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1. Introduction

Following Kydland and Prescott (1977) and Calvo (1978), credibility of monetary policy
has received enormous attention. These authors demonstrated the time-inconsistency of an
ex ante optimal policy plan when policymakers have both the opportunity and the incentive
to deviate from the plan after private-sector expectations are formed. In consequence, in
these circumstances, the plan lacks credibility. The most celebrated example of this sort
is the Barro and Gordon (1983) (BG) policy game wherein the monetary authority has
the incentive to decrease unemployment through surprise inflation by exploiting a short-
run Phillips-curve relationship. Under rational expectations, however, this incentive is
anticipated and the economy ends up with an inflation bias. Despite its simplicity, this
model highlights a basic problem, namely how can the monetary authority overcome time-
inconsistency and secure credibility of efficient monetary policy?*

Since policy interactions are rarely of a one-shot nature, an appealing resolution of this
problem acknowledges that if the immediate gain of deviation does not outweigh the (dis-
counted) future costs associated with lost credibility, the optimal plan becomes credible.
This conforms with well-known folk theorem results of infinitely repeated game theory
which state that when players are sufficiently patient, efficient outcomes are attainable in
a non-cooperative equilibrium.? BG also demonstrated this asymptotic efficiency using a
particularly simple folk theorem where the loss of credibility following deviation reflects
a reversion to the Nash equilibrium of the stage game — featuring the inflation bias —
for a number of periods. This so-called Nash punishment has appeal for a number of
reasons. It is simple and credible (players are willing to carry it out when required), and
most importantly, in models where the “punishment” involves the private sector chang-
ing expectations, it is a natural “focal point” for expectations formation. It is therefore
not surprising that the vast literature on folk theorem resolutions of time-inconsistency
problems has mostly focused on the resulting Nash-threats equilibria (NTE). For example,
al-Nowaihi and Levine (1994), Ball (1995), Ellis and Holden (1997), Herrendorf (1997),
Horn and Persson (1988) all confirm, in variants of the BG model, asymptotic efficiency
of NTE in monetary policy.?

It is the purpose of this paper to demonstrate that this widely applied resolution may

not work if the basic BG model is extended in a natural and empirically relevant way. More

!See Persson and Tabellini (1999) for a recent survey of the literature that followed BG, and Ireland
(1999) for recent econometric evidence for a BG based explanation of inflation in the US for the period
1960-97.

2See, e.g., Friedman (1971) and Fudenberg and Maskin (1986).

3The focus on NTE is not confined to the monetary credibility literature. It is a feature of most macroe-
conomic models of strategic interaction, where folk theorem arguments rationalize efficient equilibria.



specifically, we show that optimal monetary policy may never be achievable through Nash
punishment, even if the monetary authority becomes arbitrarily patient. I.e., asymptotic
inefficiency prevails. The extension we consider is to allow for unemployment persistence,
which seems hardly questionable given the unemployment experience of Western economies
in past decades (see, e.g., Layard et al., 1995). Indeed, one could argue that given the
autoregressive behavior of output and unemployment in Western economies, studying the
static version of the BG model is inappropriate.

Unemployment persistence introduces a state variable (lagged unemployment) into the
game which transforms it from a purely repeated game to a dynamic game. This change
is crucial for folk theorem arguments. The reason is that when a state variable is present,
players have an additional incentive to deviate from an agreed sequence of actions, apart
from that pertaining to the immediate gain. In particular, through deviation, a player can
affect the state variable so as to weaken the effect of the subsequent punishment. This is
the incentive for state manipulation (cf. Dutta, 1995).

In our setting, the monetary authority has this incentive. To see this, note that in a
dynamic game, the Nash punishment is reversion to the Markov-perfect equilibrium of the
policy game for a number of periods. As shown by Lockwood and Philippopoulos (1994)
the inflation bias in this Markov-perfect equilibrium is state-dependent in the sense that
lower lagged unemployment implies a lower current inflation bias, and therefore a higher
payoff in the Markov-perfect equilibrium.

Now suppose that the monetary authority deviates from an agreed level of inflation,
thus reducing current unemployment. Due to persistence, this also reduces unemployment
in subsequent periods, and thereby future inflation biases which, in effect, dampens the
punishment. So, the authority clearly has an additional incentive to reduce current unem-
ployment by increasing inflation in comparison with the conventional BG model without
persistence. As we show, this state manipulation incentive may be strong enough to cause
asymptotic inefficiency.*

Note that the above arguments imply that the incentive for state manipulation will
be stronger, the less inflation-averse the authority is, as the cost of state manipulation
— higher current inflation — then is lower. This also turns out to be the case, as our
main result, Proposition 1, shows that asymptotic inefficiency occurs when the monetary
authority is not too inflation averse. Hence, such an authority, no matter how patient it

is, can never credibly reduce inflation to the socially optimal level.

4Moreover, we show by a numerical example that the monetary authority may not even get close to
the optimal policy in a NTE as discounting becomes arbitrarily low, i.e., the magnitude of the asymptotic
inefficiency may be quite significant.



Folk theorem resolutions have been rightfully criticized on a number of grounds.® Per-
haps for these reasons, much recent research on monetary credibility has instead taken an
“institutional approach” where various incentive schemes for independent central bankers
are examined (this line of research originated with Rogoff, 1985). As argued by McCallum
(1995), however, these delegation theories do not provide a satisfying resolution of credi-
bility problems. The reason is that the government always has the incentive to change the
delegation scheme after expectations have been formed. Hence, the credibility problem is
merely “relocated” from the monetary policymaking stage to the delegation stage. The
need for examining explicit precommitment technologies — like folk theorem resolutions
— therefore remains. Some work on folk theorem resolutions in delegation models with-
out unemployment persistence has already emerged, see al-Nowaihi and Levine (1996),
Herrendorf (1998) and Jensen (1997), but all within purely repeated game frameworks.

