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Resit Exam, Fall 2014

Contract Theory, February 19, 2015

Attempt both questions.
Explain all the steps of your analysis and define any new notation that you use.

Question 1: Moral hazard with
mean-variance preferences

Consider the following moral hazard model with
mean-variance preferences that we studied in the
course. There is one (single) agent, A, and one prin-
cipal, P. A chooses an effort level e ∈ <+, thereby
incurring the cost c (e) = 1

2e2. Given a choice of e,
the output (i.e., A’s performance) equals q = e + z,
where z is an exogenous random term drawn from
a normal distribution with mean zero and variance
ν. It is assumed that P can observe q but not e.
Moreover, neither P nor A can observe z. A’s wage
(i.e., the transfer from P to A) can only be contin-
gent on the output q. It is restricted to be linear in
q:

t = α + βq = α + β (e + z) .

A is risk averse and has a CARA utility function:
U = − exp [−r (t − c (e))], where r (> 0) is the co-
efficient of absolute risk aversion. Therefore A’s
expected utility is

EU = −

∞∫

−∞

exp [−r (t − c (e))] f (z) dz,

where f (z) is the density of the normal distribu-
tion. P ’s objective function is

V = q − t = q − α − βq = (1 − β) (e + z) − α,

which in expected terms becomes EV = (1 − β) e−
α. It is also assumed that A’s outside option utility
is Û = − exp

[
−rt̂

]
, where t̂ > 0. The timing of

events is as follows.

1. P chooses the contract parameters, α and β.

2. A accepts or rejects the contract and, if accept-
ing, chooses an effort level.

3. The noise term z is realized and A and P get
their payoffs.

Answer the following questions:

(a) Solve for the β parameter in the second-best
optimal contract, denoted by βSB (you do not
need to solve for αSB , and you will not get any
credit if you nevertheless do that). You should
make use of the following (well-known) result:

EU = − exp

[

−r

(

α + βe −
1
2
e2 −

1
2
νrβ2

)]

.

[You are encouraged to attempt parts (b)–(d) also
if you have not been able to answer part (a).]

(b) Does the agent get any rents at the second-best
optimum? Do not only answer yes or no, but
also explain how you can tell.

(c) The first-best values of the effort level and the
β parameter equal eFB = 1 and βFB = 0, re-
spectively. How do these values relate to the
corresponding second-best values? In particu-
lar, is there under- or overprovision of effort at
the second-best optimum?

(d) Consider the limit case where r → 0. Ex-
plain what happens to the relationship between
the second-best and the first-best effort levels.
Also explain the intuition for this result.
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Question 2: Consumer learni-
ing in an insurance market

The following is a model of an insurance market
with adverse selection.1 The principal (P) is a
monopoly insurance company and the agent (A) is
a car owner who may want to purchase a car in-
surance. Such an insurance compensates A for her
financial loss in case the car is stolen. This loss is
denoted by d > 0, and her income is denoted by
w > d. Moreover, let p denote A’s payment to P
in case there is no theft; and let a denote the net
compensation A receives from P in case the car is
indeed stolen. A is risk averse and her utility func-
tion is denoted by u (where u′ > 0 and u′′ < 0).
Thus, A’s utility if purchasing the insurance is

{
u (w − d + a) if car is stolen

u (w − p) if car is not stolen.

P is assumed to be a risk neutral profit maximizer.
The probability that a theft occurs, θ, can take

two values: θ ∈
{
θ, θ
}
, with 0 < θ < θ < 1. Ini-

tially, neither P nor A knows the value of θ: they
both believe that Pr [θ = θ] = ν and Pr

[
θ = θ

]
=

1− ν, with 0 < ν < 1. However, A can, if incurring
a cost c > 0, learn the value of θ. The full sequence
of events is as follows.

(i) P commits to a menu of insurance poli-
cies,

{(
p, a
)
, (p, a)

}
, where the policy

(
p, a
)

is
aimed at the θ type and the policy (p, a) is
aimed at the θ type.

(ii) A observes the menu and then makes a choice
whether or not to gather information, x ∈
{0, 1}. If x = 1, A must incur a cost c > 0 but
receives a signal that perfectly reveals the true
value of θ. If x = 0, A incurs no cost but does
not obtain any new information about θ. The
cost c enters A’s payoff as an additive term.
A’s choice of x is not observed by P. Nor can
P observe the signal that A receives if x = 1.

