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Abstract

In an observational learning environment, rational agents with incomplete information
may mimic the actions of their predecessors even when their own signal suggests the
opposite. This herding behavior may lead the society to an inefficient outcome if the
signals of the early movers happen to be incorrect. 

This paper analyzes the effect of signal accuracy on the probability of an
inefficient informational cascade. The literature so far has suggested  that an increase in
signal accuracy  leads to a decline in  the probability of inefficient herding, because the
first movers are more likely to make the correct choice. Indeed, the simulation results in
Bikhchandani, Hirshleifer and Welch (1992) support this proposition. This paper
however shows this not to be the case in general. We present simulations which
demonstrate that even a small departure from symmetry in signal accuracy may lead to
non-monotonic results. An increase in signal accuracy may result in a higher likelihood
of an inefficient cascade.
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1While Banarjee (1992) and Bikhchandani, Hirshleifer and Welch (1992) have
a predetermined sequence of moves in agents’ decisions, Chamley and Gale (1994)
endogenize the timing of moves and show that herding will eventually arise with
probability one, resulting in either a boom or a collapse.  

2In an informational cascade every subsequent agent makes the same choice
independent of his private signal. Therefore private information is not conveyed to the
market and social learning ceases.

3There are a wide variety of markets where herding may arise. Among others, see
Scharfstein and Stein(1990),  Devenow and Welch (1996), Avery and Zemsky(1998),
Chari and Kehoe (2003), Chamley (2003) for analysis of herd behavior in financial
markets, Neeman and Orosel (1999) for analysis in auctions, Morton and Williams
(1999) for herding in a political economy framework and Choi, Dassiou and Gettings
(2000), Kennedy (2002) and De Vany and Lee (2001) for herding in industrial
organization frameworks. 
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I. Introduction

Seminal work by Banerjee (1992) and Bikhchandani, Hirshleifer and Welch (1992) and

Welch (1992) shows that it may be optimal for a rational agent with incomplete

information to follow the actions of his predecessors even when his own private signal

suggests the opposite. In the observational learning process, herding may lead society to

a common action possibly leading to sudden booms and crashes1. If the early movers’

signals happen to be incorrect, the followers will be mislead, resulting in an inefficient

informational cascade2. This paper analyzes the effect of signal accuracy on the

probability of an inefficient informational cascade.

Herding may have dramatic consequences depending on the market we study3.

Herding in the labor market may result in a prolonged period of unemployment of an

individual if he initially turns out to be unlucky in a few job interviews. Herding among

portfolio managers may result in an inefficient allocation of pension fund assets. Herding

in R&D projects may result in delays in finding the cure for a fatal disease. In financial

markets a sudden crash can have dramatic macroeconomic consequences. The analysis

of the factors that affect the likelihood of inefficient cascades may be of interest in
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helping to reduce the probability of such events. The Securities Act of 1933 and the

Securities Exchange Act of 1934 were enacted in hopes of preventing catastrophic

crashes like Black Thursday in 1929. Among other regulations, the acts require that

investors receive financial information concerning securities being offered for public

sale. In this paper we would like to study the effects of an improvement in signal

accuracy, such as higher accounting standards, on the probability of an inefficient

cascade.

The literature so far has suggested  that an increase in signal accuracy  leads to

a decline in  the probability of inefficient herding, because the first movers are more

likely to make the correct choice. Indeed, the simulation results in Bikhchandani,

Hirshleifer and Welch (1992) (henceforth BHW) are clearly in support of this

proposition. This paper shows this not to be the case in general.

In BHW the agent receives a signal about the true value of the project, either

good or bad. The signal is correct with probability p. Agents take the decision to invest

or not. In the BHW framework an increase in signal accuracy p, always leads to a

decrease in the probability of inefficient herding. In this paper, we consider the case

where the signals do not have symmetric accuracy.