In view of this, it is evident that our results should be of broad interest for the resolution
of time-inconsistency problems in monetary policy. In general, our results provide an
alternative reason (apart from the “expectations coordination” and multiplicity problems
referred to in Footnote 5) why it may not be possible to achieve credible monetary policy
via folk theorem mechanisms. In particular, our model thus predicts that patience (which
could be interpreted a high degree of stability in policymaking, see, e.g., Cukierman, et
al., 1992) is no guarantee for credibility when unemployment persists. Hence, it seems
that one cannot escape the simple fact that solving credibility problems must involve
attacking them at their source, which in the BG model is the structural inefficiencies
causing unemployment problems.°

The rest of the paper is organized as follows. The model and associated dynamic
game are presented in Section 2 which also characterizes the dynamic equivalent of stage
game equilibrium, Markov-perfect equilibrium. The properties of NTE are then presented
in section 3 which contains our main result. Sections 4.1 and 4.2 study two important
extensions of the basic model in order to assess the robustness of the main result. Section

5 concludes, and the Appendix contains some proofs.

SFirst, Nash punishment supports multiple policies ranging from the optimal to the inefficient stage-
game Nash equilibrium policy. This multiplicity, of course, limits the model’s predictive properties. A
second, and related point, is how the private sector — presumably a pool of atomistic individuals —
manages to coordinate expectations; not only concerning which NTE inflation rate will prevail, but also
with respect to, for example, the duration of the potential punishment (this underlines the ad hoc property
of the “focal point” argument mentioned in the main text). See Rogoff (1989) for a detailed discussion.

6 Alternatively, one must search for equilibria building on more “severe punishments” than Nash (cf.
Abreu, 1988). We discuss this issue further in the concluding section.



2. The Model

2.1. The dynamic game

The model is a dynamic version of the BG model as developed by Lockwood and Philip-
popoulos (1994). There are two agents, an authority responsible for monetary policy (the
MA), and the private sector (PS), which sets the nominal wage. The interaction between
these two evolves over an infinite number of periods, t = 1,2, ...,00. Within a period, the
order of events is as follows. First, the PS sets the (log of) the nominal wage, w;. Then,
having observed w;, the MA sets the (log of) the price level p; hence determining the real
wage. Finally, the log of employment /; is determined from the labor demand relationship
by = —B(wy — py), B> 0.

It is well known that in this setting, at ¢ the actions of the MA and PS can be taken
to be actual and expected rates of inflation 7, 7§, respectively. The relationship between
these actions and (un)employment at time ¢ depends on the PS’s objectives in wage-setting.
We assume the following about these objectives. At t, the PS has an employment target
ly, i.e., its per-period loss is (¢; — ¢;)?. Following, e.g., Blanchard and Summers (1986),
the target is assumed to be a convex combination of (log of) the labor force, n, and last
period’s employed, ¢,_; (the “insiders”): ¢, = pl,_1 + (1 — p)n. A positive weight 0 < p < 1
on /; ; indicates “insider power,” i.e., that insiders have a disproportionate influence on
wage-setting. The PS will then set the nominal wage to minimize (¢; — ét)2, given the labor
demand schedule and its expectation of the price level, pf, i.e., wy = pf — /, /3. Inserting
this wage back into the labor demand schedule, then enables us to write unemployment,

u =n— ¥ as
w = pug_q — B(my — 7)), t=1,2...;00, wug >0 given, (1)

pf — pr—1. Note that p parameterizes the persistence of

where ™, = p; — pr1, T
unemployment.

It remains to specify the preferences of the two agents over sequences of unemploy-
ment, inflation, and expected inflation, (u;, 7, 7¢)7°,. As usual in this literature these are

expressed in terms of quadratic loss functions. The loss of the MA is:

LA %(1 —8) >0 0 [u + A @)

t=1

This function implies that the MA in any period dislikes either unemployment or inflation

different from zero (including some particular optimal value for the inflation rate would



not add anything to our analysis). Parameter A > 0 quantifies the MA’s relative concern
for inflation and unemployment objectives, i.e., it is a measure of its degree of inflation
aversion. The discount factor is 0 < ¢ < 1. Finally, the loss of the PS is as follows. Using

2 so ignoring the constant

(1), its per-period loss can be written (¢, — £,)% = 3*(m;, — 7%)
(2, we get

LPs = %(1 ) iét‘l(m s 3)

Equations (1)-(3) fully describe the discrete-time dynamic monetary policy game with
state variable u;_;.” Note that the specification of L implies that the best response of
the PS to m; at ¢ is w§ = m,. This rational expectations property is assumed to hold in any
equilibrium to be considered, and it is then clear by (3) that in equilibrium L = 0. The
interesting differences across equilibria will therefore be in terms of inflation performance
(in that respect our model does not differ from the purely repeated game), so we can focus

on the behavior of the MA, and for simplicity we define L4 = L.

2.2. Inflation rules

In what follows, we want to examine which sequences of inflation rates can be sustained
as a NTE. We restrict attention to proportional inflation rules where inflation is a time-
invariant, linear function of the state variable, i.e., m; = mu;_1 where 7 characterizes the
rule.® In a rational expectations equilibrium it follows from (1) that u; = pu;_;, and the
equilibrium loss to the MA in any period ¢ from an inflation rule 7, given state u,_1, is
therefore, by (2), given as:

p? 4+ Ar?

1 > 1
LM (mups) = (1 - 8)y 6 [U? + AW?} =5(1— 5)1_—5'02’%_1- (4)
t=1

2

It follows immediately from (4) that the optimal inflation rule for the MA is = = 0, which
is not surprising in a rational expectations model where equilibrium unemployment evolves
independently of actual inflation. Hence, L"(0;u;_1) is the efficient loss for the MA.

