Written Exam at the Department of Economics winter 2018-19

Financial Econometrics A

Final Exam

January 16, 2019

(3-hour closed book exam)

Answers only in English.

This exam question consists of 6 pages in total

NB: If you fall ill during an examination at Peter Bangs Vej, you must contact an invigilator who will show you how to register and submit a blank exam paper. Then you leave the examination. When you arrive home, you must contact your GP and submit a medical report to the Faculty of Social Sciences no later than seven (7) days from the date of the exam.

Be careful not to cheat at exams!

- You cheat at an exam, if during the exam, you:
- Make use of exam aids that are not allowed
- Communicate with or otherwise receive help from other people
- Copy other people's texts without making use of quotation marks and source referencing, so that it may appear to be your own text
- Use the ideas or thoughts of others without making use of source referencing, so it may appear to be your own idea or your thoughts
- Or if you otherwise violate the rules that apply to the exam

Please note there is a total of **9 questions** that you should provide answers to. That is, 5 questions under Question A, and 4 under Question B.

Question A:

Consider the time series model given by,

$$x_t = \sigma_t z_t, \quad t = 1, 2, \dots$$
 (A.1)

with $z_t \sim i.i.d.N(0,1)$ and

$$\sigma_t^2 = \omega + \alpha x_{t-1}^2 + \beta g(y_{t-1}), \tag{A.2}$$

with $\omega > 0$, $\alpha, \beta \ge 0$. Here y_t is some exogenous covariate, as for example the realized volatility, and $g(\cdot)$ is a *continuous* function satisfying $g(y_t) \ge 0$ for all t. The initial x_0 and y_0 are taken as given.

Question A.1: Suppose that $\beta = 0$. State a condition for x_t to be weakly mixing and such that $Ex_t^2 < \infty$. You do not have to provide any derivations.

Question A.2: Suppose that $\beta > 0$. Assume that y_t is *i.i.d.N* $(0, \sigma_y^2)$, and that the processes (z_t) and (y_t) are independent.

With $v_t = (x_t, y_t)'$ it holds that the density of v_t conditional on $(v_0, v_1, ..., v_{t-1})$ is given by

$$f(v_t|v_{t-1},...,v_0) = f(x_t|v_{t-1})f(y_t|v_{t-1}), \quad t \ge 1.$$

Argue that v_t is a Markov chain for which the transition density $f(\cdot|\cdot)$ is such that the drift criterion can be applied.

Next, suppose that $g(y_t) = y_t^2$. With v = (x, y)' let $||v||^2 = v'v = x^2 + y^2$. With drift function $\delta(v_t) = 1 + ||v_t||^2$, show that for some constant c,

$$E\left(\delta\left(v_{t}\right)|v_{t-1}=v\right) \leq c + \max\left(\alpha,\beta\right)\left(x^{2}+y^{2}\right)$$

Conclude that if max $(\alpha, \beta) < 1$, then v_t is weakly mixing with $E[x_t^2] + E[y_t^2] < \infty$.

Question A.3: Suppose that y_t is not necessarily *i.i.d.* $N(0, \sigma_y^2)$ and that $g(y_t)$ is not necessarily equal to y_t^2 .

Let $\theta = (\omega, \alpha, \beta)'$. With $L_T(\theta)$ the log-likelihood function for the model, it holds that the score for β is given by,

$$S(\theta) = \partial \log L_T(\theta) / \partial \beta = \sum_{t=1}^T \frac{1}{2} \left(\frac{x_t^2}{\sigma_t^2(\theta)} - 1 \right) \frac{g(y_{t-1})}{\sigma_t^2(\theta)},$$

with

$$\sigma_t^2(\theta) = \omega + \alpha x_{t-1}^2 + \beta g(y_{t-1}).$$

Suppose that $(x_t, g(y_t))'$ is weakly mixing and that the true parameter values $\theta_0 = (\omega_0, \alpha_0, \beta_0)'$ satisfy $\omega_0 > 0$, $\alpha_0 < 1$, and $0 < \beta_L \le \beta_0 < 1$. Show that as $T \to \infty$

$$\frac{1}{\sqrt{T}}S\left(\theta_{0}\right) \xrightarrow{d} N\left(0, \frac{\nu}{2}\right),\tag{A.3}$$

where

$$\nu = E\left[\left(\frac{g(y_{t-1})}{\omega_0 + \alpha_0 x_{t-1}^2 + \beta_0 g(y_{t-1})}\right)^2\right] \le 1/\beta_L^2 < \infty.$$

Question A.4: Explain briefly what (A.3) can be used for.

