Written Exam at the Department of Economics winter 2016-17
 Financial Econometrics A

Final Exam

Date: January 6 ${ }^{\text {th }}, 2017$
(3-hour closed book exam)

Please note that the language used in your exam paper must correspond to the language for which you registered during exam registration.

This exam question consists of 5 pages in total

NB: If you fall ill during the actual examination at Peter Bangsvej, you must contact an invigilator in order to be registered as having fallen ill. Then you submit a blank exam paper and leave the examination. When you arrive home, you must contact your GP and submit a medical report to the Faculty of Social Sciences no later than seven (7) days from the date of the exam.

Please note there are a total of $\mathbf{9}$ questions that you should provide answers to. That is, $\mathbf{4}$ questions under Question A, and $\mathbf{5}$ under Question B.

Question A:

Consider the following log-linear Realized GARCH model given by

$$
\begin{equation*}
x_{t}=\sigma_{t} z_{t}, \tag{A.1}
\end{equation*}
$$

with $z_{t} \sim$ i.i.d. $N(0,1)$, and

$$
\begin{align*}
\log \left(\sigma_{t}^{2}\right) & =1+\alpha \log \left(y_{t-1}\right) \tag{A.2}\\
\log \left(y_{t}\right) & =\gamma+\phi \log \left(\sigma_{t}^{2}\right)+u_{t} \tag{A.3}
\end{align*}
$$

with $u_{t} \sim$ i.i.d. $N(0,1)$ and $\alpha, \gamma, \phi \in \mathbb{R}$. It is assumed that the processes $\left(z_{t}\right)$ and $\left(u_{t}\right)$ are independent. Here y_{t} is some observed positive exogenous covariate as for example the realized volatility.

Question A.1: Use the drift criterion to show that $\log \left(y_{t}\right)$ is weakly mixing with $E\left[\left(\log \left(y_{t}\right)\right)^{2}\right]<\infty$, if $|\alpha \phi|<1$.
Given that $\log \left(y_{t}\right)$ is weakly mixing we do also have that the joint process $\left(x_{t}, \log \left(y_{t}\right)\right)$ is weakly mixing.

Question A.2: Let $\theta=(\alpha, \gamma, \phi)$ denote the model parameters. Given a sample $\left(x_{t}, \log \left(y_{t}\right)\right), t=0,1, \ldots, T$, the joint log-likelihood is (up to a constant term and a scaling factor)

$$
\begin{aligned}
L_{T}(\theta) & =\sum_{t=1}^{T} l_{t}(\theta) \\
l_{t}(\theta) & =-\log \left(\sigma_{t}^{2}(\theta)\right)-\frac{x_{t}^{2}}{\sigma_{t}^{2}(\theta)}-\left[\log \left(y_{t}\right)-\gamma-\phi \log \left(\sigma_{t}^{2}(\theta)\right)\right]^{2},
\end{aligned}
$$

where $\log \left(\sigma_{t}^{2}(\theta)\right)=1+\alpha \log \left(y_{t-1}\right)$.
Show that

$$
\frac{\partial l_{t}(\theta)}{\partial \alpha}=\left\{\frac{x_{t}^{2}}{\sigma_{t}^{2}(\theta)}-1+2 \phi\left[\log \left(y_{t}\right)-\gamma-\phi \log \left(\sigma_{t}^{2}(\theta)\right)\right]\right\} \log \left(y_{t-1}\right) .
$$

Hint: You may want to use that

$$
\frac{\partial l_{t}(\theta)}{\partial \alpha}=\frac{\partial l_{t}(\theta)}{\partial \log \left(\sigma_{t}^{2}(\theta)\right)} \frac{\partial \log \left(\sigma_{t}^{2}(\theta)\right)}{\partial \alpha} .
$$

Question A.3: Let $\theta_{0}=\left(\alpha_{0}, \gamma_{0}, \phi_{0}\right)$ denote the vector of true parameter values. Define $S_{T}(\theta)=\partial L_{T}(\theta) / \partial \alpha$.
Assume that $\left(x_{t}, \log \left(y_{t}\right)\right)$ is weakly mixing and satisfies the drift criterion such that $E\left[\left(\log \left(y_{t-1}\right)\right)^{2}\right]<\infty$. Show that

$$
\begin{equation*}
\frac{1}{\sqrt{T}} S_{T}\left(\theta_{0}\right) \xrightarrow{d} N(0, v), \tag{A.4}
\end{equation*}
$$

where $v=\left(2+4 \phi_{0}^{2}\right) E\left[\left(\log \left(y_{t-1}\right)\right)^{2}\right]$.
Explain briefly what the property (A.4) can be used for.
Hint: Use that $\log \left(y_{t}\right)-\gamma_{0}-\phi_{0} \log \left(\sigma_{t}^{2}\left(\theta_{0}\right)\right)=u_{t}$. Moreover, you may want to recall that $E\left[z_{t}^{4}\right]=3$.