But as is well known, behavior leading to this loss may not be credible due to the MA’s
incentives to reduce unemployment by raising inflation once inflation expectations have
been set. Given the infinite horizon of the model, conventional folk theorem arguments of

purely repeated games suggest that m = 0 can be credible (supported in a NTE), and we

"As is by now well known, different preferences of the MA and PS are not necessary to generate a
time-inconsistency problem in monetary policy. See, e.g., Ireland (1997) or Neiss (1999) for micro-founded
models with a benevolent monetary authority where an inflation bias also arises.

8 As the focus of this paper is on the zero inflation rule, this is without loss of generality as this rule is
certainly proportional.



are therefore mainly interested in establishing the conditions for which this may or may
not be true in this dynamic model. In order to do this, we turn to the specification of the

punishment phase of the game.

2.3. Markov-perfect equilibrium

In the purely repeated game version of the model, the punishment in the NTE is a rever-
sion to the perfect Nash equilibrium of the stage game for T periods. In a dynamic game,
however, there is no well-defined stage game, but the natural corresponding Nash punish-
ment is reversion to Markov-perfect Nash equilibrium (MPE) behavior for T' periods.”1
Note that we, by definition, rule out any coordination problems in expectations formation
and we are thereby in agreement with Stokey (1989) in assuming that the form and length
of punishment by the private sector following deviant behavior of the MA is an exogenous
characteristic of private sector agents. Our ensuing results on potential asymptotic ineffi-
ciency will therefore not rest on the various forms of coordination failures in the private
sector’s behavior.

We now consider the MPE of a T-period game, starting in period ¢, with initial level of
unemployment u,_;. Equilibrium behavior of the MA is described by a reaction function

m¢(7$) defined as

(7w 1) = argrmin {% (1 —6) [u? + Ar?] + 6Lp_1(ug) s.t. (1), 7¢ given} , T >1.
t (5)
That is, m(7¢,u;_1) is the value of 7, that minimizes the present value of losses to the
MA, given that losses from ¢+ 1 onwards are Ly 1(u;), where Ly 1 (u;) is the present value
of future losses to the MA in a T'— 1-period MPE, given u;. Due to the linear-quadratic

structure of the model, we can take Ly (u;) to be quadratic:

Ly(ug) = Zu?, (6)

where v, > 0 is a parameter to be determined. We can now find the conditions charac-
terizing the MPE. It is helpful to proceed in two stages. First, find equilibrium behavior

conditional on ;. Secondly, solve for 7.

This is also the position of Cave (1987) in a dynamic game of resource extraction. He refers to the
MPE as the status quo ante, and argues that it has a natural credibility as a disagreement point in an
underlying bargain (one which, of course, is only implicit in our model). This argument is strengthened
by the fact that the MPE in our model is unique (see below) and therefore is a good prediction of the
consequences of disagreement.

9Tn a MPE, current actions (7, 7¢) are constrained only to depend on the history of play though the
current value of the state, u;—1; see, e.g., Fudenberg and Tirole (1991) for a more rigorous definition.

6



Performing the minimization in (5), we obtain inflation as a function of the state
variable and expected inflation. Using that nf = m;, cf. Section 2.1, we then derive the

MA'’s equilibrium behavior, conditional on v, ;, as

= m(ug) = gyT_lput_b T>1, (7)

where yr 1 =1+ 7v4_,6/(1 — 6) > 0. Note that when u; y > 0, m, > 0, i.e., the MPE is
characterized by the familiar inflation bias due to the MA’s ex post incentive to produce
“surprise” inflation as in the non-dynamic BG model. Note that in this dynamic model,
the bias is state-dependent as it increases with u;_;. This is because higher unemployment
inherited from the past increases the marginal benefit of an inflation surprise, thus leading
to a higher equilibrium inflation rate. The second stage is to solve for yr (and thus ;).

In appendix A it is demonstrated that whenever

2 2
(12> 422 (A1)
holds, a unique solution to y; exists for all 6. We therefore assume (A1) in what follows.
Moreover, if a mild requirement on 7 is satisfied (one that does not bind when 7 = 0; the

case we will be most interested in), the solution to yr is unique and bounded for all 6, T'.

3. Nash-threats equilibria

Now we examine in detail which inflation rules can be supported by Nash punishments,
i.e., be part of a NTE. Clearly, a rule 7w is a NTE rule if it does not pay for the MA
to deviate from it, given that a deviation at ¢ is punished by reversion to a MPE for T’
periods, followed by reversion to the rule at ¢ +7 4 1 and onwards. To characterize such
rules, the minimal loss from deviation must be calculated, and it suffices to consider the
minimal loss from a one-shot deviation at t. We can express this minimal loss as a function
of the inflation rule and the state variable as follows:

Ld(ﬂ'; Ut_1> = min {%(1 — 6) {U? + /\QO%} + 5LT(U7§> + 5T+1L7‘(7T; pTUt)

Pt

s.b. ug = pug 1+ B(mug1 — ) } ; (8)

where we have used the fact that a deviation at ¢ will imply unemployment of p”u; at t+7.
Carrying out the minimization in (8), using (4) and (6), we find after some calculations

(available upon request) that
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Limu ) — - 200 (hw) a2, ©)

2 A+ B2r \ B
. §p2) T 4 §TH 2T A2
g = yps O 1_5p2p > 0. (10)

So, m¥TE ¢ 11 is a NTE rule if the loss from the rule does not exceed the loss from deviation

at any period of the game (i.e., at any value of the state variable), i.e., iff
LM (a8, ) < LHANTE ), u = plug, allt =1,2, ... (11)

Using (4) and (9), simplifying and cancelling terms in (11), allows us to rewrite the con-

dition for 7 to be a NTE rule as:

Ar(ﬂ_NTE)

2
Pt (WNTE) < /\62@T P 4 g NTE ’ — Ad( NTE
>~ 2 ~ - ™ = (7T ) (12)

1—op? A B7yr \B

With this simplification, we can state our main result:

Proposition 1. Suppose that the MA is not too inflation averse, A < [3°. Then, no matter
how long the punishment period, and no matter how little discounting, any NTFE inflation

rule is uniformly bounded above zero, i.e., for some € > 0, T™NTE > ¢, all 6, all T.

