, even when there are effects on real variables
- Short and long run are virtually indistinguishable
- To remedy the short-run failure of such models, one must introduce nominal rigidities; This is the aim of New Keynesian Theory
Next time

Monday, November 26:
Lectures: The Basic New Keynesian Model (Galí, 2008, Chapter 3)