Written Exam at the Department of Economics winter 2019-20

Financial theory and models

Exam

January 23, 2020

(3-hour open book exam)

Answers only in English.

This exam question consists of 1 page in total

Falling ill during the exam

If you fall ill during an examination at Peter Bangs Vej, you must:

- contact an invigilator who will show you how to register and submit a blank exam paper.
- leave the examination.
- contact your GP and submit a medical report to the Faculty of Social Sciences no later than five

(5) days from the date of the exam.

Be careful not to cheat at exams!

You cheat at an exam, if during the exam, you:

- Make use of exam aids that are not allowed
- Communicate with or otherwise receive help from other people
- Copy other people's texts without making use of quotation marks and source referencing, so that it may appear to be your own text
- Use the ideas or thoughts of others without making use of source referencing, so it may appear to be your own idea or your thoughts
- Or if you otherwise violate the rules that apply to the exam

Problem 1. Consider a stock in a binary one-period model with value 100 USD at time t = 0. We assume that the value increases by 7 percent in the up-state and decreases with 3 percent in the down state at t = 1. The risk free interest rate r is 5 percent.

- (i) Calculate the risk neutral probability distribution.
- (ii) Calculate the arbitrage free price c of a European call option written on this stock with strike price K = 67 USD.

Problem 2. Patients arrive independently and at random to a medical facility with a mean of 5 patients per hour.

- (i) What is the distribution of the number of patients arriving during a period of two hours?
- (ii) What is the probability that exactly k patients arrive during a period of two hours for each k?
- (iii) Let Y_1 denote the stochastic variable that measures the time from the opening of the clinic until the first (or more) patients arrive. What is the distribution of Y_1 .

Problem 3. Let B_t denote the Brownian motion. Show that the expectation

$$E\left[\exp(B_t)\right] = e^{t/2} \qquad t \ge 0$$

Problem 4. Let B_t denote the Brownian motion and take c > 0. Show that the process

$$\hat{B}_t = \frac{1}{c} B_{c^2 t} \qquad t \ge 0$$

also is a Brownian motion.

Problem 5. We consider the Heath-Jarrow-Morton (HJM) framework for interest rate models. The forward rates F(t,T) are modeled by specifying the dynamics

$$dF(t,T) = \alpha(t,T) dt + \sigma(t,T) dB_t$$

Assume that the forward rate volatility $\sigma(t,T)$ is given by

$$\sigma(t,T) = \sigma e^{-(T-t)} \qquad 0 \le t \le T,$$

where $\sigma > 0$ is a constant.

- (i) Calculate the forward rate drift $\alpha(t,T)$ for $0 \le t \le T$.
- (ii) Show that $\alpha(t,T) \to 0$ for $t \to T$.