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Abstract

We consider a principal-agent problem where the principal wishes to be endorsed by

a sequence of agents, but cannot truthfully reveal type. In the standard "herding"

model, the agents learn from each other’s decisions, which can lead to cascades on a

given decision when later agents’ private information is swamped. We augment the

standard model to allow the principal to subject herself to a test designed to provide

public information about her type. She must decide how tough a test to attempt from

a continuum of test types, which involves trading off the higher probability of passing

an easier test against the greater impact from passing a tougher test. We find that the

principal will always choose to be tested, and will prefer a tough test to a neutral or easy

one.

Keywords: Bayesian updating, endorsements, herding, sequential decision-making, tests
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1. Introduction

When a firm develops a new product, it will often consider where to send it for pre-launch review

or accreditation. A job applicant facing a sequence of interviews must select suitable referees. Film

studios decide who to invite to pre-launch viewings and premieres. A politician may wish to leak a new

policy to the media, and has a choice of which media outlet to target. A firm launching an initial public

offering can choose from auditors of different reputations to review its accounts. The list goes on. In

each case a principal ultimately wants to sell products, win votes, or generally be endorsed by a group

of agents, and has the option of being publicly tested before seeking endorsement. Despite the powerful

effects that success or failure of such a test may have on the performance of the principal, the literature

has paid little attention to the role of such public testing, especially the decision that a principal must

make when a variety of tests are available which differ in their degree of toughness. The present paper

attempts to correct for this omission.

The principal is assumed to be either good or bad for agents, who need to estimate the relative

likelihood of the two types before making their endorsement decision. The agents decide in sequence

and are granted three sources of information. As in the standard "herding" model, they receive private

information, which perhaps relates to prior experience of the principal or her product or policies, and

can observe each other’s endorsement decisions in an attempt to learn something about other agents’

private information. The sequential nature of decision-making can allow cascades on a given decision to

develop when later agents’ private information is swamped by the information revealed by the decisions

of earlier agents. We introduce a third source of information by allowing the principal to subject

herself to a test designed to provide public information about her type before any agent has made his

endorsement decision. She must decide how tough a test to attempt from a continuum of test types,

which involves trading off the higher probability of passing an easier test against the greater impact

from passing a tougher test.

As seems reasonable in this context, a bad type of principal can costlessly duplicate the choice of test

chosen by a good principal. As a result, all of our outcomes will be pooling, and there will be no issues

of incentive compatibility or scope for a separating equilibrium. Therefore the choice of a tough test

does not have the advantage of signaling the type of principal. Without a role for signaling by choice

of test, we might assume that since an easy test is by definition the most likely to be passed, it must

naturally be the first choice for any principal. However tough tests have two innate advantages. They

generate a stronger impact on agents in the event of a pass, and they are less damaging in the event of

a fail. We find that the principal will always choose to be tested, and perhaps surprisingly will prefer a

tough test to a neutral or easy one despite the lack of an immediate signaling advantage through the

choice of test.
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1.1. Related Literature. The paper most closely related to ours is Lerner and Tirole’s (2004) recent

working paper concerning the role of technology standard setting authorities as certifiers. These certi-

fiers, who act in a similar way to our tests, are assumed to have an arbitrary bias towards the technology

sponsor. The model has significant differences to ours: Lerner and Tirole’s certifiers discover with cer-

tainty the quality of the technology they are asked to review, while consumers in their model do not

receive any private information and cannot learn from other agents’ actions. Therefore, as certifiers

cannot overwhelm bad private information, Lerner and Tirole do not find any role for certifiers biased

against the technology. Instead they find that the sponsor prefers the certifier most biased in favor of

the new technology on offer, subject to users adopting following a positive decision by the certifier.

In a model with sequential sales, Sgroi (2002) examines the use of small groups of consumers who are

encouraged to decide early and hence act in a similar way to tests in this paper, providing additional

information for later consumers. Sgroi finds that irrespective of product quality firms would like to use

these “guinea pigs”. However, there is no notion of bias or toughness and so the choice of “guinea pigs”

is not analogous to the choice of a test from a continuum of toughness levels.

In more specific industrial organization contexts, Taylor (1999) and Ottaviani (1999) find that high

prices can be optimal in a similar way to tough tests in this paper. In Ottaviani, the firm wishes to set

a high initial price (relative to perceived quality) to encourage the transmission of information. If price

is too low, everybody buys, so consumers do not learn from each other’s decisions, while if an expensive

good becomes successful, this conveys strong positive information to later buyers. Taylor, concentrating

on the housing market, finds a high price to be optimal as a failure to sell a house early can then be

attributed to overpricing rather than low quality.

Our work should be contrasted with the literature on experts, in which self-interested experts filter

information about the true state of the world (see chapter 10 of Chamley (2004) for a survey). These

experts’ self-interest gives rise to incentives to manipulate the messages they send. Our tests, on the

other hand, are purely mechanical: the level of toughness is fixed and commonly known. Our work is

also different from the literature on payment structures to certification intermediaries, who may play

a similar role to tests - see for example Albano and Lizzeri (2001). In these papers, the intermediary

has all the bargaining power as it sets the terms of trade via a price and disclosure rule. Our focus is

different as we do not consider explicitly how tests come into existence or take on a particular toughness.

However, the preference of different principals for different types of test may justify the existence of

different toughness levels, which would make an interesting topic for future research.

Finally, our analysis is different from Ottaviani and Pratt (2001), who find that a monopolist may

wish to use a public signal of quality such as an outside certifier. Our principal is informed about her

type, while in Ottaviani and Pratt both the buyer and seller are uninformed, so a public signal affiliated
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with the buyer’s private information reduces the buyer’s informational rents in a second-degree price

discrimination setting.

