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Question A:

Consider the model for xt ∈ R given by

xt = µ+
√
ω + βx2t−1zt (A.1)

where the innovation zt satisfies

zt ∼ i.i.d.N(0, 1). (A.2)

The model parameters θ = (µ, β, ω) satisfy µ ∈ R, β ≥ 0, and ω > 0.

Question A.1: Provide conditions on θ = (µ, β, ω) such that xt satisfies the
drift criterion with drift function δ(x) = 1 + x2.

Solution: Standard derivations from the lecture note yield that the drift
criterion is satisfied if β < 1. Detailed arguments should be provided, in-
cluding that xt is a Markov chain with a positive and continuous transition
density.

Question A.2: The log-likelihood contribution for the model is

lt(θ) = −1

2

[
log(ω + βx2t−1) +

(xt − µ)2

ω + βx2t−1

]
.

Suppose that the true values of β and ω are known such that (β, ω) = (β0, ω0).
This means that the only parameter to estimate is µ.
Based on a sample (x0, x1, ..., xT ), show that the maximum likelihood esti-
mator for µ is

µ̂ =

∑T
t=1 xt/(ω0 + β0x

2
t−1)∑T

t=1 1/(ω0 + β0x2t−1)
. (A.3)

Solution: The result follows immediately by solving ∂
∂µ

∑T
t=1 lt(θ) = 0 for

µ and setting (β, ω) = (β0, ω0).

Question A.3: Assume that the true values ω0 > 0 and β0 > 0 such that
xt is weakly mixing with E[x2t ] <∞.
Argue that for some constant c > 0,

E

[
z2t

ω0 + β0x2t−1

]
≤ c. (A.4)
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and that
1

T

T∑
t=1

zt
(ω0 + β0x2t−1)

1/2

P→ 0 as T →∞.

Let µ0 denote the true value of µ.
With µ̂ the maximum likelihood estimator for µ in (A.3), show that

µ̂
P→ µ0 as T →∞.

Solution: Since
(
ω0 + β0x

2
t−1
)−1 ≤ ω−10 , it holds that E

[
z2t

ω0+β0x2t−1

]
≤

E
[
z2t
ω0

]
= ω−10 . Next, observe that

zt
(ω0+β0x2t−1)

1/2 = (xt−µ0)
(ω0+β0x2t−1)

=: f(xt, xt−1).

Due to (A.4), E[|f(xt, xt−1)|] <∞. By the LLN for weakly mixing processes,
T−1

∑T
t=1 f(xt, xt−1)

p→ E[f(xt, xt−1)] = E
[

zt
(ω0+β0x2t−1)

1/2

]
. By the law of it-

erated expectations, E
[

zt
(ω0+β0x2t−1)

1/2

]
= E[zt]E

[
1

(ω0+β0x2t−1)
1/2

]
= 0. We con-

clude that 1
T

∑T
t=1

zt
(ω0+β0x2t−1)

1/2

P→ 0. Lastly, µ̂ =
∑T
t=1 xt/(ω0+β0x

2
t−1)∑T

t=1 1/(ω0+β0x
2
t−1)

= µ0 +

T−1
∑T
t=1 zt/(ω0+β0x

2
t−1)

1/2

T−1
∑T
t=1 1/(ω0+β0x

2
t−1)

. By the LLN for weakly mixing processes, T−1
∑T

t=1 1/(ω0+

β0x
2
t−1)

P→ E
[
1/(ω0 + β0x

2
t−1)
]
<∞, and using that 1

T

∑T
t=1

zt
(ω0+β0x2t−1)

1/2

P→

0, we conclude that µ̂ P→ µ0.

Question A.4: Maintaining the assumptions from Question A.3, with θ0 =
(µ0, β0, ω0) the true value of θ, show that

1√
T

T∑
t=1

∂lt(θ0)

∂µ

D→ N(0,Σ) as T →∞, (A.5)

for some Σ > 0.
Explain briefly what the property in (A.5) can be used for.

