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The Exam consists of 3 problems that will enter the evaluation with equal weights.

1. Let the price of a traded financial instrument, S, be modelled (under the probability measure P) by

the geometric Brownian motion

dS = µSdt+ σSdz

where µ and σ > 0 are constants, and z is a Brownian motion.

(a) Describe the qualitative characteristics of this model, and discuss its possible shortcomings as

a model of a stock price.

(b) Assume a constant risk free rate of r, and that the instrument pays a continuous dividend stream

of δ proportional to the price S. What will the drift rate of the price be under the standard risk

neutral probability measure (Q) and a no-arbitrage assumption?

(c) Consider a derivative on S with value V equal to Sn. Use Ito’s lemma to find the process

followed by V . Is the volatility of V higher, if n is higher?

2. The HJM-model describes the simultaneous evolution of the term structure of interest rates. Let the

evolution of instantaneous forward rates contracted at t for time T be described by the Ito-process

df(t, T ) = m(t, T,Ω)dt+ s(t, T,Ω)dz

where Ω is a set of state variables.

(a) Under certain conditions we have the following no-arbitrage condition for the drift term:

m(t, T,Ω) = s(t, T,Ω)

∫
T

t

s(t, τ,Ω)dτ

Comment on this result, and in particular explain under which probability measure it is derived.

(b) The short rate in this model is in general non-Markov. Explain what this means, and why it is

a complication for implementation.

(c) As a special case let s(t, T,Ω) be a constant s. Derive the process followed by forward rates.

Comment on the distribution of the forward rates.

3. (a) Consider a derivative with value V (S, t) as some function of the current stock price S and time

t (and further implicit parameters). Define the Delta, Gamma and Theta of the derivative. What

can they be used for?

(b) Assume that the stock pays no dividends before time T , and that there is a constant risk free

interest rate of r. Let c(S,K, T, r) and p(S,K, T, r) be the price at time t = 0 of a European

call and a European put, respectively, on the stock with the same strike K and expiry T . Derive

the call-put-parity.

(c) Use the call-put-parity to find a relationship between the Deltas of the call and put. Repeat this

for Gamma and Theta, respectively.

(d) Suppose a portfolio of the stock and/or derivatives of that stock is Delta-neutral, and that there

are no arbitrage possibilities. Let the value of the portfolio be Π(S, t). Use the Black-Scholes-

Merton PDE to characterise the relation between the Theta and Gamma of the portfolio.