2. The Model

2.1. A Simple Herd Model. A principal, whose objective is to maximize the number of endorsements

from a group of C ∈ N++ agents, may be good or bad for the agents. The principal knows her type, but
the agents do not, and there is no easy means of truthful revelation. The agents act in an exogenously

ordered sequence deciding whether to endorse the principal or not, so the action of agent i Ai ∈ {Y,N}
where Y denotes an endorsement and N a rejection. This “endorsement” is a general concept which

could, for example, encompass adopting some new technology, voting for a candidate in an election,

purchasing a product, watching a movie, making a job offer etc.2 The payoff to an agent is simply

V which has prior probability q = 1
2 of returning 1 or −1, depending on whether the principal is a

good or bad type, leaving agents indifferent before additional information is obtained. The agents each

receive a conditionally independent signal about V defined as Xi ∈ {H,L} for agent i. The signals are
informative in the following sense.

Definition 1. Signals are informative, but not fully-revealing, in the sense that:

Pr [Xi = H | V = 1] = Pr [Xi = L | V = −1] = p ∈ ¡12 , 1¢
Pr [Xi = H | V = −1] = Pr [Xi = L | V = 1] = 1− p ∈ ¡0, 12¢

Agents Bayesian update their beliefs using their private information and inferences from the observed

actions of their predecessors in the sequence, endorsing the principal if E [V ] > 0. The belief-updating

model we use is a variant of the seminal herd paper by Bikhchandani, Hirshleifer and Welch (1992).

Define the history to agent c as the set of actions of agents 1 to c−1 so Hc−1 ≡ {A1, A2, ..., Ac−1}. Now
define the information set of agent i as Ii ≡ {Hi−1,Xi}. In certain circumstances Xi will be inferable

from Ai but this will not always be true. Now X1 = H ⇔ A1 = Y and X1 = L ⇔ A1 = N . Agent

2 can infer agent 1’s signal, X1, from his action, A1, and so has an information set I2 = {X1,X2}. If
X2 = H and A1 = Y ⇒ X1 = H then agent 2 endorses so A2 = Y . If X2 = H and A1 = N ⇒ X1 = L

or if X2 = L and A1 = Y ⇒ X1 = H agent 2 will have two conflicting signals and will be indifferent,

2In many specific cases we might need to add more content to the model such as prices in an industrial organization
context, a voting rule in a political economy context, etc. We wish to leave this open, but the addition of such features is
straightforward. See Gill and Sgroi (2004) for a specific application to purchasing decisions with flexible prices, though in
a simultaneous sales context.
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so we require a tie-breaking rule. We use a simple coin-flipping rule which is common knowledge to all

agents:3

Condition 1. (Tie-breaking) If Pr [V = 1 | Ii] = 1
2 , so E [V ] = 0, then Pr [Ai = Y ] = Pr [Ai = N ] = 1

2 .

Consider a possible chain of events. The first agent will endorse if X1 = H and reject if X1 = L.

The second agent can infer the signal of the first agent from his action. He will then endorse if X2 = H

having observed adoption by the first agent. If he observed rejection but receives the signal X2 = H

then he will flip a coin following the tie-breaking rule. If he receives X2 = L and A1 = N then he too

will choose A2 = N . If the first agent endorsed then he would be indifferent and so flip a coin. The third

agent is the first to face the possibility of a cascade. If he observed two endorsements, so H2 = {Y, Y }
then A3 = Y for all X3 since he knows that X1 = H and the second agent’s signal is also more likely

to be H than L, so the weight of evidence is in favor of endorse regardless of X3. This initiates a Y

cascade: the third agent will endorse, revealing no information, so the fourth agent will also endorse, as

will the fifth, etc. Similarly if the third agent observes that both previous choices were rejections then

he too will reject, so a N cascade is initiated. An informational cascade occurs if an agent’s action does

not depend upon his private information. The individual, having observed the actions of those ahead

of him in a sequence, who follows the behavior of the preceding individual without regard to his own

information, is said to be in a cascade.

Definition 2. Informational Cascades. A Y cascade is said to have started by agent c if Ac = Y

and Ai−1 = Y ⇒ Ai = Y for all Xi with i > c. A N cascade is said to have started by agent c if Ac = N

and Ai−1 = N ⇒ Ai = N for all Xi with i > c.

We should note that a cascade, once started, will last forever as no further information is revealed

by agents’ actions.4 This is so even if it is based on an action which would not be chosen if all agents’

signals were common knowledge. The possibility of convergence to the incorrect outcome through the

loss of information contained in later agents’ private signals might be phrased in terms of a discernible

negative herd externality as suggested in Banerjee (1992).

From the model specifications the (conditional) ex ante probabilities of a Y cascade, N cascade, or

no cascade after c agents can be derived. Define Y (c) to be a Y cascade which has started by agent

3Coin flipping is the standard tie-break rule used in herding models. See for example Bikhchandani, Hirshleifer and Welch
(1992). Equivalently each agent may be following a fixed selection rule, so long as in expectation half of indifferent agents
select the principal and half do not. Banerjee (1992) instead uses a “follow your own signal” rule, but does this specifically
to minimize the chance of a herd.
4Given the simplicity of our herding structure there will be no differentiation between herding and cascading by agents.
If p were different for each agent, for some agents pi might be sufficiently high that they gain nothing from observation.
This would therefore confound the learning process and might allow herds to be broken. By restricting pi = p ∀i, we do
not consider such confounded learning. See Smith and Sorensen (2000) for further details.
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c. Similarly define N (c) for a N cascade by agent c. For example, Pr [Y (2)] is simply the probability

that the first two agents both choose Y . After an even number c of agents, the relevant functions can

be derived using geometric progressions:

(2.1) Pr [Y (c) | V = 1] = p(p+1)
2

1−(p−p2)
c
2

1−(p−p2)

(2.2) Pr [N (c) | V = 1] = (p−2)(p−1)
2

1−(p−p2)
c
2

1−(p−p2)

These expressions allow us to make a number of clarifying remarks. It can be shown that (2.1) is

increasing in p and c, but (2.2) registers a high probability even for p much greater than 1
2 . For

example, for p = 3
4 , there is a 20% chance of an incorrect cascade (a cascade on endorse with a bad

principal, or a cascade on reject with a good principal) having started by the 10th agent. Therefore,

even when the principal is a good type (which is likely to be reflected by the great majority of the

signals), she still faces the prospect of a possible cascade of rejections, because there is a reasonable

chance that a few early incorrect signals start an incorrect cascade. This is worrying both for agents

and for principals of the good type. The symmetric case where V = −1 would apply when the principal
is a bad type, and the results provide some hope for such principals, since there is always the chance of

a Y cascade. Of course there is no reason for a principal to stay passive in the face of such potential

cascades, and by selecting a suitable test the principal can hope to raise the chance of a cascade in her

favor and diminish the chance of a cascade going against her.

2.2. Adding Tests. Before facing the stream of agents, the principal can opt to be publicly tested.

We want to think of the test as by its very nature revealing more information about the principal’s type

than a single typical private signal. The simplest way of modeling this is to allow the test to involve

the draw of two signals about the principal’s type, instead of just the one received by agents.

The test generates a decision d ∈ {P,F} whether to pass (P ) or fail (F ) the principal. Of course,
tests may make a finer distinction than simply passing the principal or not. However, we want to think

of the result of the test as being quickly and easily disseminated throughout the population of agents,

e.g., through word of mouth, written reports concerning the test and so on. Thus we are thinking of a

process through which even sophisticated tests quickly get shortened to a binary decision through this

process of dissemination.5

We consider a continuum of test types which receive two i.i.d. draws from the same signal distribution

as agents. Tests are passed with a signal draw of HH, pass with probability φ ∈ [0, 1] on a draw of HL

5Modeling an evaluation as condensing more complex information into a simple binary decision follows for example Calvert
(1985) who notes that: “This feature represents the basic nature of advice, a distillation of complex reality into a simple
recommendation.”
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or LH and fail on a draw of LL. The value of φ encapsulates the type of the test. The lower the value

of φ, the tougher the test that is chosen by the principal.

Definition 3. Tests with φ ∈ [0, 12) are termed “tough”, those with φ ∈ (12 , 1] “easy”, and those with
φ = 1

2 , which pass on a coin flip on observing a set of mixed signals, “neutral”.

The toughness of a particular test is common knowledge, perhaps generated through a known history

of pass or fail decisions, and the principal is able to choose the test type. We have left the notion of test

fairly abstract, but depending on the application, the choice of test might consist of a choice between

different reviewers, interviewers, referees, accreditation bodies and so on.

The simple herd model assumes that the sequence of agents is of a known determinate length, allowing

the use of geometric progressions to solve for herd probabilities. Once we introduce a choice of test,

using this method to calculate and compare the number of endorsements for the principal under different

symmetric and asymmetric scenarios quickly becomes excessively complex. Instead we introduce a

stream of agents of uncertain length, which allows us to use a recursive solution method to readily solve

for and compare expected numbers of endorsements, even where an asymmetry is introduced by the

choice of a tough or easy test. We assume that the length C of the sequence of agents is not known

with certainty to the principal. Instead, after each agent decides whether or not to endorse, there is a

probability (1 − θ) that the sequence of agents comes to an end, where θ ∈ (0, 1). Thus, the expected
number of agents E [C] = 1 + θ + θ2 + ... = 1

1−θ , and θ = E[C]−1
E[C] . Note dE[C]

dθ > 0.

There are several interpretations of E [C]. Firstly, the principal may simply not know how many

agents she faces. Secondly, the method used is formally equivalent to introducing a standard discount

factor where the principal faces an infinite stream of agents, and so can equally well be used to assess

the principal’s choice of test when she discounts later endorsements. If the principal is attempting to

sell a product, push a new technology or advance a particular policy then, E [C] may also represent

a measure of how quickly the principal expects a rival product, technology or policy to be developed

which will make her own obsolete. Although θ can range from 0 to 1, for reasonable E [C] values it will

be in the upper part of this range. For example, for E [C] ≥ 10, θ ≥ 0.9.

2.3. Restriction to High Ability Types of Principal. Throughout, for conciseness, we consider

just the good type of principal. By standard signaling considerations, a bad type of principal will

be forced to copy the choice of the good type to avoid immediately revealing type and so receive no

endorsements. A separating equilibrium is not possible, as the bad type would copy the choice of the

good principal, and so be believed to be good and obtain the same outcome as the good type (receiving

endorsements from all agents). Thus, we restrict attention to pooling equilibria in which the bad type of

principal is forced to follow the good type’s preference. Such equilibria can always be supported by the
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belief that any principal who deviates from the good type’s preferences must be a bad type. Note that

in such pooling equilibria, agents will be unable to infer anything about the type of the principal from

the principal’s choice of test, and so will have to rely on observing the outcome of the test to provide

additional information about the principal’s type.