Proof. See Appendix B. B

The proposition shows that no matter how long the punishment period is and no matter
the degree of patience of the MA, then the zero inflation rule cannot be attained through
Nash punishments. As a corollary, the MA’s loss can never approach the efficient loss.
So not even in the case where 6 — 1 will zero inflation be credible. The presence of
such asymptotic inefficiency is strikingly different to the results of BG and others (cf. the
references in the Introduction), where the efficient inflation rule is attainable (at least)
asymptotically as & — 1 for some periods of Nash punishment.

As stressed in the Introduction, the failure of Nash punishments in our model is caused
by the dynamic nature of the game and the associated state manipulation incentive. In
particular, in this game, if the MA deviates at ¢, this has consequences not only for
unemployment at ¢ as in the conventional non-dynamic case, but it will also affect the
loss during the punishment phase, Ly (u;), as current unemployment is next period’s state
variable. And since Ly (u;) is an increasing function of w, cf. (6) [because the inflation
bias in MPE increases, cf. (7)], the MA has a state manipulation incentive to reduce

unemployment at ¢, in addition to the incentive to deviate for immediate gain. As this

8



Parameter deviation || None | 3=03| =01 |p=06|p=04|A=15|A=0.5
gNTE [ MPE 0.48 0.45 0.49 0.25 0.66 0.49 0.46

The ratio of lowest NTE inflation tule to the MPE inflation rule for a baseline parameter
set, 63=0.2,p=05, A=1,6 — 1, T — o0, as well as deviations.

Table 1: Lowest NTE inflation rule vs. MPE inflation rule

incentive becomes stronger to more the MA cares about the future, it follows that a higher
value of 6 increases the temptation to deviate as well as the punishment. This is in contrast
to the purely repeated game where the temptation to deviate is independent of . The
proposition thus shows that if A < (3%, the state manipulation incentive is sufficiently
strong such that the punishment never deters deviation.

This condition has a natural interpretation. To reduce wu,, inflation has to be increased
at a marginal cost proportional to A. Moreover, from (1), the benefit in terms of reduced
unemployment, from a given increase in inflation is proportional to 4?. Our result thus
says that if the marginal cost of state manipulation is low enough relative to the benefit,
the incentive for state manipulation dominates the loss from punishment even as 6 — 1.

It should be noted, however, that in the proof we have not used any knowledge about
the relationship between the model’s parameters and §r; indeed the condition A < 3* is
only a sufficient condition for asymptotic inefficiency. To emphasize this, we present a
numerical example which also serves the purpose of quantifying the difference between the
smallest NTE inflation rule, denoted 7™¥7*, and the MPE inflation rule, denoted 7M.
This example therefore reveals whether the MA is “close” or “far” from attaining the
socially optimal rate of inflation of zero, as it quantifies the magnitude of the maximal
inflation reduction through Nash punishments. The example is constructed so as to give
Nash punishments as much deterrent force as possible: we consider the case of T' — oo
and § — 1.1 Table 1 shows the ratio 7V /mMPE for a baseline parameter set as well as
for some deviations.

As is clear from the table, in all the reported cases, asymptotic inefficiency is not trivial.
The largest possible inflation reduction from the MPE is 75 percent, but for most parameter
configurations the reduction is only around 50 percent. So Proposition 1 does not describe
inefficiency of negligible quantitative importance. Moreover, as the simulations indicate,
we can have asymptotic inefficiency even when A > 3%, which emphasizes that the condition

stated in the proposition is merely sufficient, not necessary.

UThis also simplifies computation of MPE since imr_,o J7 = lim7_oo y7 =y~ (cf. (10) and Section
2.3) which is independent of w. Then, (12) reduces to comparing two quadratic expressions in 7, and when
evaluating (12) with equality, one obtains two roots corresponding, respectively, to the lowest 7 in NTE
and the highest, which will be the MPE rule.



4. Extensions

The particular economic model used in the previous sections, i.e., the unemployment equa-
tion, (1), can be extended in at least two directions, both of which have been extensively
studied in the literature of the non-dynamic versions of this policy game. This section
considers these two extensions in turn. In doing so, we can evaluate the robustness of the
main result of the previous section. Moreover, the first extension allows a more immediate
comparison with the purely repeated game than is possible with the simple game analyzed

in Sections 2 and 3.

4.1. Long-run disagreements

A special feature of our model is that the wage-setters are assumed to care about a target
level of employment, which is a convex combination of the labor force and last period’s
employment level. Although this is a standard assumption in the literature on “insiders

” it is also rather special. The reason is that in this setting, as t — oo, the

and outsiders,
employment target of the wage-setters approximates the MA’s target of no unemployment.
So, asymptotically, there is no “disagreement” between wage-setters and the MA over
the appropriate level of unemployment. In other words, the long run natural rate of
unemployment is considered optimal by the MA. Although this could be justified as a
plausible long-run scenario, it implies that without persistence, the model does not reduce
to the standard BG model where disagreements last forever. Instead, it collapses to a
special (and uninteresting) case where wage-setters in any period aim for the same level of
unemployment as the MA (zero). Then there will be no incentives for the MA to inflate,
and the time-inconsistency problem disappears. Hence, direct comparison with the well-
understood non-dynamic case is somewhat problematic. We therefore extend the model
so as to capture a long-run disagreement over unemployment between the two players.
This will further emphasize the role of unemployment persistence in causing asymptotic
inefficiency as well as reveal an unfavorable trade-off between credibility of monetary policy
and long-run unemployment problems.