Solution: We have that ∂lt(θ0)
∂µ

= (xt−µ0)
ω0+β0x2t−1

=: f(xt, xt−1). We show that

(A.5) holds by applying the CLT for weakly mixing processes (that satisfy
the drift criterion). From the previous question, f(xt, xt−1) = zt

(ω0+β0x2t−1)
1/2 ,

and we have that E[f(xt, xt−1)|xt−1] = 0 and E[f 2(xt, xt−1)] <∞, using the
law of iterated expectations and (A.4). We conclude that (A.5) holds with

Σ = E[f 2(xt, xt−1)] = E
[

z2t
ω0+β0x2t−1

]
= E[z2t ]E

[
1

ω0+β0x2t−1

]
= E

[
1

ω0+β0x2t−1

]
.
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The property (A.5) is used for deriving the limiting distribution of the MLE.
Ideally, a few comments about this is included. The distribution of the MLE
is used when testing a hypothesis about the model parameters. One may

also note that µ̂ − µ0 =
T−1

∑T
t=1 zt/(ω0+β0x

2
t−1)

1/2

T−1
∑T
t=1 1/(ω0+β0x

2
t−1)

, so using T−1
∑T

t=1 1/(ω0 +

β0x
2
t−1)

P→ E
[
1/(ω0 + β0x

2
t−1)
]

= Σ and (A.5), it holds that
√
T (µ̂− µ0)

D→
N(0,Σ−1).

Question A.5: For the model (A.1)-(A.2), the one-period Value-at-Risk
(VaR) at risk level κ, VaRκT,1, is

VaRκ
T,1 = −µ− σT+1Φ−1(κ), κ ∈ (0, 1),

where σ2T+1 = ω + βx2T and where Φ−1(·) denotes the inverse CDF of the
standard normal distribution.
With (ω, β) = (ω0, β0) known, as in the previous questions, explain briefly
how you would compute an estimate of VaRκ

T,1, denoted V̂aRκ
T,1.

Explain briefly how you would take into account the estimation uncertainty
associated with V̂aRκ

T,1.

Solution: Given an estimate of µ, µ̂, (see previous question) and known
(ω, β) = (ω0, β0) and Φ−1(κ), one may estimate VaRκ

T,1 as V̂aRκ
T,1 = −µ̂ −

σT+1Φ
−1(κ), where σT+1 = (ω0 + β0x

2
T )
1/2. With µ0 the true value of µ, the

true VaR isVaRκ
T,1 = −µ0−σT+1Φ−1(κ). In order to assess the estimation un-

certainty, we may note that V̂aRκ
T,1−VaRκ

T,1 = µ0−µ̂. Recall that under suit-
able conditions (discussed in the previous questions)

√
T (µ̂− µ0)

D→ N(0,Ω)

for some Ω. In that case
√
T (V̂aRκ

T,1 − VaRκ
T,1)

D→ N(0,Ω). This result can
be used for obtaining a confidence band for the VaR estimate, as discussed
in Assignment 2.
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Question B:

Suppose that the logarithm of the price of a share of stock is given by

p(t) = σW (t), t ∈ [0, T ], (B.1)

where σ > 0 is constant and W (t) is a Brownian motion.

Recall here that the Brownian motion W (t) has the properties

1. W (0) = 0.

2. W has independent increments, i.e. if 0 ≤ r < s ≤ t < u, then

W (u)−W (t) and W (s)−W (r)

are independent.

3. The increments are normally distributed, i.e.

W (t)−W (s) ∼ N(0, t− s)

for all 0 ≤ s ≤ t.

Suppose that we have observed the price p(t) at n+ 1 equidistant points

0 = t0 < t1 < . . . < tn = T,

with
ti =

i

n
T, i = 0, ..., n.

Based on these points we obtain n log-returns given by

r(ti) = p(ti)− p(ti−1), i = 1, ..., n.

Question B.1: What is the distribution of p(t)?
Argue that r(ti) satisfies

r(ti) ∼ N

(
0, σ2

T

n

)
.