3. Agent Learning

Once the principal has selected a test of a publicly known type, and the test result has been publicly

announced, agents decide in a fixed sequence. The sequential ordering allows agents to learn from each

other’s decisions as well as from the result of the test, combining this information with their own private

signals. Potentially, more information may be transmitted to agents later in the sequence. However,

agents may fall into an informational cascade in the sense of Bikhchandani, Hirshleifer and Welch (1992),

where public information swamps private information. Once a given agent in the sequence rationally

disregards his own private information, nothing further is revealed to later agents who will then also all

disregard their private information and copy the choice of their predecessor agent. In this section we

focus on the information possessed, and choices made, by the agents and the potential herding which

their ability to observe other agents may induce.

3.1. Agents’ Beliefs and Endorsement Decisions. Agent i will observe the test result and the

actions of his predecessors, which will allow him to update his prior belief that the principal is good

from q = 1
2 to q = q∗i . We start by deriving two remarks, which are used implicitly throughout. The

first says that agents when applying Bayes’ Rule to calculate the ratio of the probability of principal

being good to the probability of her being bad simply need to calculate the ratio of the probability of

the private signal they have observed if the principal were good to the probability if the principal were

bad, suitably weighted by the updated prior. The second is self-explanatory.

Remark 1.
Pr [V = 1|Xi]

Pr [V = −1|Xi]
=

Pr[Xi|V=1]Pr[V=1]
Pr[Xi]

Pr[Xi|V=−1]Pr[V=−1]
Pr[Xi]

=
Pr [Xi|V = 1] q∗i

Pr [Xi|V = −1] (1− q∗i )

Remark 2. When calculating beliefs, agents can cancel and ignore opposing H and L signals.

Proof. Suppose the agent infers an information set Ii. Now suppose that instead of Ii, the agent infers

I+i , which we define as the set Ii plus a further two opposing H and L signals. Then, using Remark 1

(replacing q∗i with the initial prior q):
Pr[V=1|I+i ]
Pr[V=−1|I+i ]

=
Pr[I+i |V=1]q

Pr[I+i |V=−1](1−q)
= Pr[Ii|V=1]p(1−p)q

Pr[Ii|V=−1](1−p)p(1−q) =
Pr[V=1|Ii]
Pr[V=−1|Ii] ¤

We can now determine agent i0s endorsement decision. Where q∗i > p, the ith agent will endorse.

Agent i is least likely to endorse if Xi = L. Taking this case, we have an odds ratio Pr[V=1|L]
Pr[V=−1|L] =



10

(1−p)q∗i
p(1−q∗i )

=
q∗i−pq∗i
p−pq∗i > 1 since q∗i > p. A symmetrical argument shows that where q∗i < 1 − p, agent i

will reject. Where q∗i ∈ (1 − p, p), following a H signal Pr[V=1|H]
Pr[V=−1|H] =

pq∗i
(1−p)(1−q∗i )

> 1 as q∗i > (1 − p),

so i endorses. Following a L signal Pr[V=1|L]
Pr[V=−1|L] =

(1−p)q∗i
p(1−q∗i )

< 1 as q∗i < p, so i rejects. Where q∗i = p,

following a L signal, Pr[V=1|L]
Pr[V=−1|L] =

(1−p)q∗i
p(1−q∗i ) = 1 as q

∗
i = p, so the agent is indifferent and flips a coin. A H

signal is more positive, so the agent endorses. By symmetry, where q∗i = 1− p, following a H signal the

agent flips a coin, while following a L signal the agent rejects. The following lemma summarizes this

information.

Lemma 1. The ith agent will respond to an updated prior as follows: (a) if q∗i > p then i will endorse;

(b) if q∗i = p, following a H signal i endorses, while following a L signal, he flips a coin; (c) if

q∗i ∈ (1− p, p) then i will endorse if and only if Xi = H; (d) if q∗i = 1− p, following a H signal i flips

a coin, while following a L signal he rejects; (e) if q∗i < 1− p then i rejects.

This lemma is crucial to our understanding of the impact of test results for different test types. As

we will see, by selecting a particular type of test, the principal can effectively partition the updated

prior for the first agent.

Where q∗i is strongly positive or negative, it outweighs any possible private signal agent i might

receive, leading to a cascade. Where q∗i > p, from Lemma 1 agent i endorses whatever the signal

received. The decision is thus uninformative, so agent i + 1 also endorses, and so on. A symmetrical

argument applies where q∗i < 1− p.

Lemma 2. Where q∗i > p, we have a cascade on endorsement, i.e., agent i and all subsequent agents

endorse. Where q∗i < 1− p, we have a cascade on rejection, i.e., agent i and all subsequent agents fail

to endorse.

3.2. Impact of Tests on Beliefs. Here, we determine how different test results impact on agents’

beliefs. We begin by finding the updated prior faced by the first agent in the event of a pass (denoted

by q∗1 = q∗P ) and a fail (denoted by q
∗
1 = q∗F ).

q∗P ≡ Pr [V = 1 | Pass] = [p2+2p(1−p)φ]
[p2+2p(1−p)φ]+[(1−p)2+2(1−p)pφ] =

p2+2p(1−p)φ
p2+(1−p)2+4p(1−p)φ

q∗F ≡ Pr [V = 1 | Fail] = [(1−p)2+2p(1−p)(1−φ)]
[(1−p)2+2p(1−p)(1−φ)]+[p2+2(1−p)p(1−φ)] =

(1−p)2+2p(1−p)(1−φ)
(1−p)2+p2+4p(1−p)(1−φ)

Next we note some properties of these expressions. Firstly, note that q∗P is decreasing in φ:

dq∗P
dφ

=
2p(1−p)[p2+(1−p)2+4p(1−p)φ]−4p(1−p)[p2+2p(1−p)φ]

[p2+(1−p)2+4p(1−p)φ]2
= 2p(1−p)(1−2p)
[p2+(1−p)2+4p(1−p)φ]2

< 0
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since for p > 1
2 , the denominator is always strictly positive, 2p (1− p) > 0, but (1− 2p) < 0. Secondly,

note that q∗F is also decreasing in φ:

dq∗F
dφ

=
−2p(1−p)[(1−p)2+p2+4p(1−p)(1−φ)]+4p(1−p)[(1−p)2+2p(1−p)(1−φ)]

[(1−p)2+p2+4p(1−p)(1−φ)]2
= 2p(1−p)(1−2p)
[(1−p)2+p2+4p(1−p)(1−φ)]2

< 0

similarly to the q∗P case. That these updated priors should be decreasing in φ is perfectly natural: a

pass is better news the tougher the test, while a fail is not such bad news.