A long-run disagreement is incorporated by changing (1) to:'?

u = (1= p)up, + puy—y — B(my — mj), t=1,2...,00, u, >0, wug>0given. (13)

12The process (13) can, e.g., be rationalized by a model where wage setters also have a real wage target
that is incompatible with full employment, i.e., the target wage is too high, see, e.g., Lockwood et al.
(1998). Alternatively, the process arises if wage-setters have an employment target covering only some
part of the total labor force (say, union members).

10



Clearly, in a rational expectations equilibrium, as t — oo, unemployment now converges
to u,, which thereby measures the difference between the wage-setters’ long-run unemploy-
ment target and the MA’s target of zero. The question is now how this affect our results
on asymptotic inefficiency in the associated dynamic game.

To set the scene for our answer, note first that if p = 0, the dynamic game with state
equation (13) reduces to a standard purely repeated game of the type studied by BG.
In this case, the MPE is simply the Nash equilibrium of the stage game which is easily
calculated to be m; = 7§ = (8/\) uy,. The punishment triggered by deviation from a rule
7 is therefore (3/A) u,, for T' periods. In this case, it is possible to prove that one-period

punishments suffice to enforce the zero inflation rule when ¢ is large enough:

Proposition 2. In the purely repeated game, p = 0, with unemployment given by (13),
then whatever the length of the punishment period (T > 1) there exists a 6 < 1 such that
for all 6 > 6, m = 0 is a NTE rule.

Proof. See Appendix C. R

Without any dynamic link between periods, there is, of course, no incentive for state
manipulation, as the future punishment will be independent of current actions. So, as the
proposition shows, without state manipulation, Nash punishments are very effective: even
the threat of reverting to the MPE for just one period is sufficient to deter deviation from
optimal monetary policy if the MA is sufficiently patient.

We now show that with even a small amount of persistence, this picture becomes
dramatically different. Specifically, we prove that if p > 0, for a fixed punishment period,
no matter how long, there exists a value of u,, small enough so that zero inflation may not

be a NTE outcome, for any value of . Formally:

Proposition 3. Consider the dynamic game, p > 0, with unemployment given by (13),
and suppose that the MA is not too inflation averse, A < (3*. For any given T, if uy, /ug
is small enough, then any NTE inflation rule is bounded above zero, uniformly in the

discount factor, i.e., for some ¢ > 0, 7NTE > ¢, all 6.
Proof. See Appendix D. R

So, in the case of long-run disagreements over the appropriate unemployment rate we can
also have asymptotic inefficiency, i.e., optimal monetary policy may not be part of a NTE
for any length of punishment, even if the MA does not discount the future at all. The

intuition is qualitatively the same as in the case without any long-run disagreement. The

11



dynamic structure of the game implies an incentive for state manipulation, which may not
be deterred by Nash punishments even for 6 — 1. This is in stark contrast with the purely
repeated game where asymptotic efficiency always applies, cf. Proposition 2.

As seen from Proposition 3, we need one more condition in order to have asymptotic
inefficiency in comparison with the case made by Proposition 1; namely that w, /uy must
be small. This has an immediate and intuitive explanation. First note that when un-
employment follows (13) instead of (1), the MPE inflation rate will not just depend on
u; 1 (state-dependent inflation bias). It now includes a constant part in w, reflecting a
permanent inflation bias due to the long-run disagreement over unemployment. This per-
manent bias is, of course, increasing in u,,, and can by its nature not be affected through
state manipulation. Hence, the higher permanent bias relative to the state-dependent bias,
quantified by u;_1, the smaller is the MA’s scope for state manipulation, and the more
deterrent are Nash punishments. So, asymptotic inefficiency due to state manipulation
occurs when u,, is small relative to u,_;. A necessary condition for this is that wu, is small
relative to ug. (Along the equilibrium path, if uy > u,, then ug > w1 > up, t > 1, so
up/ue 1 < €, some t, implies u,, /ug < €. So, u,/ug small is necessary.)

This condition reveals a rather unfavorable trade-off in policymaking. Imagine that
Uy, is a variable which the authorities can control, say, through some labor market policy.
Then, removing long-run distortions, i.e., setting u,, = 0 may be good for unemployment,
but detrimental for credibility of monetary policy as revealed by Proposition 1. Setting
u, at some relative high value will obviously be unfavorable in terms of unemployment,
but as revealed by Proposition 3, it may be conducive for credibility of optimal monetary
policy. Alternatively, if u,, cannot be considered a choice variable, the result implies that
only economies where current unemployment conditions are sufficiently favorable (a low
value of ug) will be capable of pursuing a credible low inflation policy — a feature which

does not seem entirely at odds with what is observed in reality.

4.2. Supply shocks and state-contingent rules
We also consider another natural extension of (1), namely the introduction of supply
shocks. With a supply shock, equation (1) becomes

up = pug 1 — B(my —mf) e, t=1,2...,00, up> 0 given, (14)

where ¢, is an i.i.d. shock with mean zero and variance o which hits the economy after
inflation expectations have been formed. We furthermore assume that ¢; is bounded. Oth-

erwise, as is well-known, cooperative agreements may break down even in purely repeated
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games as particularly extreme realizations of the shock cause the gain from deviation to
be insurmountable (see, e.g., Canzoneri and Henderson, 1988).

