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Problem 1. We consider the 3× 3 matrix

A =




1 0 1
0 1 2
1 2 1




and the vectorial differential equations

(∆)
dz

dt
= Az

and

(Ξ)
dz

dt
= Az +




4
−4
8


 .

(1) Show that the matrix A is non-singular, i. e. A is invertible.

(2) Determine the inverse matrix A−1 of A.

(3) Find the eigenvalues of the matrix A.

(4) Find the eigenspaces of the matrix A.

(5) Determine the general solution of the vectorial differential equation
(∆).

(6) Determine the general solution of the vectorial differential equation (Ξ).



(7) For every v ∈ R we consider the 3× 3 matrix

B(v) =




v 0 1
0 1 2
1 2 v




and the vectorial differential equation

(§) dz

dt
= B(v)z.

Show that the vectorial differential equation is not globally asymptot-
ically stable for any value of v ∈ R.

Problem 2. For any r ≥ 1 we consider the set

K(r) = {z ∈ C :
1

r
≤ |z| ≤ r}.

(1) Show that, for any r ≥ 1, the set K(r) is compact.

(2) Find, for any r ≥ 1, the interior (K(r))o of the set K(r).

(3) Determine the sets

K =
⋂

r>1

K(r) and K∞ =
⋃

r>1

K(r).

(4) Show that the set K∞ is open.

(5) Let (ζk) be a sequence of points such that

∀ k ∈ N : ζk ∈ K
(
1 +

1

k

)
.

Show that the sequence (ζk) has a convergent subsequence (ζkp).

Let ζ0 be the limit point of the convergent subsequence (ζkp). Show
that |ζ0| = 1.

Problem 3. We consider the function f : R2 → R given by

∀ (x, y) ∈ R2 : f(x, y) = 2x2 + xy2

and the correspondence F : R → R defined by the rule

F (x) =
{

[−1, x], if x ≥ 0
[−2, 0], if x < 0

.



(1) Show that the correspondence F does not have the closed graph prop-
erty.

(2) Show that the maximum value function V : R → R given by

∀x ∈ R : V (x) = max{f(x, y) : y ∈ F (x)}

is well defined and find an algebraical rule of V .

(3) Show that the maximum value function V is continuous.

(4) Determine the maximum value correspondence Y ∗ : R → R given by

∀x ∈ R : Y ∗(x) = {y ∈ F (x) : V (x) = f(x, y)}.

Problem 4. We consider the function F : R3 → R given by the rule

∀ (t, x, y) ∈ R3 : F (t, x, y) = (x + y2)e−t.

Furthermore we consider the functional

I(x) =
∫ 1

0

(
x +

(dx

dt

)2
)e−t dt.

(1) Show that for every t ∈ R the function F = F (t, x, y) is convex in
(x, y) ∈ R2.

(2) Solve the variational problem: Determine the minimum function x∗ =
x∗(t) of the functional I(x) subject to the conditions x∗(0) = 1 and
x∗(1) = −1

2
.


