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Please note there is a total of 8 questions that you should provide answers
to. That is, 4 questions under Question A, and 4 under Question B.

Question A:

Consider the ARCH model given by

xt = σtzt,

σ2t (α) = ω + αx2t−1,

with zt tv (0, 1) distributed, x0 fixed and t = 1, 2, ..., T . With v > 2 and
ω > 0 fixed, the log-likelihood function in terms of α ≥ 0 is given by

`tvT (α) = −1
2

T∑
t=1

(
log σ2t (α) + (v + 1) log

(
1 +

x2t
σ2t (α) (v − 2)

))
.

As usual with α set to the true value α = α0, we set σ2t (α0) = σ2t .

Question A.1:We wish to find a value for α, αa say such that xt is station-
ary, weakly mixing and E|xt| <∞ for α ∈ [0, αa) and v = 4. To do so apply
the drift function

δ (x) = 1 + |x|,
and use E|zt| =

√
2/2 ' 0.7 to find αa. It follows that αa > 2. Discuss this

by comparing with the ARCH(1) model where zt are iidN(0, 1).
Hint: Recall the inequality that |a + b|δ < |a|δ + |b|δ for a, b ∈ R and

δ ∈ (0, 1).
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Question A.2: It follows that

ST = ∂`tvT (α) /∂α
∣∣
α=α0,v=4

= −1
2

T∑
t=1

x2t−1
σ2t

ηt,

with ηt iid with Eηt = 0, and

ηt =

(
1− 5 z2t /2

1 + z2t /2

)
.

Argue that E
(

z2t /2

1+z2t /2

)2
≤ 1, and hence that σ2η = Eη2t <∞.

Argue that γ = E
(
x2t−1/σ

2
t

)2 ≤ 1/α20 for any α0 > 0.
Question A.3: Use Question A.2 (and A.1) to show that

T−1
T∑
t=1

(
x2t−1
σ2t

)2
P→ γ.

Next, show that

T−1/2ST = −T−1/2 12
T∑
t=1

x2t−1
σ2t

ηt
D→ N

(
0, γσ2η/4

)
for any α0 ∈ (0, αa).
Similarly one can show that if one relaxes that v is known,

SvT = ∂`tvT (α, v) /∂v
∣∣
α=α0,v=v0

is asymptotically Gaussian distributed.
Discuss implications of these results and in particular why α0 > 0 is an

important assumption.

Question A.4: With a sample of T = 1000 observations, it follows that
the MLE of v and α, and corresponding LR test statistics for the hypotheses
Hv : v = 4 and Hα : α = 0 are given by:

MLE Value Hypothesis LR statistic
v̂ 4.7 Hv : v = 4 LR (v = 4) = 2.2
α̂ 0.06 Hα : α = 0 LR (α = 0) = 3.1

Discuss if you would reject Hv and/or Hα. Be precise about which as-
ymptotic distribution(s) and quantiles you are applying.
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Question B:

In order to introduce a stochastic jump in log-returns xt, consider the “Jump-
ARCH”model for xt as given by

xt = εt + Jt, t = 1, 2, ...., T.

With the initial value x0 fixed, εt is an “ARCH”component as given by

εt = σtzt,

σ2t = ω + αx2t−1, ω > 0, α ≥ 0,
with zt iidN(0, 1). Note that it is xt lagged that enters the σ2t and not as for
a standard ARCH model, εt lagged.
Next the Jt is a "jump" component which is given by a sum of a random

number st of random ηt,i variables which are iidN(0, γ) , with γ > 0. That is,

Jt = ηt,1 + ...+ ηt,st =
st∑
i=1

ηt,i,

with st stochastic and taking values in 1, 2 or 3. More specifically, we consider
here the case where st is given by a 3-state Markov chain with constant
transition probabilities pij = P (st = j|st−1 = i) ∈ [0, 1] for i, j = 1, 2, 3, such
that

∑3
j=1 pij = 1 for i = 1, 2, 3.

Throughout, we assume that the processes (zt)t=1,2,... and (ηt,i)t=1,2,.... are
independent for every i = 1, 2, 3, and that the processes (ηt,i) and (ηt,j) are
independent for i 6= j. Lastly, we also assume that the Markov chain (st) is
independent of (zt) and (ηt,i) for every i = 1, 2, 3.

Question B.1: State conditions on the transition probabilities (pij)i,j=1,2,3
which implies that st is weakly mixing.
Note: You do not have to provide any derivations.

Question B.2: State the conditional density of xt given Jt and (xt−1, . . . , x0).
That is, give an expression for

f(xt|Jt, xt−1, . . . , x0),

for t ≥ 1. Use this to give an interpretation of the model for the log-returns
xt conditional on Jt and past x′ts.
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Question B.3: Here we consider the model without conditioning on the
“Jumps”Jt but conditional on the value of st (and lagged x′ts).

Argue that Jt conditional on st is N
(
0,
∑st

j=1 γ
)
distributed.

Next, use this to show that for t ≥ 1 the conditional density of xt given
st = i and (xt−1, . . . , x0) is given by

f(xt|st = i, xt−1, . . . , x0) =
1√

2π(σ2t + iγ)
exp

(
− x2t
2(σ2t + iγ)

)
, i = 1, 2, 3.

Give an interpretation of the model in this case.

Question B.4: Let θ = (ω, α, γ, p11, p12, p21, p22, p31, p32)′ denote the model
parameters. The log-likelihood function is given by

LT (θ) =
T∑
t=1

log fθ(xt|xt−1, . . . , x0).

Explain how you would estimate θ. In particular, explain how the log-likelihood
function can be evaluated.
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