We now proceed by showing that the MA cannot achieve its most preferred inflation
rule as an outcome of the NTE, no matter how high 6. Due to the model’s linear-quadratic
structure, we can restrict attention to rules of the form m;(e;) = mu; 1 + se;, where s is a
stabilization coefficient. Clearly, whatever s, m = 0 is optimal for the MA, so we still focus
on m = 0 in what follows. Given m = 0, what is the efficient stabilization coefficient with
unemployment dynamics? Let E; be the expectation conditional on {87}221. Then, the

loss of the rule from the beginning of period ¢ is given by

L' (s;us—1) = % (1—8)E1 ) 6" [uz + /\7‘('72_} ,
T=t
1 P’ 2 1 1 2 2| 2
= —(1-8—L— = 1- . 1
2( 5)1—6p2ut1+2l1—5,02( Bs)+ As”| o (15)

It follows from (15) that the s minimizing L"(s;u, ;) is " = 3/ {62 + (1 — 6p2)}. Note
that this is increasing in persistence as a given shock to unemployment then has more severe
consequences for future unemployment thereby necessitating a stronger policy response (for
more discussion, see Lockwood et al., 1998).

We now ask whether the optimal rule m(g;) = s"¢; achievable as the outcome of a
NTE for some 6. The following proposition shows that this may not be the case no matter

what the value of §, and is thereby a generalization of Proposition 1 to the case of supply
shocks.

Proposition 4. Let unemployment be given by (14), and suppose that the MA is not too
inflation averse, A < (3*. For any given T, there is a o/ug small enough, such that the

inflation rule 7i(e;) = s"e; is not an NTE rule, no matter what the discount factor.
Proof. See Appendix E. B

So, in the presence of supply shocks, we may also have asymptotic inefficiency of monetary
policy. But just as the introduction of a long-run disagreement over unemployment rates
introduced an additional requirement for asymptotic inefficiency, so does the introduction
of shocks. In comparison with Proposition 1, we see from Proposition 4 that o/uy must
be small. This also has an intuitive explanation. The MPE inflation rate will contain a
stabilization component which is different from s"¢;. More specifically, stabilization will
be too high in the MPE as the MA has an additional incentive to reduce the impact of a

shock when it knows that the equilibrium features a future inflation bias which depends on
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current stabilization efforts. In consequence, inflation becomes too volatile in comparison
with the optimal rule (cf. Lockwood et al., 1998).

It is important to note that this inefficient response is a function of the shocks hitting
the economy, not of the particular level of unemployment, i.e., the particular value of
the state. Therefore, the MA cannot manipulate this future “excess inflation volatility”
through deviation. Hence, the higher the variability of shocks, o2, the more deterrent is
the MPE as a punishment in expected value. So it follows that asymptotic inefficiency
due to state manipulation occurs when o is small relative to ug as the latter quantifies the

state-dependent inflation bias, and thus the incentive for state manipulation.

5. Concluding comments

In this paper we have demonstrated that a simple — and widely applied — folk theorem of
repeated games may not apply in the conventional monetary policy game put forth by BG,
when we amend it with unemployment persistence. The presence of dynamics is shown
to generate an incentive for state manipulation. This additional incentive, not present in
purely repeated games, may result in failure to sustain the efficient outcome as an NTE
even when players do not discount the future at all.

We have focused on NTE, where the punishment is reversion to a MPE of the game.
This has been motivated on the grounds that NTE has been predominant in most of the
literature on folk theorem resolutions of the monetary credibility problem. It is, however, as
briefly mentioned in the Introduction, conceivable that there exist more severe punishments
that allow zero inflation as an equilibrium outcome as § — 1 (cf. Abreu, 1988).1% The folk
theorem for stochastic games (of which our dynamic games are special cases) provided by
Dutta (1995) suggests that this may indeed be the case, and our results therefore indicate
that one must seek for such severe punishments if credibility of monetary policy should
always be attainable for low discounting.*

In purely repeated games of the BG type, Rogoff (1989) and Stokey (1991) have ex-

amined credibility through more severe punishment behavior. But these analyses mainly

13Recent work by, e.g., Chang (1998) and Ireland (1997) demonstrate methods (related to the “Sustain-
able Plans” concept of Chari and Kehoe, 1990) to characterize the entire set of time-consistent monetary
policy equilibria in micro-founded models. They generally find the efficient equilibria in these sets. These
models, however, do not contain dynamic state variables like the unemployment rate in our model. The
incentives for state manipulation by the policymaker(s) are therefore not an issue.

4Note, however, that Dutta’s theorem does not apply directly to our model. First, the theorem is
confined to games with bounded action spaces. Secondly, it considers strictly individually rational payoffs,
i.e., payoffs strictly better than min-max payoffs. Such payoffs, however, does not exist for PS in our game
as it can never achieve more than its min-max payoff (because this is zero — the best possible payoff, or,
lowest possible loss).
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served the purpose of demonstrating that credibility could then be attained even with high
discounting. They were not necessitated by a failure of asymptotic efficiency of NTE. We
are not aware of similar analyses for models with unemployment persistence, and we also
agree with Rogoff (1989) who “do not regard severe punishment equilibria as being par-
ticular plausible in the present context” (p. 243). (Stokey, 1989, has similar reservations
within other macroeconomic model frameworks.) Nevertheless, an important topic for fu-
ture research is to identify simple and sensible precommitment technologies that support
optimal monetary policy in dynamic models where state manipulation causes failure of the
Nash punishment on which the macroeconomic policy games literature has been focused

for the past decades.

Appendix
A. Solving yr

For the purpose of solving for y;, note that along the equilibrium path, the following

recursion equation must hold:

LT(’U,tfl) == (1 - 6) [U? + )\ﬂ'?] + 6LT,1(U,5), T > 1, (A].)