Show that
cov(r(ti), r(ti−1)) = 0.
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Solution: We have that p(t) = σ[W (t) −W (0)] ∼ N(0, σ2t). We have
that r(ti) = σ[W (ti)−W (ti−1)], such that r(ti) ∼ N (0, σ2(ti − ti−1)) where
(ti−ti−1) = n/T . Since the Brownian motion has independent increments, we
have that r(ti) ∼ I.I.D.N

(
0, σ2 T

n

)
, and in particular cov(r(ti), r(ti−1)) = 0.

Question B.2: One way to measure the volatility of p(T ) would be to com-
pute the realized volatility given by

RV (n) =

n∑
i=1

(r(ti))
2 .

For a fixed T > 0, find the probability limit of RV (n) as n→∞. Be precise
about the arguments used for deriving the probability limit.
Give an interpretation of letting n→∞.

Solution: We may write r(ti) = σ
√
T/nηi, where ηi ∼ I.I.D.N(0, 1).

Hence by the LLN for independent processes, RV (n) = σ2Tn−1
∑n

i=1 η
2
i

P→
σ2TE[η2i ] = σ2T . Details should be provided.
The property n→∞ corresponds to increasing the sampling frequency over
the fixed interval [0, T ] ("in-fill asymptotics").

Question B.3: Suppose that we do not observe the effi cient log-price p(t),
but instead we observe p̃(t) which is p(t) contaminated by some noise ε̃(t),
that is

p̃(t) = p(t) + ε̃(t), t ∈ [0, T ],

with
ε̃(t) = σ̃W̃ (t) + µt, t ∈ [0, T ],

where W̃ (t) is a Brownian motion and µ ∈ R and σ̃ > 0 are constants.
Now, the realized volatility measure RV (n) from the previous question is
infeasible due the fact that we do not observe P (t). Instead we may compute

R̃V (n) =
n∑
i=1

(r̃(ti))
2 ,

where r̃(ti) = r(ti) + ε̃(ti)− ε̃(ti−1).
Assume that W (t) and W̃ (t) are independent, that is (W (t) : t ∈ [0, T ]) and
(W̃ (t) : t ∈ [0, T ]) are independent. Similar to the previous question, for a
fixed T > 0, derive the probability limit of R̃V (n) as n→∞. Compare with
the probability limit of RV (n).
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Solution: Similar to the previous question, we may write ε̃(ti)− ε̃(ti−1) =
µT/n + σ̃

√
T/nη̃i with η̃i ∼ I.I.D.N(0, 1). Hence, r̃(ti) = σ

√
T/nηi +

µT/n + σ̃
√
T/nη̃i, where the processes (ηi : i = 1, ..., n) and (η̃i : i =

1, ..., n) are independent, as (W (t) : t ∈ [0, T ]) and (W̃ (t) : t ∈ [0, T ]) are

independent. Thus R̃V (n) =
∑n

i=1

[
σ
√
T/nηi + µT/n+ σ̃

√
T/nη̃i

]2
, and

standard arguments yield that R̃V (n)
P→ T (σ2 + σ̃2). Details should be

provided.

Question B.4: Figure 1 contains a plot of the realized volatility of the
return of the Euro/Dollar exchange rate over 796 trading days. For each
day, the realized volatility is based on n = 47 intra-daily return observations.
Based on the figure and in light of your findings in the previous questions,
do you think that the model p(t) = σW (t), from Question B.1 is suitable
for the log-price of the exchange rate? Discuss briefly.

Solution: It is hard to say whether the model is suitable. Given that
the model is correct, for n large, the realized volatility should be more or
less constant over time, according to the previous questions. This does not
seem to be the case based on the graph. Note, however, that no uncer-
tainty about the estimates are reported. Also, from Question B.2 RV (n) =
σ2Tn−1

∑n
i=1 η

2
i ∼ Tσ2n−1χ2n for any fixed n. Hence for any fixed n, the

realized volatility should be an i.i.d. chi-squared-type process. This does not
seem to be a good approximation of the observed RV which seems to exhibit
some degree of persistence.
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Figure 1: RV of Euro/Dollar returns

8