With a neutral test, so setting φ = 1
2 , we have:

q∗P
¡
φ = 1

2

¢
= p2+p(1−p)

p2+(1−p)2+2p(1−p) = p(3.1)

q∗F
¡
φ = 1

2

¢
= (1−p)2+p(1−p)

(1−p)2+p2+2p(1−p) = 1− p(3.2)

As q∗P and q∗F are both strictly decreasing in φ, this immediately implies that q∗P
¡
φ < 1

2

¢
> p,

q∗P
¡
φ > 1

2

¢
< p, q∗F

¡
φ < 1

2

¢
> 1 − p and q∗F

¡
φ > 1

2

¢
< 1 − p. Furthermore, q∗P (φ = 1) > 1

2 and

q∗F (φ = 0) <
1
2 :

q∗P (φ = 1) = p2+2p(1−p)
p2+(1−p)2+4p(1−p) >

1
2 ⇔ p2 > (1− p)2

q∗F (φ = 0) = (1−p)2+2p(1−p)
(1−p)2+p2+4p(1−p) <

1
2 ⇔ (1− p)2 < p2

Using the fact that q∗P and q∗F are both strictly decreasing in φ, it follows that q∗P > 1
2 and q∗F < 1

2

∀φ. All this information is summarized in the following lemma:

Lemma 3. (a) q∗P
¡
φ < 1

2

¢
> p; (b) q∗P

¡
φ = 1

2

¢
= p; (c) q∗P

¡
φ > 1

2

¢ ∈ ¡
1
2 , p
¢
; (d) q∗F

¡
φ < 1

2

¢ ∈¡
1− p, 12

¢
; (e) q∗F

¡
φ = 1

2

¢
= 1− p; (f) q∗F

¡
φ > 1

2

¢
< 1− p.

3.3. Expected Number of Endorsements. In the previous section, we calculated the effect of dif-

ferent test results on q∗1; now we calculate the expected number of endorsements, π, for the good type of

principal ∀q∗1.6 From Lemma 2, q∗1 > p leads to an immediate cascade on endorsement for the principal,

so πq∗1>p =
1
1−θ , while q

∗
1 < (1 − p) leads to an immediate cascade on rejection, so πq∗1<1−p = 0. Next

we find the expected number of endorsements where q∗1 =
1
2 .

Lemma 4. Where q∗1 =
1
2 , the expected number of endorsements for a good principal is

(3.3) πq∗1=
1
2
=

p
£
2− (1− p)θ2

¤
2
£
1− p(1− p)θ2

¤
(1− θ)

Proof. See Appendix. The proof is based on a recursive solution to the appropriate decision tree. ¤

6If the principal was a firm attempting to sell products, then π would measure revenue. Note that since there is no cost
to the principal, this would also equal profits. In a voting model π would be the number of votes obtained.
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Now suppose q∗1 = p. From Lemma 1 if the first agent gets a positive signal he endorses, while if he

gets a negative signal this exactly cancels the positive prior so he is indifferent and flips a coin. We

can think of the second and subsequent agents as starting a new sequence with updated prior q∗2. If the

first agent rejects, later agents infer X1 = L, so q∗2 =
1
2 . If the first endorses, then he is more likely to

have observed H than L, sending a positive signal, thus increasing q∗2 above q∗1, so q∗2 > p.7 Thus, using

Lemma 2:

(3.4) πq∗1=p =
£
p+ 1

2(1− p)
¤ ³

1
1−θ
´
+ 1

2(1− p)θπq∗1=
1
2

Suppose instead q∗1 = 1 − p. This case is the symmetric opposite. If the first agent gets a L signal,

he rejects, while if he gets a H signal, this exactly cancels the negative prior so he flips a coin. Thus, if

the first agent endorses, later agents infer X1 = H, so q∗2 =
1
2 . If the first rejects, then he is more likely

to have observed L than H, sending a negative signal, so q∗2 < 1− p. Thus, using Lemma 2:

(3.5) πq∗1=1−p =
1
2p
³
1 + θπq∗1=

1
2

´
Next, we calculate the expected number of endorsements where q∗1 ∈ (12 , p) or q∗1 ∈ (1 − p, 12). Note

that the expected number of endorsements is independent of the specific q∗1 value in the two ranges.

Lemma 5. Where q∗1 ∈ (12 , p), the expected number of endorsements for a good principal is

(3.6) πq∗1∈( 12 ,p) =
p [1 + (1− p)θ (1− θ)]£
1− p(1− p)θ2

¤
(1− θ)

Proof. See Appendix. Again, a recursive decision tree is used. ¤

Lemma 6. Where q∗1 ∈ (1− p, 12), the expected number of endorsements for the good principal is

(3.7) πq∗1∈(1−p, 12 ) =
p [p+ (1− p) (1− θ)]£
1− p(1− p)θ2

¤
(1− θ)

Proof. See Appendix. ¤

Of course, πq∗1>p > πq∗1=p > πq∗1∈( 12 ,p) > πq∗1=
1
2
> πq∗1∈(1−p, 12 ) > πq∗1=1−p > πq∗1<1−p.