N —

with u; = pu;_; and 7 = m(us_1). Equating coefficients in u? ; on both sides of (A.1),
yields the Riccati difference equation in y;:

/62
—60°Yr_ + 6p%yr_1, T > 1. (A.2)

yT:]-+ /\

When determining a boundary condition on (A.2), note that we are interested in the MPE
insofar as it provides a punishment. So, for the final period of play, i.e., for the 1-period
game with state variable u;_1, the discounted future loss is § L"(7; u;), and optimal policy
therefore minimizes 5 (1 — 6) [uf + An?] + 6L"(m; uy) s.t. (1), § given. From this problem
we obtain the MPE of the 1-period game as

B p* + Ar?
ﬂ-t’Tzl = X 1+ 51——6/)2 PUL_ 1. (A3)

Using (A.3) with u, = pus_y gives Ly (w—1) = % (1 —6) [1 + fi—Q (1 + 5%)2] pPu? |,

from which we find v, = (1 —§) [1 + ﬁ; (1 +06 %)2] p?, implying the boundary condi-
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tion:

p=1+6 p? > 0. (A.4)

B[, P AN
l+—(1+6=——
* A + 1—6p?

Straightforward calculation shows that (A.2) possesses real stationary points if and only if

ﬁQé‘pQ
)\ Y

(1—6p%)% >4 (A.5)
in which case it has two stationary points, y™ > 3~ > 0. As our analysis involves changes in
the discount factor, (A.5) must hold for all values of ¢, i.e., (A1) must hold. Now, if (A.5)
holds, analysis of the phase diagram of (A.2) indicates that y; converges monotonically to
y~ as T — oo, as long as y; < y* (otherwise, y7 — oo in case of y; > y+or yr = y™, all
T, if y3 = y*). However, y; < y' is equivalent to saying that the loss from m;|,_, is less
than the loss from the MPE inflation rule (7) where yr = y*. So, we confine attention to
inflation rules m € II = {m |m|,_; < (B/A) yTpu,_1 } in order to ensure that yr is positive,

unique and bounded for all T'. For m = 0, however, this restriction does not to bind.!?

B. Proof of Proposition 1

To prove the proposition, we only need to establish
AT(0) — A%0) > b, allT, 6, (B.1)

for some b > 0.'% For then, (12) is violated at 7¥7# = 0, which means that a NTE rule is
bounded away from zero. To establish (B.1), we proceed as follows. First, the assumption
A < /3 is sufficient to ensure

52

1_5p2—A252—A213, all 6,

for some b > 0. Simple manipulation then implies

5Note first that y* = [(1 — 6p?) + v/ D]/ (2ﬂ26p2/)\) with D = (1 — 6p2)2 —43%5p?/\. For ™ = 0, we
have, using (A.3), that m¢|;_; < (8/A)yTpus_y is equivalent of (1 — 6,02)_1 < yt. Using the expression
for y*, this becomes 2ﬂ26p2/)\ — (1 — 6p2)2 < (1 — 6p2) VD, which always holds as the left hand side is
negative, cf. (A.5).

6For this condition to meaningful we must, of course, require that A” (0) and A? (0) are bounded for all
T, 6. From (12), A" (0) obviously meets this requirement. Using the definition of 7 in (10), it follows that

A?(0) is bounded if yp| _, is bounded. But this is clearly the case as 7 = 0 € IL. For by the construction
of I, yr| _ ~rn is bounded for all T, § if 7T € II; ¢f. Appendix A.
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p* Bgr \p? S p* Ap

A L | )
1—602 X+ B B 1-op & @ 50

2

since gr > 0, all T', 4, cf. (10). Setting b = 13%5 we then conclude that

2 2~ 2
p ABgr p
— 2>b>0, allT,$
1—6p> XN+ B%9r B~ 5

which by use of the definitions of A" and A¢, cf. (12), establishes (B.1).

C. Proof of Proposition 2

It clearly suffices to prove the proposition for T'= 1. Now, the loss from the zero-inflation
rule is L™ = Su2. The per-period loss in the MPE is 5 (1 — 6) (1 + 32/ /\) u?, and finally,

n?

the one-period loss from deviation from the zero-inflation rule is easily calculated to be

$(1-6))N/ ()\ + ﬁ2> u2. So, the overall deviation loss with a one-period punishment is

Ao, 1 A5,

1

Ld:%(l—é)

We have that the zero-inflation rule is a NTE rule iff L¢ > L". Using the above formulae

for L” and L? this condition is

2
1
) )\ﬁQu rog(1-5)2 50 (14 68)u,

1
S(1-9) -

5 us > (1—6)

which easily reduces to 6 > A/ ()\ + 52). So, letting 6 = \/ ()\ - 62) <1, L% > L" holds
for § > 6, as required.

D. Proof of Proposition 3

When (13) applies, the equilibrium loss from the rule 7 = 0 is given by
2
{—

5 L (D.1)

~ 1 U
LT(O;’U,tfl) = 5(1 — (5) Z(St lut =cy+Clu_1 + Co

t=1

where ¢y = %(1—5)(ﬁ+1—:§"7—1—33"—p>ui >0, ¢ = (1—6)%% > 0, and

o =(1-0) 1—:2"7 > 0. The MPE is somewhat different when unemployment follows (13)

instead of (1), in the sense that the MA’s loss from a T-period MPE is now given by

2
~ U
Lp(w) = Yo T ViUt 72,T7t' (D.2)
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We show, in the technical appendix available upon request, that 7, ;- has a solution of the

following form:
Yo,r = KO,T(l - 5)“2, (D.3)

where ko7 is bounded in ¢ for any given 7'

Now, the loss from deviation from 7 = 0 is defined exactly as in (8) above, i.e.:

L% (0;u,_1) = min {%(1 — 6) [uf + Ap}| + 8L (uq) + 8" L (0; ey 1)

Pt

st up = (1 — p)uy, + pus_1 — By, } )

where we note that ug,r = (1 - pT) U, + pTuy. Using (D.1), (D.2), and the definition of

