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Problem 1. We consider the polynomial P : C → C that is given by

∀ z ∈ C : P (z) = 2z4 + 2z3 + 7z2 + 2z + 5.

Furthermore, we consider the differential equation

(∗) d4x

dt4
+

d3x

dt3
+

7

2

d2x

dt2
+

dx

dt
+

5

2
x = 0

and the differential equations

(∗∗) d4x

dt4
+

d3x

dt3
+

7

2

d2x

dt2
+

dx

dt
+

5

2
x = 27et

and

(∗ ∗ ∗) d5y

dt5
+

d4y

dt4
+

7

2

d3y

dt3
+

d2y

dt2
+

5

2

dy

dt
= 0.

(1) Show that the complex numbers i and −i are roots of the polynomial
P, i. e. P (i) = 0 and P (−i) = 0.

(2) Solve the equation
P (z) = 0.

(3) Determine the general solution of the differential equation (∗).
(4) Show that the differential equation (∗) is not globally asymptotically

stable.

(5) Determine the general solution of the differential equation (∗∗).
(6) Determine the general solution of the differential equation (∗ ∗ ∗).



Problem 2. Consider the vector space Rn, where n ∈ N and n ≥ 3. Also
consider the set

S = {x = (x1, x2, . . . , xn) ∈ Rn : x1 > 0 ∧ x2 > 0}.
(1) Show that the set S is an open subset of Rn.

(2) Find the closure S of the set S.

(3) Find the complement CS of the set S and find the boundary ∂(CS) of
this set.

(4) Is the set CS closed?

Problem 3. We consider the vector valued function f : R2 → R2 given by

∀ (x, y) ∈ R2 : f(x, y) =

(
2xy + ey

ex + 4y2

)
.

(1) Find the Jacobi matrix Df(x, y) of the function f at any point (x, y) ∈
R2.

(2) Find the determinant det Df(x, y) and show that the Jacobi matrix
Df(0, 0) is non-singular.

(3) Prove that there exists a neighbourhood U(0,0) of the point (0, 0) such
that the Jacobi matrix Df(x, y) is non-singular at any point (x, y) ∈
U(0,0).

(4) Find the inverse (Df(0, 0))−1 of the non-singular Jacobi matrix Df(0, 0).

(5) Solve the equation
(
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)
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.

(6) Show that the vector valued function g : R2 → R2 given by the rule

∀ (x, y) ∈ R2 : g(x, y) = f(0, 0) + Df(0, 0)
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has no fixed points.



Problem 4. We consider and the function F : R3 → R given by the rule

∀ (t, x, y) ∈ R3 : F (t, x, y) = y2 + (1 + t2)x.

Furthermore, we consider the functional

I(x) =
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(1) Show that for every t ∈ R the function F = F (t, x, y) is convex in
(x, y) ∈ R2.

(2) Solve the variational problem: Determine the minimum function x∗ =
x∗(t) of the functional I(x) subject to the conditions

x∗(0) = 3 and x∗(1) =
1
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