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Please note there are a total of 9 questions that you should provide answers
to. That is, 4 questions under Question A, and 5 under Question B.

Question A:

Consider the following log-linear Realized GARCH model given by

xt = σtzt, (A.1)

with zt ∼ i.i.d.N (0, 1) , and

log(σ2t ) = 1 + α log(yt−1), (A.2)

log(yt) = γ + φ log(σ2t ) + ut, (A.3)

with ut ∼ i.i.d.N (0, 1) and α, γ, φ ∈ R. It is assumed that the processes
(zt) and (ut) are independent. Here yt is some observed positive exogenous
covariate as for example the realized volatility.

Question A.1: Use the drift criterion to show that log(yt) is weakly mixing
with E[(log(yt))

2] <∞, if |αφ| < 1.
Given that log(yt) is weakly mixing we do also have that the joint process
(xt, log(yt)) is weakly mixing.
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Question A.2: Let θ = (α, γ, φ) denote the model parameters. Given a
sample (xt, log(yt)), t = 0, 1, ..., T , the joint log-likelihood is (up to a constant
term and a scaling factor)

LT (θ) =

T∑
t=1

lt(θ),

lt(θ) = − log(σ2t (θ))−
x2t

σ2t (θ)
−
[
log(yt)− γ − φ log(σ2t (θ))

]2
,

where log(σ2t (θ)) = 1 + α log(yt−1).
Show that

∂lt(θ)

∂α
=

{
x2t

σ2t (θ)
− 1 + 2φ

[
log(yt)− γ − φ log(σ2t (θ))

]}
log(yt−1).

Hint : You may want to use that

∂lt(θ)

∂α
=

∂lt(θ)

∂ log(σ2t (θ))

∂ log(σ2t (θ))

∂α
.

Question A.3: Let θ0 = (α0, γ0, φ0) denote the vector of true parameter
values. Define ST (θ) = ∂LT (θ)/∂α.
Assume that (xt, log(yt)) is weakly mixing and satisfies the drift criterion
such that E[(log(yt−1))

2] <∞. Show that
1√
T
ST (θ0)

d→ N (0, v) , (A.4)

where v = (2 + 4φ20)E[(log(yt−1))
2].

Explain briefly what the property (A.4) can be used for.

Hint : Use that log(yt) − γ0 − φ0 log(σ2t (θ0)) = ut. Moreover, you may want
to recall that E[z4t ] = 3.

Question A.4: For the model (A.1)-(A.3), the one-period VaR at risk level
κ, VaRκT,1, is defined as

PT (xT+1 < −VaRκ
T,1) = κ, κ ∈ (0, 1),

where PT (·) denotes the conditional distribution of xT+1. It can be shown
(but do not do so) that

VaRκ
T,1 = −σT+1Φ−1(κ),

where Φ−1(·) denotes the inverse cdf of the standard normal distribution.
Explain briefly how you would compute an estimate of VaRκ

T,1.
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Question B:

Consider the following switching model given by

xt = µ1(st=1) + εt, (B.1)

where µ is an R-valued constant and st can take value 1 or 2. Moreover,
εt ∼ i.i.d.N(0, σ2), and we assume that the processes (st) and (εt) are in-
dependent. Suppose that st is a two-state Markov chain with transition
probabilities P (st = j|st−1 = i) = pij, i, j = 1, 2.
Note that 1(st=1) = 1 if st = 1 and 1(st=1) = 0 if st = 2.

Question B.1: Suppose that µ = 0. Explain if xt is weakly mixing.
What should hold for p11 and p22 for st to be weakly mixing?

Question B.2: Next, assume that st is observed. Moreover, suppose that
the transition probabilities satisfy p11 = (1− p22) = p ∈ (0, 1) such that st is
and i.i.d. process with P (st = 1) = p and P (st = 2) = 1− p.
Show that for t ≥ 1, the joint conditional density of (xt, st) is

f(xt, st|xt−1, st−1, ..., x0, s0) =

[
1√

2πσ2
exp

(
−(xt − µ)2

2σ2

)
p

]1(st=1)
×
[

1√
2πσ2

exp

(
− xt

2

2σ2

)
(1− p)

]1(st=2)
.

Question B.3: Maintaining the assumptions from Question B.2, let θ =
(µ, σ2, p) denote the model parameters. The log-likelihood function is

LT (θ) =

T∑
t=1

{
log(p)− 1

2
log(2πσ2)− (xt − µ)2

2σ2

}
1(st=1)

+
T∑
t=1

{
log(1− p)− 1

2
log(2πσ2)− xt

2

2σ2

}
1(st=2).

Let µ̂ denote the maximum likelihood estimator for µ.
Show that

µ̂ =

∑T
t=1 xt1(st=1)∑T
t=1 1(st=1)

.

Moreover, let p̂ denote the maximum likelihood estimator for p. Derive p̂
and argue that p̂ P→ p as T →∞.
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Question B.4: Suppose that the process (st) is unobserved, but does still
satisfy the i.i.d. assumption, i.e. p11 = (1 − p22) = p ∈ (0, 1). Then the
estimators derived in Question B.3 are infeasible. Instead we may introduce

L̃T (θ) = E[LT (θ)|x1, ...xT ].

It holds that

L̃T (θ) =

T∑
t=!

{
log(p)− 1

2
log(2πσ2)− (xt − µ)2

2σ2

}
P ?
t (1)

+
T∑
t=1

{
log(1− p)− 1

2
log(2πσ2)− xt

2

2σ2

}
(1− P ?

t (1)),

where P ?
t (1) = P (st = 1|xt).

Explain briefly the role of L̃T (θ) for the estimation of θ.

Question B.5: The following figure shows the daily log-returns of the S&P
500 index for the period January 4, 2010 to September 17, 2015.
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Discuss briefly whether the swithcing model in (B.1) is adequate for mod-
elling the main features of the log-returns. Would another type of Markov
switching model be more suitable?
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