Written Exam at the Department of Economics winter 2020-21

Financial Econometrics A

Final Exam

19 January, 2021
(3-hour open book exam)

Answers only in English.
The paper must be uploaded as one PDF document. The PDF document must be named with exam number only (e.g. '127.pdf') and uploaded to Digital Exam.

This exam question consists of 5 pages in total (including this front page).

This exam has been changed from a written Peter Bangsvej exam to a take-home exam with helping aids. Please read the following text carefully in order to avoid exam cheating.

Be careful not to cheat at exams!

You cheat at an exam, if you during the exam:

- Copy other people's texts without making use of quotation marks and source referencing, so that it may appear to be your own text. This also applies to text from old grading instructions.
- Make your exam answers available for other students to use during the exam
- Communicate with or otherwise receive help from other people
- Use the ideas or thoughts of others without making use of source referencing, so it may appear to be your own idea or your thoughts
- Use parts of a paper/exam answer that you have submitted before and received a passed grade for without making use of source referencing (self plagiarism)

You can read more about the rules on exam cheating on the study information pages in KUnet and in the common part of the curriculum section 4.12.

Exam cheating is always sanctioned with a warning and dispelling from the exam. In most cases, the student is also expelled from the university for one semester.

Please note there is a total of $\mathbf{8}$ questions that you should provide answers to. That is, 4 questions under Question A, and 4 under Question B.

Question A:

Consider the ARCH model given by

$$
\begin{aligned}
x_{t} & =\sigma_{t} z_{t}, \\
\sigma_{t}^{2}(\alpha) & =\omega+\alpha x_{t-1}^{2},
\end{aligned}
$$

with $z_{t} t_{v}(0,1)$ distributed, x_{0} fixed and $t=1,2, \ldots, T$. With $v>2$ and $\omega>0$ fixed, the log-likelihood function in terms of $\alpha \geq 0$ is given by

$$
\ell_{T}^{t_{v}}(\alpha)=-\frac{1}{2} \sum_{t=1}^{T}\left(\log \sigma_{t}^{2}(\alpha)+(v+1) \log \left(1+\frac{x_{t}^{2}}{\sigma_{t}^{2}(\alpha)(v-2)}\right)\right) .
$$

As usual with α set to the true value $\alpha=\alpha_{0}$, we set $\sigma_{t}^{2}\left(\alpha_{0}\right)=\sigma_{t}^{2}$.
Question A.1: We wish to find a value for α, α_{a} say such that x_{t} is stationary, weakly mixing and $E\left|x_{t}\right|<\infty$ for $\alpha \in\left[0, \alpha_{a}\right)$ and $v=4$. To do so apply the drift function

$$
\delta(x)=1+|x|,
$$

and use $E\left|z_{t}\right|=\sqrt{2} / 2 \simeq 0.7$ to find α_{a}. It follows that $\alpha_{a}>2$. Discuss this by comparing with the $\operatorname{ARCH}(1)$ model where z_{t} are $\operatorname{iidN}(0,1)$.

Hint: Recall the inequality that $|a+b|^{\delta}<|a|^{\delta}+|b|^{\delta}$ for $a, b \in \mathbb{R}$ and $\delta \in(0,1)$.

Question A.2: It follows that

$$
S_{T}=\partial \ell_{T}^{t_{v}}(\alpha) /\left.\partial \alpha\right|_{\alpha=\alpha_{0}, v=4}=-\frac{1}{2} \sum_{t=1}^{T} \frac{x_{t-1}^{2}}{\sigma_{t}^{2}} \eta_{t},
$$

with η_{t} iid with $E \eta_{t}=0$, and

$$
\eta_{t}=\left(1-5 \frac{z_{t}^{2} / 2}{1+z_{t}^{2} / 2}\right)
$$

Argue that $E\left(\frac{z_{t}^{2} / 2}{1+z_{t}^{2} / 2}\right)^{2} \leq 1$, and hence that $\sigma_{\eta}^{2}=E \eta_{t}^{2}<\infty$.
Argue that $\gamma=E\left(x_{t-1}^{2} / \sigma_{t}^{2}\right)^{2} \leq 1 / \alpha_{0}^{2}$ for any $\alpha_{0}>0$.

Question A.3: Use Question A. 2 (and A.1) to show that

$$
T^{-1} \sum_{t=1}^{T}\left(\frac{x_{t-1}^{2}}{\sigma_{t}^{2}}\right)^{2} \xrightarrow{P} \gamma .
$$

Next, show that

$$
T^{-1 / 2} S_{T}=-T^{-1 / 2} \frac{1}{2} \sum_{t=1}^{T} \frac{x_{t-1}^{2}}{\sigma_{t}^{2}} \eta_{t} \xrightarrow{D} N\left(0, \gamma \sigma_{\eta}^{2} / 4\right)
$$

for any $\alpha_{0} \in\left(0, \alpha_{a}\right)$.
Similarly one can show that if one relaxes that v is known,

$$
S_{T}^{v}=\partial \ell_{T}^{t_{v}}(\alpha, v) /\left.\partial v\right|_{\alpha=\alpha_{0}, v=v_{0}}
$$

is asymptotically Gaussian distributed.
Discuss implications of these results and in particular why $\alpha_{0}>0$ is an important assumption.

