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Please note there is a total of 8 questions that you should provide answers
to. That is, 4 questions under Question A, and 4 under Question B.

Question A:

Consider the ARCH model given by

yt = δt (β, γ)1/2 xt, xt = σt (α) zt,

σ2t (α) = 1− α + αx2t−1,

δt (β, γ) = β + γd (t) , d (t) =
t2

1 + t2
,

with zt iid N (0, 1) distributed, x0 fixed and t = 1, 2, ..., T . Also 0 ≤ α < 1,
β > 0 and γ ≥ 0.
As to the role of δt (β, γ), observe that d (t) ∈ (0, 1) and hence δt (β, γ) ∈

(β, β + γ).

Question A.1: Show that (using as usual the notation that δt and σ2t denote
δt (β, γ) and σ2t (α) respectively evaluated at the true values α0, β0 and γ0),

E (yt|xt−1) = 0 and V (yt|xt−1) = δtσ
2
t

Show furthermore that

V (yt) = β0 + γ0d (t) ,

and state a suffi cient condition on α0 for this to hold.
Discuss the role of δt (β, γ). In particular discuss what happens if γ0 = 0

and γ0 > 0 respectively.
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Question A.2: Fix all parameters at their true values, except γ and α.
Show that the first order derivatives of the log-likelihood function is given
by,

SγT = ∂L (α, γ) /∂γ|α=α0,γ=γ0 = −1

2

T∑
t=1

sγt , sγt =
d (t)

δt

(
1− z2t

)
.

SαT = ∂L (α, γ) /∂α|α=α0,γ=γ0 = −1

2

T∑
t=1

sαt , sαt =
y2t−1/δt

1− α0 + α0y2t−1/δt

(
1− z2t

)
.

Argue that E (sγt ) = E (sαt ) = 0.

Question A.3: Show that for α0 ∈ (0, 1),

T−1/2
T∑
t=1

sαt
D→ N (0, ξκ) κ = E

(
1− z2t

)2
= 3 and ξ = E

(
y2t−1/δt

1− α0 + α0y2t−1/δt

)2
.

Explain why ξ <∞.

Question A.4: With (α̂, γ̂) the maximizer of the log-likelihood function, it
can be shown that for 0 < α0 < 1 and γ0 > 0,

T 1/2
T∑
t=1

(α̂− α0, γ̂ − γ0)

is asymptotically Gaussian. What would you expect the limiting distribution
of the likelihood ratio statistic for H : (γ = γ0, α = α0) is?
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Question B:

Consider the model for yt ∈ R given by

yt = 1(st=1)zt,1 + 1(st=2)zt,2,

where

1(st=i) =

{
1 if st = i
0 if st 6= i

, i = 1, 2,

and, for i = 1, 2, (zt,i) is an i.i.d. process with

zt,i
d
= tvi , i = 1, 2,

i.e. zt,i is Student’s t-distributed with vi > 2 degrees of freedom. The
processes (zt,1) and (zt,2) are independent. Moreover, (st) is a two-state
Markov chain with transition probabilities

P (st = j|st−1 = i) = pij ∈ [0, 1], i, j = 1, 2.

Assume throughout that (st) is independent of the processes (zt,1) and (zt,2).
Lastly, recall that if X is Student’s t-distributed with v > 0 degrees of

freedom, then the density of X is

f(x) =
Γ
(
v+1
2

)
Γ
(
v
2

)√
πv

(
1 +

x2

v

)− v+1
2

,

where Γ(·) is the gamma function.

Question B.1: Give a brief interpretation of the model.
Argue that (yt, st) is a Markov chain.
Argue that the conditional density of (yt, st) satisfies

f((yt, st)|yt−1, st−1) = f(yt|st)f(st|st−1).

Question B.2: Suppose that the Markov chain (st) is irreducible and ape-
riodic. Show that

E[yt] = 0

and

E[y2t ] =
1− p22

2− p11 − p22

(
v1

v1 − 2

)
+

1− p11
2− p11 − p22

(
v2

v2 − 2

)
.
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Question B.3: Suppose that we want to estimate the model parameters
θ = (v1, v2)

′. Based on a sample (y0, y1, . . . , yT ) the log-likelihood function
(conditional on y0) is given by

LT (θ) =

T∑
t=1

log f(yt|yt−1, . . . , y0).

Show that

f(yt|yt−1, . . . , y0) =

2∑
i=1

f(yt|st = i)P (st = i|yt−1, . . . , y0),

with

f(yt|st = i) =
Γ
(
vi+1
2

)
Γ
(
vi
2

)√
πvi

(
1 +

y2t
vi

)− vi+1

2

.

Explain briefly how you would compute P (st = i|yt−1, . . . , y0).

Question B.4: Let τrisk > 0 denote some constant risk threshold, and define
the (conditional) probability of a loss exceeding τrisk at time T + 1,

ςT+1(τrisk) ≡ P (−yT+1 ≥ τrisk|yT , yT−1, . . . , y0).

Let Ti : R→ [0, 1] denote the cdf of a Student’s t-distribution with vi degrees
of freedom, i = 1, 2.
Show that

ςT+1(τrisk) =
2∑
i=1

Ti(−τrisk)P (sT+1 = i|yT , yT−1, . . . , y0).

Discuss briefly how you would estimate ςT+1(τrisk) based on a sample (y0, . . . , yT ).
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