4. Choice of Test

We now have the building blocks which allow us to easily calculate and compare the expected number

of endorsements for the principal from choosing different test types. Suppose first that the test is neutral.

Then, using Lemma 3 and the fact that Pr[P ] = p2+2p(1−p)φ while Pr [F ] = 2p(1−p)(1−φ)+(1−p)2:

(4.1) Π
£
φ = 1

2

¤
= Pr[P ].πq∗1=p +Pr [F ] .πq∗1=1−p = pπq∗1=p + (1− p)πq∗1=1−p

7Formally, q∗2
1−q∗2

= Pr[V=1|A1=Y ]
Pr[V=−1|A1=Y ] =

p+ 1
2 (1−p)

(1−p)+ 1
2 p

q∗1
1−q∗1

>
q∗1

1−q∗1
.
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With a tough test, using Lemmas 3 and 2, a pass starts an immediate cascade on endorsement with

q∗1 > p, while a fail leaves q∗1 ∈ (1− p, 12). Thus:

(4.2) Π
£
φ ∈ [0, 12)

¤
=
©
p2 + 2p(1− p)φ

ª
πq∗1>p +

©
2p(1− p)(1− φ) + (1− p)2

ª
πq∗1∈(1−p, 12 )

Note that
d(Π[φ∈[0, 12 )])

dφ > 0 as πq∗1>p and πq∗1∈(1−p, 12 ) are constant in φ (see (3.7) and Lemma 2),

πq∗1>p > πq∗1∈(1−p, 12 ), Pr[P ] = p2 + 2p(1− p)φ is strictly increasing in φ and Pr[F ] = 2p(1− p)(1− φ) +

(1− p)2 is strictly decreasing in φ.

Finally, we consider an easy test. This case is the symmetric opposite of the tough test case. Using

Lemmas 3 and 2, a fail starts an immediate cascade on rejection as q∗1 < 1 − p, while a pass sends a

positive signal weaker than the one sent out when a neutral test is passed, so q∗1 ∈ (12 , p), giving:

(4.3) Π
£
φ ∈ (12 , 1]

¤
=
©
p2 + 2p(1− p)φ

ª
πq∗1∈( 12 ,p)

Comparing the different expected number of endorsements, we find the following proposition.

Proposition 1. For any choice of three test types φ ∈ ©φT , 12 , φEª such that φT ∈ [0, 12) and φE ∈
(12 , 1], the good type of principal strictly prefers the tough type of test φT to the neutral test type φ =

1
2

and to the easy test type φE.

Proof. See Appendix. ¤

Despite the fact that tough tests are less likely to be passed, the good principal prefers any tough test

to any neutral or easy one. She prefers tough tests because of the strong impact on agents’ decisions

from a pass, which leads to a cascade on endorsement, while a fail in a tough test is not too costly as

the test is known to be tough, diluting the impact of failure on agents’ beliefs.

Next we define the concept of �-optimization.

Definition 4. To �-optimize Π over a range of φ values, Ω ⊆ [0, 1], means to select a φ ∈ Ω such that
Π > sup

φ∈Ω
Π− �.

The following lemma, which makes use of this definition, follows from the fact that
d(Π[φ∈[0, 12 )])

dφ > 0,

so sup
φ<1

2

Π = pπq∗1>p + (1− p)πq∗1∈(1−p, 12 ).

Lemma 7. For any � > 0 the principal can �-optimize over φ ∈ [0, 12) by selecting φ sufficiently close
to 1

2 , thus achieving Π > sup
φ< 1

2

Π− �.

Informally, the lemma says that the optimal tough test is one whose toughness is arbitrarily mild

(i.e., with φ strictly below but arbitrarily close to 1
2).
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Proposition 1 tells us that any tough type of test beats the neutral test or any easy type of test,

which implies that sup
φ∈[0,1]

Π = sup
φ< 1

2

Π. Together with Lemma 7 this gives:

Proposition 2. For any � > 0 the principal can �-optimize over φ ∈ [0, 1] by selecting φ sufficiently
close to 1

2 , thus achieving Π > sup
φ∈[0,1]

Π− �.

Informally, the optimal test type is a tough test which has arbitrarily mild toughness. A pass in any

tough type of test leads to an immediate cascade on endorsement, so the principal prefers a tough test

that is as close as possible to the neutral test type so as to maximize the probability of a pass.

Finally, we find that the neutral test is strictly preferred to no test at all. The signal arising from the

neutral test allows some information transmission through the sequence of agents which, in expectation,

is valuable to the good type of principal.

Proposition 3. The choice of taking no test is strictly worse than taking the neutral type of test φ = 1
2

and a fortiori strictly worse than a tough test type.

Proof. See Appendix. ¤

The following two figures illustrate the size of the increase in the expected number of endorsements

from opting to face a tough test. Figure 1 shows the percentage increase in the expected number of

endorsements from taking the toughest test over a neutral test, which peaks at 25%, while Figure 2

shows the percentage increase from using the tough test type which is almost neutral, which peaks at

50%.

Figure 1:
Π[φ=0]−Π[φ= 1
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Figure 2:
sup
φ< 1

2

Π−Π[φ= 1
2 ]

Π[φ=1
2 ]

1

0.75

0.5

1
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1
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1
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0
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0.25

0

 p

5. Conclusion

Within the model presented in which test toughness is tightly defined, as are the available sources

of information for agents, we find that a principal of type unknown to a sequence of agents should seek

to face a public test if this is possible. Furthermore, that principal should seek out the mildest form of

tough test available. If there are only very tough tests, then those are the ones that should be selected.