Question A.4: With a sample of $T=1000$ observations, it follows that the MLE of v and α, and corresponding LR test statistics for the hypotheses $H_{v}: v=4$ and $H_{\alpha}: \alpha=0$ are given by:

MLE	Value	Hypothesis	LR statistic
\hat{v}	4.7	$H_{v}: v=4$	$L R(v=4)=2.2$
$\hat{\alpha}$	0.06	$H_{\alpha}: \alpha=0$	$L R(\alpha=0)=3.1$

Discuss if you would reject H_{v} and/or H_{α}. Be precise about which asymptotic distribution(s) and quantiles you are applying.

Question B:

In order to introduce a stochastic jump in log-returns x_{t}, consider the "JumpARCH" model for x_{t} as given by

$$
x_{t}=\varepsilon_{t}+J_{t}, \quad t=1,2, \ldots ., T .
$$

With the initial value x_{0} fixed, ε_{t} is an "ARCH" component as given by

$$
\begin{gathered}
\varepsilon_{t}=\sigma_{t} z_{t} \\
\sigma_{t}^{2}=\omega+\alpha x_{t-1}^{2}, \quad \omega>0, \quad \alpha \geq 0
\end{gathered}
$$

with $z_{t} \operatorname{iidN}(0,1)$. Note that it is x_{t} lagged that enters the σ_{t}^{2} and not as for a standard ARCH model, ε_{t} lagged.

Next the J_{t} is a "jump" component which is given by a sum of a random number s_{t} of random $\eta_{t, i}$ variables which are $\operatorname{iidN}(0, \gamma)$, with $\gamma>0$. That is,

$$
J_{t}=\eta_{t, 1}+\ldots+\eta_{t, s_{t}}=\sum_{i=1}^{s_{t}} \eta_{t, i}
$$

with s_{t} stochastic and taking values in 1,2 or 3 . More specifically, we consider here the case where s_{t} is given by a 3 -state Markov chain with constant transition probabilities $p_{i j}=P\left(s_{t}=j \mid s_{t-1}=i\right) \in[0,1]$ for $i, j=1,2,3$, such that $\sum_{j=1}^{3} p_{i j}=1$ for $i=1,2,3$.

Throughout, we assume that the processes $\left(z_{t}\right)_{t=1,2, \ldots}$ and $\left(\eta_{t, i}\right)_{t=1,2, \ldots}$ are independent for every $i=1,2,3$, and that the processes $\left(\eta_{t, i}\right)$ and $\left(\eta_{t, j}\right)$ are independent for $i \neq j$. Lastly, we also assume that the Markov chain $\left(s_{t}\right)$ is independent of $\left(z_{t}\right)$ and $\left(\eta_{t, i}\right)$ for every $i=1,2,3$.

Question B.1: State conditions on the transition probabilities $\left(p_{i j}\right)_{i, j=1,2,3}$ which implies that s_{t} is weakly mixing.
Note: You do not have to provide any derivations.

Question B.2: State the conditional density of x_{t} given J_{t} and $\left(x_{t-1}, \ldots, x_{0}\right)$. That is, give an expression for

$$
f\left(x_{t} \mid J_{t}, x_{t-1}, \ldots, x_{0}\right)
$$

for $t \geq 1$. Use this to give an interpretation of the model for the log-returns x_{t} conditional on J_{t} and past $x_{t}^{\prime} \mathrm{s}$.

Question B.3: Here we consider the model without conditioning on the "Jumps" J_{t} but conditional on the value of s_{t} (and lagged $x_{t}^{\prime} \mathrm{s}$).

Argue that J_{t} conditional on s_{t} is $N\left(0, \sum_{j=1}^{s_{t}} \gamma\right)$ distributed.
Next, use this to show that for $t \geq 1$ the conditional density of x_{t} given $s_{t}=i$ and $\left(x_{t-1}, \ldots, x_{0}\right)$ is given by

$$
f\left(x_{t} \mid s_{t}=i, x_{t-1}, \ldots, x_{0}\right)=\frac{1}{\sqrt{2 \pi\left(\sigma_{t}^{2}+i \gamma\right)}} \exp \left(-\frac{x_{t}^{2}}{2\left(\sigma_{t}^{2}+i \gamma\right)}\right), \quad i=1,2,3
$$

Give an interpretation of the model in this case.

Question B.4: Let $\theta=\left(\omega, \alpha, \gamma, p_{11}, p_{12}, p_{21}, p_{22}, p_{31}, p_{32}\right)^{\prime}$ denote the model parameters. The log-likelihood function is given by

$$
L_{T}(\theta)=\sum_{t=1}^{T} \log f_{\theta}\left(x_{t} \mid x_{t-1}, \ldots, x_{0}\right)
$$

Explain how you would estimate θ. In particular, explain how the log-likelihood function can be evaluated.