Question A.5: Suppose now that y_t is the square-root of the Realized Volatility based on 10-minutes intraday log-returns on the S&P500 Index, denoted $RV_t^{1/2}$. A plot of $RV_t^{1/2}$ and its sample autocorrelation function is given in Figure A.1.

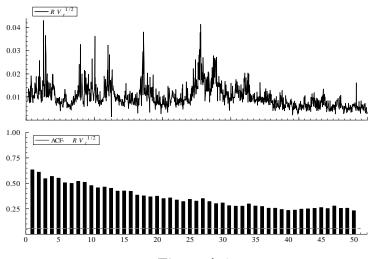


Figure A.1

Maximum likelihood estimation of the parameters of the model (A.1)-(A.2) with $g(RV_t^{1/2}) = RV_t^{1/2}$ gave the following output:

Output: MLE of ARCH with RV		
$\hat{\alpha} = 0.07$	std.deviation($\hat{\alpha}$) = 0.012	
$\hat{\beta} = 0.21$	std.deviation($\hat{\beta}$) = 0.121	

What would you conclude in terms of the importance of Realized Volatility?

Question B:

Question B.1: As part of a discussion of "bubbles" in financial markets, consider the asset log-price series y_t in Figure B.1 with t = 1, 2, ..., 1620.

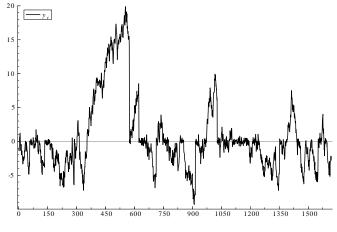


Figure B.1

For estimation, the following 2-state Markov switching model was applied:

$$y_t = \rho_{s_t} y_{t-1} + \sigma_{s_t} z_t, \quad t = 2, ..., T, \quad T = 1620.$$
 (B.1)

Here z_t is *i.i.d.N*(0, 1) distributed and y_1 is fixed. Moreover, $s_t \in \{1, 2\}$ is an unobserved state variable governed by the transition matrix $P = (p_{ij})_{i,j=1,2}$ with $p_{ij} = P(s_t = j | s_{t-1} = i)$. The processes (z_t) and (s_t) are independent. It holds that

$$\rho_{s_t} = \rho 1 (s_t = 1) \quad \text{and} \quad \sigma_{s_t}^2 = \sigma_1^2 1 (s_t = 1) + \sigma_2^2 1 (s_t = 2).$$
(B.2)

Gaussian likelihood estimation gave the following output, with misspecification tests in terms of smoothed standardized residuals \hat{z}_t^* :

MLE of <i>P</i> :	$\hat{p}_{11} = 0.98$ $\hat{p}_{21} = 0.07$
MLE of ρ :	$\hat{ ho} = 0.99$
MLE of σ_1^2 and σ_2^2	$\hat{\sigma}_1^2 = 0.71$ and $\hat{\sigma}_2^2 = 0.30$
	p-values:
Test for Normality of \hat{z}_t^* :	0.12
LM-test for no ARCH in \hat{z}_t^* :	0.10
LR-test of $\rho = 1$:	0.81

Interpret the model. What would you conclude on the basis of the output and Figure B.1?

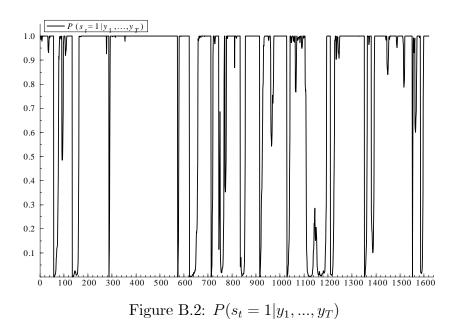
Question B.2: In order to obtain an estimate of $\theta = (p_{11}, p_{22}, \rho, \sigma_1^2, \sigma_2^2)$, the function $M(\theta)$ given by

$$M(\theta) = \sum_{i,j=1}^{2} \log p_{ij} \sum_{t=2}^{1620} p_t^*(i,j) + \sum_{j=1}^{2} \sum_{t=2}^{1620} p_t^*(j) \log f_\theta(y_t | y_{t-1}, s_t = j), \quad (B.3)$$

can be used. Provide an expression for $f_{\theta}(y_t|y_{t-1}, s_t = 1)$.

Question B.3: Explain how you would use $M(\theta)$ from (B.3) in order to find and estimate, $\hat{\theta}$, of θ .

Comment briefly on what Figure B.2 shows in relation to finding $\hat{\theta}$.



Question B.4: Now assume that at time T, $s_T = 1$. In order to forecast if one will enter state 2 at T + 2, derive

$$P(s_{T+2} = 2|s_T = 1),$$

and provide an estimate of this given the estimation output in Question B.1.