In general, the good signal and the bad signal do not necessarily need to be of the

same accuracy. For instance, a good job candidate may come to a job interview on time

with a 95 % probability and a bad candidate may be on time with an 85% probability. As

long as the probabilities are different, promptness may be a useful signal of candidate

quality.  In the symmetric case, one forces the probability of the bad candidate being on

time to be 5%  given that the good candidate has a 95% chance of being on time. We

show that even small departures from symmetry may lead to non-monotonic results. An

increase in signal accuracy may result in a higher likelihood of an inefficient cascade.



4See Pastine (2005) for the effects of signal accuracy in an endogenous-timing
framework.

5In laboratory experiments Anderson and Holt (1997) find that in situations where
the subject is theoretically indifferent he typically goes with his own signal rather than
randomizing. We have also run all the simulations under this assumption and the results
are qualitatively unchanged.

- 3 -

II. Symmetric Signal Accuracy

In BHW the value of the project is either high or low with even prior probabilities. The

gain to adopting is either 1 or 0 and the cost of adopting is ½ . Each risk-neutral agent

receives a private, conditionally independent signal about the value of the investment

project. An individual’s signal is either h or R. The signal is correct with probability p.

For presentation purposes it will be convenient to add  ½ to each of these payoffs,

converting the BHW problem into an equivalent payoff matrix. The agent faces two

investment projects: The risky project yields either 1 or 0 and the safe project yields a

safe return of ½. The payoff matrix is then given by:

      Table 1

Risky
Project

Safe
Project

High State 1  ½ 
Low State 0  ½ 
ex ante Prob(High)=0.5

If the risky project  is rejected, the safe project is adopted. There is a predetermined

sequence moves and agents observe the actions of those ahead of them4. Agents follow

Bayes’ Rule in their learning process. Following BHW, when an agent is indifferent

between the two projects he is assumed to randomize, choosing each project with 50%

probability.5

The above described scenario is equivalent to the following: There are two urns;

H and L. Each urn has some balls marked h and some balls marked R. Urn L has a higher

percentage of balls marked R than urn H. In the BHW framework the percentile of correct

balls in each urn, the signal accuracy p, is symmetric. That is, the percentage of  h balls



6All simulations in the paper are done with 10 million runs per data point. In all
cases the 99% confidence intervals are less than the width of the symbols used to
represent data points. We have created a Windows program which can be used to easily
simulate a wide variety of BHW-based herding models. The software is self contained,
requiring no additional programs, and can be downloaded from: 

http://www.ucd.ie/economic/staff/ipastine/herding.htm 
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in the H urn is equal to the percentage of R balls in the L urn, and both are greater than

50%. Nature draws one urn with equal probabilities. Then all agents privately draw one

ball from the same urn, with replacement.

The agent’s problem is to determine which urn the ball comes from. The

probabilistic nature of the outcome of observational learning suggests that an incorrect

cascade may form. All newcomers may choose Urn L even when the correct Urn is H.

In other words, the society may choose the safe project even though the true value of the

risky project is high. The probability of an L cascade when the true state is H is referred

to as the probability of an inefficient positive cascade. Likewise, the society may choose

the risky project even though the true value of the risky project is low. The probability

of an H cascade when the true state is L is referred to as the probability of an inefficient

negative cascade. The inefficient cascade probability is simply given by the inefficient

positive cascade probability and the inefficient negative cascade probability weighted by

the ex ante probabilities of states H and L. 

Figure 1 summarizes our replication of BHW’s simulation.6 An increase in signal

accuracy always leads to a decrease in the probability of inefficient herding since the

early movers are more likely to take the correct action.
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Figure 1

In this paper, we aim to show that this monotonicity result is not general. Even

a small departure away from symmetry  may lead to the violation of this result. The setup

is symmetric, because: i) Signals h and R have the same accuracy. There are exactly the

same percentile of correct balls in each urn.  ii) The ex ante probabilities of high and low

project values are even.

It will be useful to notice that here the probability of an inefficient cascade is

equal to the probability of an inefficient positive cascade. It is also equal to the

probability of an inefficient negative cascade. This is due to the symmetry of the

framework.