Cs, this is rewritten as

= 1 [~ 2
LY0;up ) = 5(1 —0) min {yTuf + Ap? + 7 iT(gut (D.4)

st up = (1 — p)uy, + pug_1 — By, } + Ar,

where yr = 1467, 0/ (1 — 6)+(602)T“ /(1 =8p),ny = 6’71,T+5T+1PT {Cl + (1 - PT) C2un}a
deviation, namely one setting u; = 0. This requires By, = (1 — p)u,, + pus_1. Using (D.4),

2
co+ a1 (1 — ,oT) Up + (1 — pT> %ui] Consider now a suboptimal

the associated loss, denoted L (0;ug_1), is recovered as

B (0 gy = %(1 _ )11 = P+ pug]? + Ag. (D.5)

A
S
Clearly, L*¢ (0;us_1) > L% (0;us_1). Thus, a sufficient condition proving the proposition is
L7(0;u9) > L (0;ug). Using (D.1), (D.5), and the definition of A, this requires

Ug 1 )\ )
Cco+ciug + co— > —(1 — (5)—2 ((1 — p)un + p’u,o)
2 2 3
2 ¢
+ov0,r + 5 <Co +a (1 - PT) Up + (1 - PT) ;Ui> :

Dividing by 5 (1 — é) on both sides and rearranging, this becomes [by use of (D.3) and the

definitions of ¢; and c;:

1 0? 2p
_ ST+ . 2
(1= )<1—5+1—5p2 1—5,))“”

L2(1—p) <(1 _ 5,))1(1 — - %) iy + <1+5p2 - %) EN (D.6)
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A 2 T+1 T 2(1-p) (1_'0T)p 2
] {?(1—;)) +aror T (1= p) T (16 1577 ”un

Clearly, as ﬁ + 1—:;"7 — 1—3;’—{) > 0, a sufficient condition for the left hand side to be positive
is that A < §* as assumed. Moreover, the left hand side is increasing in 1o while the right
hand side is increasing in u,. Finally, since the expression in curly brackets on the right
hand side is bounded in ¢ for any given 7', we can always choose u, /uy small enough such

that (D.6) is satisfied for any ¢ as claimed.

E. Proof of Proposition 4

It suffices to show that the rule cannot be a NTE for any é under the conditions stated at

t when g; = 0. Now, if &, = 0, the loss of sticking to rule m(¢;) = s"¢; is L (s"; ut,l)‘ =

EtZO
1 _
5(1 — 8)p*u? | + OL"(s"; puy_1) where, using (15) and the definition of s,
7 1 Py 1 A 2
L' (s"uiq) ==(1—-0)—— — . E.1
(Svut 1) 2( 5)1—6pQUt_1+2ﬁ2+>\(1—602)0 ( )
Hence,
- 1 J R o o2 5
L (s";u, ==(1-0)—— — . E.2
(s5w)] = 3 )1—5p2“t*1+252+A(1—5p2)‘7 (E2)

What is the payoff to defection from the optimal rule m;(e;) = s"¢;? First, the MPE is
only changed slightly by the introduction of stochastic shocks in the sense that the MA’s
expected loss from a T-period MPE is given by:

_ O
Li(up) = Ty + o, (E.3)

where ~y, is determined by (A.2), and where 7 has a solution of the following form (this

is demonstrated in the technical appendix available upon request):
Or = pr (1), (E.4)

where (1, is bounded in ¢ for any given 7T'. So, the loss to deviation at ¢ when ¢, = 0 is

1 - _
Ld (S'r‘; utfl) = min {5(1 — 6) |:Ut2 + )\SO%} + 6LT('U¢) + 5T+1EtLT(3T; Ut+T)

e+=0 2

s.t. w = pus_1 — B;) } : (E.5)
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From (E.1) we find:

Tr(ar 1 102 2 1 A 2
E L (s ur) = (1 5)1_—6p2EtUt+T T A 570° (E.6)
1 P T2, 21—p" , 1 A 2
= Z(1- P = .
Ly o= [’0 RO e B Ve
So, using (E.3), (E.4) and (E.6), we can re-write (E.5) as:
= 1 A
L4 (s utfl)‘atzo = 5( —0) min {yTth + Ap? 8.t ug = pug_g — ﬁgot}
6 (1-8)p'(1-p") A
= 1—6)+6" g 2
3 luT( T 1= T Fa—om)”
Following the steps leading to (9) (available upon request), we then obtain
T T 1 A/GQgT p2
(s ua)| = 50— 5)@@%&1 (E.7)
6 (1-8)p'(1-p") A
= 1—6)+6" 6t 2,
*2["“ S R T B s vy |

All we now need to show is that L (ST;’U,O)‘ 0> L? (sT;uO)‘ . for all 6. Using (E.1)

Et—

and (E.7), this is found to require

1 p’ s 0 A 9 1 Aﬁz?)T p’ 2
(1 — e (1 = s\ P
5 5)1—5,02u0+2ﬁ2+)\(1—5,02)0 > 3 6)A+62@T62u°
6 Q-8)p"(L=p") A
lup(1—6)+ 67 8 2
3 luT( R v 7 T B e 7o)

Dividing by % (1 — &) on both sides, rearranging, and using the definitions of A" and A4,
(12), this becomes:

pt (=p) (-6 A
1—6p* (1=p)  (1-0) B2+ A1 —6p?

(A7(0) = AY0)] uf > 6 |+ 8"

)] o?. (E.8)

So, using that when A < 3%, A"(0) — A4(0) > 0 (cf. the proof of Proposition 1), it follows
that the left hand side is positive and increasing in ug. The right hand side is positive and
increasing in o, and since the expression in square brackets is bounded in § for any given

T, we can always choose o /uy small enough such that (E.8) is satisfied as claimed.
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