(iii) A decides whether to accept any insurance pol-
icy in the menu and, if so, which one.

Suppose P wants to induce A to gather informa-
tion (x = 1). Also suppose that the parameters
of the model are such that it is optimal to inter-
act with both types and to offer them distinct con-
tracts.

When solving P ’s problem it will be more con-
venient to think of P as choosing the utility levels

1It builds on a model that we studied in the course, but
here the information structure is endogenous.

directly, instead of the contract variables. Thus in-
troduce the following notation:

uN
def
= u (w − p) , uA

def
= u (w − d + a) ,

uN
def
= u

(
w − p

)
, uA

def
= u (w − d + a) .

Also let h be the inverse of u (hence h′ > 0 and
h′′ > 0). We can now write P ’s ex ante expected
profit as follows:

π = ŵ − υ [(1 − θ) h (uN ) + θh (uA)]

− (1 − υ)
[(

1 − θ
)
h (uN ) + θh (uA)

]
,

where ŵ
def
= w −

[
υθ + (1 − υ) θ

]
d is A’s wealth net

of the ex ante expected monetary loss associated
with an accident. P ’s problem is to maximize π
w.r.t. (uN , uA, uN , uA), subject to the following
seven constraints:

(
1 − θ

)
uN + θuA ≥ U

∗
, (IR-high)

(1 − θ) uN + θuA ≥ U∗, (IR-low)
(
1 − θ

)
uN + θuA ≥

(
1 − θ

)
uN + θuA, (IC-high)

(1 − θ) uN + θuA ≥ (1 − θ) uN + θuA, (IC-low)

EUx=1
def
= [(1 − θ) uN + θuA]

+ (1 − υ)
[(

1 − θ
)
uN + θuA

]
− c

≥ υU∗ + (1 − υ) U
∗
, (IR-ante)

EUx=1 ≥ υ [(1 − θ) uN + θuA]

+ (1 − υ)
[(

1 − θ
)
uN + θuA

]
, (IG-low)

EUx=1 ≥ υ [(1 − θ) uN + θuA]

+ (1 − υ)
[(

1 − θ
)
uN + θuA

]
, (IG-high)

where

U
∗ def

=
(
1 − θ

)
u (w) + θu (w − d) ,

U∗ def
= (1 − θ) u (w) + θu (w − d)

are the two types’ outside options.

(a) Explain briefly in words what each one of the
seven constraints says and why the constraints
are required if P wants to induce information
gathering, interact with both types and offer
them distinct contracts.
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One can show that the constraints IC-low, IC-high,
IR-high and IR-ante are implied by the other con-
straints. The Lagrangian of P ’s profit maximiza-
tion problem can thus be written as

L = ŵ − υ [(1 − θ) h (uN ) + θh (uA)]

− (1 − υ)
[(

1 − θ
)
h (uN ) + θh (uA)

]

+ λ [(1 − θ) uN + θuA − U∗]

− μ {υ [(1 − θ) (uN − uN ) + θ (uA − uA)] + c}

+μ
{
(1 − υ)

[(
1 − θ

)
(uN − uN ) + θ (uA − uA)

]
− c
}

,

where λ ≥ 0 is the shadow price associated with
IR-low, μ ≥ 0 is the shadow price associated with
IG-high, and μ ≥ 0 is the shadow price associated
with IG-low.

(b) Show that IG-low and IR-low bind at the op-
timum.

(c) Show that the θ type is underinsured (uN >
uA) at the optimum.

One can further show that if it is optimal for P
to induce information gathering, then, at the opti-
mum, IG-high is lax (i.e., μ = 0) and the θ type is
fully insured (i.e., uN = uA).

(d) Suppose that it is indeed optimal for P to in-
duce information gathering. Then what is the
effect on P ’s profits, at the optimum, of an
exogenous increase in the information gather-
ing cost c? Will such an increase make P ’s
(optimized) profits increase or decrease, or are
the profits unaffected by a change in c? Do not
show any calculations, but explain in words the
reasoning behind your answer.

End of Exam
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