
Written Exam at the Department of Economics
Winter 2019–20

Advanced Microeconometrics

Final Exam

January 4th, 2020 (13:00–16:00)

(3-hour closed book exam)

Answers only in English.

This exam question consists of 6 pages in total.

Falling ill during the exam
If you fall ill during an examination at Peter Bangs Vej, you must:

� Contact an invigilator who will show you how to register and submit a
blank exam paper.

� Leave the examination.

� Contact your GP and submit a medical report to the Faculty of Social
Sciences no later than five (5) days from the date of the exam.

Be careful not to cheat at exams!
You cheat at an exam, if during the exam, you:

� Make use of exam aids that are not allowed.

� Communicate with or otherwise receive help from other people.

� Copy other people’s texts without making use of quotation marks and
source referencing, so that it may appear to be your own text.

� Use the ideas or thoughts of others without making use of source refer-
encing, so it may appear to be your own idea or your thoughts.

� Or if you otherwise violate the rules that apply to the exam.

Note: The percentage weights indicated on each problem should only be regarded
as indicative. The final grade will ultimately be based on an overall assessment
of the quality of the answers to the exam questions in their totality.
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Problem 1 (50%)

Consider the following censored regression model, for a sample of individuals

i = 1, . . . , N :

yi = max{0, y?i }, y?i = x′iβ + εi, εi ∼ N
(
0, σ2

)
, (1)

where the explanatory variables are contained in the K × 1 vector xi, and are

related to the latent variable y?i through the vector of regression coefficients β.

Question 1.1: Discuss briefly the identification of the model (without any

derivations). In particular, explain if σ2 is identified, and why.

Question 1.2: Show that the conditional expectation of the observed out-

come is

E[yi | xi] = x′iβ Φ

(
x′iβ

σ

)
+ σ φ

(
x′iβ

σ

)
, (2)

where Φ(·) and φ(·) denote, respectively, the cumulative distribution

function(CDF) and the probability density function (PDF) of the stan-

dard normal distribution N (0, 1).

Hint 1: To get started, remember that E[yi | xi] =

E[yi | xi, yi = 0] Pr(yi = 0 | xi) + E[yi | xi, yi > 0] Pr(yi > 0 | xi).

Hint 2: If z ∼ N (0, 1), then for any constant α ∈ R it holds that

E[z | z > α] = φ(α)/[1− Φ(α)].

Question 1.3: One of your colleagues suggests you construct an estimator of

θ = (β′, σ2)′ based on the following optimization problem:

θ̂ = arg min
θ

[
1

N

N∑
i=1

m̂(yi, xi; θ, uiM)

]2
(3)

where m̂(yi, xi; θ, uiM) is simulated using a sample of M random draws

uiM = {u(1)i , . . . , u
(M)
i } from the standard normal distribution, for each

i = 1, . . . , N .

Describe the principle of the estimation method your colleague is refer-

ring to. As part of your answer, you are expected to provide and justify a

Page 2 of 6



possible expression of m̂(yi, xi; θ, uiM) [hint: you may or may not use the

result in Eq. (2) to do this], and to outline the steps of the corresponding

estimation approach.

Question 1.4: How do you recommend to choose the number of random

draws M in Question 1.3? In particular, explain how this number affects

the bias of the estimator (no derivations required).

Question 1.5: How would you modify the optimization problem in Eq. (3)

to improve the efficiency of the estimator θ̂? Describe briefly the corre-

sponding approach.

Problem 2 (30%)

Consider the following two-parameter model

y ∼ N (θ1 + θ2, 1) , (4)

with prior distributions θ1 ∼ N (µ1, σ
2
1) and θ2 ∼ N (µ2, σ

2
2).

Question 2.1: Derive the conditional distributions p(θ1 | θ2, y) and p(θ2 |
θ1, y).

Hint: Given the symmetry of the problem, you need to do the derivations

only once.

Question 2.2: Outline the different steps of a Gibbs sampler that can be

designed to produce random draws from the posterior distribution of θ1

and θ2. Be as precise as possible.

Question 2.3: Assuming we observe y = 4 and we set µ1 = µ2 = 50 and

σ2
1 = σ2

2 = 100, we run the Gibbs sampler derived in Question 2.2 for

1,000 iterations. The corresponding trace plots of the two parameters θ1

and θ2, as well as the trace of their sum θ1 + θ2, are shown in Fig. 2.1.

Does the algorithm converge in any sense? Comment on the trace plots

and explain the results, both intuitively and formally.
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Figure 2.1: Trace plots of the Gibbs sampler for the parameters θ1, θ2, and
their sum θ1 + θ2.
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Problem 3 (20%)

Consider the following MATLAB functions:

1 function [x] = simul1(n, fun, a, b)

2 z = betarnd(a, b, n, 1);

3 x = mean(fun(z));

4 end

5

6 function [x] = simul2(n, fun, a, b)

7 z = rand(n, 1);

8 x = mean(fun(z) .* betapdf(z, a, b));

9 end

and the following piece of code:

1 rng(123);

2 h = @(x) (x - 3).ˆ2;

3 n = 10000;

4 fprintf('simul1 output = %6.4f\n', simul1(n, h, 2, 3));

5 fprintf('simul2 output = %6.4f\n', simul2(n, h, 2, 3));

which produces the following output:

1 simul1 output = 6.7954

2 simul2 output = 6.7502

Question 3.1: Express in mathematical terms what these two functions do.

You should just provide a few equations to answer this question. Be

explicit about the notation.

[Note: The MATLAB function betarnd(a, b, m, n) produces a m × n
matrix of random draws from the Beta distribution with shape parameters

a and b, while the function betapdf(z, a, b) returns the probability

density function of the corresponding Beta distribution evaluated at each

entry of z.]
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Question 3.2: Explain precisely the two approches implemented by the func-

tions simul1() and simul2(), and why the corresponding results look

similar.
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