Tests that are relatively easy are not optimal, as they provide too damaging a signal in the event of a

fail, and too little gain in the event of a pass. Converting these results into practical normative advice,

job applicants might consider resisting the temptation to approach relatively soft referees. Firms should

avoid “yes men” reviewers for their products. A politician should consider opting to select where to be

interviewed, or where to leak new policies, based on the simple premise of first ruling out optimistic or

positively biased journalists and then selecting the mildest of those who are intrinsically biased against

the politician and his policies. At a descriptive level, we have an explanation for the existence of tough

tests, biased newspapers, tough referees, etc. that have a well known harsh or overly critical style, and

yet are regularly chosen. When selecting a test to take, a reviewer to observe your product, a referee

to provide a letter of recommendation or an interviewer to face, the old Roman proverb is perhaps the

best summary of our findings: fortune favors the brave.
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Appendix

Proof of Lemma 4. Given q∗1 =
1
2 , the first agent will follow his signal, i.e., will endorse iff X1 = H.

Suppose the first agent endorses. This reveals his signal to be H to the second agent. If the second

agent also gets a H signal, he therefore also endorses, but if he gets a L signal the H and L signals

cancel, so he is indifferent and flips a coin. If the third agent observes two endorse decisions, a cascade

on endorse starts. If he gets X3 = L, his signal and that of the first agent cancel, but because the second

agent endorsed, he is more likely to have observed X2 = H than X2 = L. Formally, for the third agent
Pr[V=1|I3]
Pr[V=−1|I3] =

p+ 1
2
(1−p)

(1−p)+1
2
p
> 1. Thus the third agent endorses if he receives a bad signal, and a fortiori

endorses with a good signal, so a cascade on endorse has started.

Suppose instead that the first agent endorses, but the second agent rejects. Then the third agent can

infer {X1 = H, X2 = L}. These two signals cancel, so the third agent is in exactly the same situation
as the first agent before he received a signal.

The case where the first agent rejects is the symmetric opposite. If the second agent also rejects, a

cascade on reject starts. If the second agent endorses, then the third agent is back to exactly the same

situation as the first agent. All this can be illustrated in the following decision tree:8

2nd Agent Rejects: {H} or {L}

(1/2).p + (1-p)

1st Agent Rejects: {L}

3rd Agent Like 1st

2nd Agent Endorses: {H}

Cascade on Reject

(1/2).p

1st Agent Endorses: {H}

2nd Agent Endorses: {H} or {L}

Cascade on Endorse

2nd Agent Rejects: {L}

3rd Agent Like 1st

p + (1/2).(1-p) (1/2).(1-p)

p

1-p

2nd Agent Rejects: {H} or {L}

(1/2).p + (1-p)

1st Agent Rejects: {L}

3rd Agent Like 1st

2nd Agent Endorses: {H}

Cascade on Reject

(1/2).p

1st Agent Endorses: {H}

2nd Agent Endorses: {H} or {L}

Cascade on Endorse

2nd Agent Rejects: {L}

3rd Agent Like 1st

p + (1/2).(1-p) (1/2).(1-p)

p

1-p

p

1-p

We can use this tree to calculate the expected number of endorsements for the principal in this case by

finding the expected endorsements down various branches of the tree and multiplying by the probability

8Remember that the principal knows it is a good type. The branch probabilities are predicated upon this assumption.
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of the relevant branch. Note that we have a recursive structure, whereby the expected number of

endorsements from various points further down the tree are equivalent to those from points higher up

in the tree. Letting πq∗1= 1
2
be the expected number of endorsements at the beginning of the tree, we get:

πq∗1=
1
2
= p

£
p+ 1

2(1− p)
¤ ³

1
1−θ
´
+ p

£
1
2(1− p)

¤ ³
1 + θ2πq∗1=

1
2

´
+ (1− p)(12p)

³
θ + θ2πq∗1=

1
2

´
which solves to give the value for πq∗1= 1

2
in the lemma. ¤

Proof of Lemma 5. From Lemma 1 the first agent will endorse iff X1 = H. Following endorsement by

the first agent, a cascade on endorse starts. The second agent can infer that the first one got a H signal.

Thus, q∗2 =
pq∗1

pq∗1+(1−p)(1−q∗1) > p as q∗1 > pq∗1 + 1− p− q∗1 + pq∗1 iff 2q∗1(1− p) > 1− p or q∗1 >
1
2 , which of

course we have assumed. Hence by Lemma 2 a cascade on endorse starts.

If the first agent rejects, then the second agent endorses iff X2 = H. The second agent can infer

X1 = L, so if X2 = H, the two signals cancel, and hence the second agent endorses as q∗1 > 1
2 . If

X2 = L, then the agent has effectively seen two negative signals, and so rejects given the first agent

with a single negative signal does so.

Following rejection by the first agent, and an endorsement by the second, the third agent can infer

a L and a H signal, which cancel leaving him in exactly the same position as the first agent before he

received a signal.

Following rejection by the first two agents, a cascade on reject starts. If the third agent receives a H

signal, this cancels one of the two inferred L signals, so the agent is left with just one L signal which,

just as for the first agent with L, leads to rejection. A fortiori, he also rejects if he receives a L signal.

All this information can be summarized in the following decision tree, with branch probabilities

conditional on the principal being the good type.