Question A.4: For the model (A.1)-(A.3), the one-period VaR at risk level $\kappa, \operatorname{VaR}_{T, 1}^{\kappa}$, is defined as

$$
P_{T}\left(x_{T+1}<-\operatorname{VaR}_{T, 1}^{\kappa}\right)=\kappa, \quad \kappa \in(0,1),
$$

where $P_{T}(\cdot)$ denotes the conditional distribution of x_{T+1}. It can be shown (but do not do so) that

$$
\operatorname{VaR}_{T, 1}^{\kappa}=-\sigma_{T+1} \Phi^{-1}(\kappa),
$$

where $\Phi^{-1}(\cdot)$ denotes the inverse cdf of the standard normal distribution. Explain briefly how you would compute an estimate of $\mathrm{VaR}_{T, 1}^{\kappa}$.

Question B:

Consider the following switching model given by

$$
\begin{equation*}
x_{t}=\mu 1_{\left(s_{t}=1\right)}+\varepsilon_{t}, \tag{B.1}
\end{equation*}
$$

where μ is an \mathbb{R}-valued constant and s_{t} can take value 1 or 2 . Moreover, $\varepsilon_{t} \sim$ i.i.d. $N\left(0, \sigma^{2}\right)$, and we assume that the processes $\left(s_{t}\right)$ and $\left(\varepsilon_{t}\right)$ are independent. Suppose that s_{t} is a two-state Markov chain with transition probabilities $P\left(s_{t}=j \mid s_{t-1}=i\right)=p_{i j}, i, j=1,2$.
Note that $1_{\left(s_{t}=1\right)}=1$ if $s_{t}=1$ and $1_{\left(s_{t}=1\right)}=0$ if $s_{t}=2$.

Question B.1: Suppose that $\mu=0$. Explain if x_{t} is weakly mixing.
What should hold for p_{11} and p_{22} for s_{t} to be weakly mixing?
Question B.2: Next, assume that s_{t} is observed. Moreover, suppose that the transition probabilities satisfy $p_{11}=\left(1-p_{22}\right)=p \in(0,1)$ such that s_{t} is and i.i.d. process with $P\left(s_{t}=1\right)=p$ and $P\left(s_{t}=2\right)=1-p$.
Show that for $t \geq 1$, the joint conditional density of $\left(x_{t}, s_{t}\right)$ is

$$
\begin{aligned}
f\left(x_{t}, s_{t} \mid x_{t-1}, s_{t-1}, \ldots, x_{0}, s_{0}\right)= & {\left[\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(x_{t}-\mu\right)^{2}}{2 \sigma^{2}}\right) p\right]^{1_{\left(s_{t}=1\right)}} } \\
& \times\left[\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{x_{t}^{2}}{2 \sigma^{2}}\right)(1-p)\right]^{1_{\left(s_{t}=2\right)}} .
\end{aligned}
$$

Question B.3: Maintaining the assumptions from Question B.2, let $\theta=$ $\left(\mu, \sigma^{2}, p\right)$ denote the model parameters. The log-likelihood function is

$$
\begin{aligned}
L_{T}(\theta)= & \sum_{t=1}^{T}\left\{\log (p)-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{\left(x_{t}-\mu\right)^{2}}{2 \sigma^{2}}\right\} 1_{\left(s_{t}=1\right)} \\
& +\sum_{t=1}^{T}\left\{\log (1-p)-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{x_{t}^{2}}{2 \sigma^{2}}\right\} 1_{\left(s_{t}=2\right)} .
\end{aligned}
$$

Let $\hat{\mu}$ denote the maximum likelihood estimator for μ.
Show that

$$
\hat{\mu}=\frac{\sum_{t=1}^{T} x_{t} 1_{\left(s_{t}=1\right)}}{\sum_{t=1}^{T} 1_{\left(s_{t}=1\right)}} .
$$

Moreover, let \hat{p} denote the maximum likelihood estimator for p. Derive \hat{p} and argue that $\hat{p} \xrightarrow{P} p$ as $T \rightarrow \infty$.

Question B.4: Suppose that the process $\left(s_{t}\right)$ is unobserved, but does still satisfy the i.i.d. assumption, i.e. $p_{11}=\left(1-p_{22}\right)=p \in(0,1)$. Then the estimators derived in Question B. 3 are infeasible. Instead we may introduce

$$
\tilde{L}_{T}(\theta)=E\left[L_{T}(\theta) \mid x_{1}, \ldots x_{T}\right] .
$$

It holds that

$$
\begin{aligned}
\tilde{L}_{T}(\theta)= & \sum_{t=!}^{T}\left\{\log (p)-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{\left(x_{t}-\mu\right)^{2}}{2 \sigma^{2}}\right\} P_{t}^{\star}(1) \\
& +\sum_{t=1}^{T}\left\{\log (1-p)-\frac{1}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{x_{t}^{2}}{2 \sigma^{2}}\right\}\left(1-P_{t}^{\star}(1)\right),
\end{aligned}
$$

where $P_{t}^{\star}(1)=P\left(s_{t}=1 \mid x_{t}\right)$.
Explain briefly the role of $\tilde{L}_{T}(\theta)$ for the estimation of θ.

Question B.5: The following figure shows the daily log-returns of the S\&P 500 index for the period January 4, 2010 to September 17, 2015.

Discuss briefly whether the swithcing model in (B.1) is adequate for modelling the main features of the log-returns. Would another type of Markov switching model be more suitable?