1st Agent Endorses: {H} 1st Agent Rejects: {L}

2nd Agent Endorses: {H} 2nd Agent Rejects: {L}

Cascade on Reject

Cascade on Endorse

3rd Agent Like 1st

p 1-p

p 1-p

1st Agent Endorses: {H} 1st Agent Rejects: {L}

2nd Agent Endorses: {H} 2nd Agent Rejects: {L}

Cascade on Reject

Cascade on EndorseCascade on Endorse

3rd Agent Like 1st3rd Agent Like 1st

p 1-p

p 1-p

Thus, for any specific q∗1 ∈ (12 , p), we can find expected number of endorsements for the good type of
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principal,

πq∗1∈( 12 ,p) = p
³

1
1−θ
´
+ (1− p)p

h
θ + θ2πq∗1∈( 12 ,p)

i
which solves to give the value for πq∗1∈( 12 ,p) in the lemma. ¤

Proof of Lemma 6. The shape of the decision tree, which is determined by agents who do not know the

type of principal, will be the symmetric opposite of the one in the proof of Lemma 5 for the q∗1 ∈ (12 , p)
case. A L signal starts a cascade on reject, just like before a H signal started a cascade on endorse,

while two H signals start a cascade on endorse, just like before two L signals started a cascade on reject.

If the first agent endorses but the second does not, the inferred signals cancel. Thus, for any specific

q∗1 ∈ (1− p, 12),

πq∗1∈(1−p, 12 ) = p2
³

1
1−θ
´
+ p(1− p)

h
1 + θ2πq∗1∈(1−p, 12 )

i
which solves to give the value for πq∗1∈( 12 ,p) in the lemma. ¤

Proof of Proposition 1. To show that any φT ∈ [0, 12) gives a larger number of expected endorsements
than φ = 1

2 we simply need to show that Π [φ = 0] > Π
£
φ = 1

2

¤
, given

d(Π[φ∈[0, 12 )])
dφ > 0. Using (4.2),

(3.7) and Lemma 2, Π [φ = 0] = p2
³

1
1−θ
´
+
¡
1− p2

¢ p[p+(1−p)(1−θ)]
[1−p(1−p)θ2](1−θ) , which simplifies to:

(A.1) Π [φ = 0] =
p[1+p(1−p)+p2(1−p)θ(1−θ)−(1−p)θ]

[1−p(1−p)θ2](1−θ)

From (4.1), Π
£
φ = 1

2

¤
= pπq∗1=p + (1− p)πq∗1=1−p. Thus, using (3.4), (3.3) and (3.5):

Π
£
φ = 1

2

¤
= p

£
p+ 1

2(1− p)
¤ ³

1
1−θ
´
+ p12(1− p)θ

p[2−(1−p)θ2]
2[1−p(1−p)θ2](1−θ) + (1− p)12p

µ
1 + θ

p[2−(1−p)θ2]
2[1−p(1−p)θ2](1−θ)

¶
which simplifies to

(A.2) Π
£
φ = 1

2

¤
= p[2+2p(1−p)θ(1−θ)−(1−p)θ]

2[1−p(1−p)θ2](1−θ)

From (A.1) and (A.2),

Π [φ = 0]−Π £φ = 1
2

¤
= p[2+2p(1−p)+2p2(1−p)θ(1−θ)−2(1−p)θ]−p[2+2p(1−p)θ(1−θ)−(1−p)θ]

2[1−p(1−p)θ2](1−θ)

∴ Π [φ = 0]−Π £φ = 1
2

¤
=

p(1−p)[2p+2p2θ(1−θ)−θ−2pθ(1−θ)]
2[1−p(1−p)θ2](1−θ)

The denominator is strictly positive, as is p(1 − p), so to show Π [φ = 0] > Π
£
φ = 1

2

¤
we just need to

show that 2p+2p2θ (1− θ)−θ−2pθ(1−θ) > 0. Thus, a sufficient condition is that 2p−θ−2pθ(1−θ) > 0.
This hold iff 2p [1− θ(1− θ)] > θ. But 2p > 1, so a further sufficient condition is that 1− θ(1− θ) > θ,

or (θ − 1)2 > 0, which is clearly true.
Our final task is to show that φT ∈ [0, 12) gives a larger number of expected endorsements than

φE ∈ (12 , 1]. From (4.3), Π
£
φ ∈ (12 , 1]

¤
=
©
p2 + 2p(1− p)φ

ª
πq∗1∈( 12 ,p). Now,

d(Π[φ∈( 12 ,1]])
dφ > 0 as Pr[P ] =
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p2 + 2p(1− p)φ

ª
is strictly increasing in φ and from (3.6), πq∗1∈( 12 ,p) is constant in φ. Thus, we simply

need to show that Π [φ = 0] > Π [φ = 1] . Using (3.6):

(A.3) Π [φ = 1] =
£
p2 + 2p(1− p)

¤ p[1+(1−p)θ(1−θ)]
[1−p(1−p)θ2](1−θ)

Using (A.1) and (A.3), we can derive

Π [φ = 0]−Π [φ = 1] = p(1−p)(1−θ)[1−2p(1−p)θ]
[1−p(1−p)θ2](1−θ)

The denominator is strictly positive, as is p(1 − p)(1 − θ), so the sign of Π [φ = 0] − Π [φ = 1] and
1− 2p(1− p)θ must be the same. Now, since p > 1

2 , it must be that p(1− p) < 1
4 , so 2p(1− p)θ must

always remain smaller than a half. Thus, 1− 2p(1− p)θ > 0. ¤

Proof of Proposition 3. With no test, the first agent’s q∗1 equals the prior belief
1
2 . Therefore, Π [No Test]

= πq∗1=
1
2
. Thus, using (3.3) and (A.2), Π

£
φ = 1

2

¤
> Π [No Test] iff:

2 + 2p(1− p)θ(1− θ)− (1− p)θ > 2− (1− p)θ2 ⇔ 2p(1− θ)− 1 > −θ ⇔ (2p− 1)(1− θ) > 0

which holds. ¤
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