7To the best of our knowledge, the first examination of asymmetric signal
accuracies in a herding context was the laboratory experiments of Anderson and Holt
(1997).

8Fixing the accuracy of the h signal at any different level does not change the
spirit of the results. 
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III. Asymmetric Signal Accuracy

We would like to analyze the effect of an increase in signal accuracy on the probability

of an inefficient cascade when signal accuracy is not symmetric. In the urn metaphor,

asymmetric signal accuracy translates into asymmetric percentile of correct balls in each

urn.7 ph refers to the percentile of h balls in Urn H. It is equal to the probability of

receiving signal h conditional on H, Prob(h|H). pR refers to the percentile of R balls in Urn

L. It is equal to the probability of receiving signal R conditional on L, Prob(R|L). Figure

2 reports the simulation results for signal accuracy of h fixed at 70% varying the

accuracy of signal R. 8 The payoff matrix and the ex ante probabilities are as in Table 1.
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Figure 2

Figure 2 reports simulation results right around the point of symmetry. The three

plots in the graph are the ex ante probability of an inefficient cascade, the probability of

a positive inefficient cascade and the probability of a negative inefficient cascade. 

In this example, the probability of an inefficient cascade is monotonic in signal

accuracy. However, the probability of an inefficient positive cascade is not monotonic.

The probability of an H cascade when the true state is L, decreases with an improvement

in signal accuracy until the point of symmetry. Then it jumps up  from 0.12 to 0.38. It

then continues to decrease with an increase in accuracy. The probability of an L cascade

when the true state is H also shows jumpy behavior. It decreases with an increase in

signal accuracy until the point of symmetry. Then it drops down from 0.38 to 0.12. 



9Realize that the less accurate signal has a higher weight in the updating process.
Staring out with even ex ante probabilities, when an agent receives signal h, he  updates
his belief that the project value is high from 0.5 to Prob(H|h)=: ph/(1+ph-pR).When the
agent receives signal R, he  updates his belief that the project value is low from 0.5 to
Prob(L|R)=: pR/(1+pR-ph). As long as pR<ph, Prob(L|R)> Prob(H|h).
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Here is the key point to understanding what lies behind the jumps in the positive

and negative inefficient cascade probabilities around the point of symmetry: When ph

and pR are symmetric, the second agent never herds. If the first and second signals are

different, the second signal simply cancels out the first since they have equal accuracy.

When there is asymmetry, however slight, signal h and signal R do not cancel each other

out because they have different weights in the updating process. Therefore herding can

start earlier when signal accuracies are not symmetric.   

When pR falls below ph, if the first agent receives signal R, the second agent already

herds.9 Hence, there is a high probability of herding to L when true state is H. When pR

rises above ph , if the first agent receives signal h, the second agent already herds. Hence,

there is a high probability of herding to H when true state is L. While the probability of

an inefficient negative cascade is high when pR falls below ph,  the probability of an

inefficient positive cascade is high when pR rises above ph. And right at the point of

symmetry they are equal. Hence we observe the two jumps in the Figure 2.

Numerically, examine the case where the signal accuracy of R is just below the

signal accuracy of h, ph=0.7 and pR=0.699. If the first mover chooses the risky

investment, indicating that he has received signal h,  the second agent will follow his

own signal. He will choose the risky project if he receives signal h and he will choose the

safe project if he receives signal R. This is because the probability that the true value of

the risky project is low conditional on an h signal and then an R signal is greater than 0.5,

it is given by: 

p Prob( | )Prob( | ) 0.500474>0.5
p Prob( | ) (1 (1 Prob( | ))
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L hL h and
L h p L h

=
+ − −

≈!

!

!



- 9 -

where
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(1/ 2)(1 (1/ 2)

)
) h

pL h
p p

−
=

− +
≈!

!

However if the first agent receives R, the second agent will choose the safe project even

if he receives signal h. The second agent will already herd.  The probability that the true

value of the risky project is high conditional on an R signal and then an h signal is less

than 0.5. It is given by:
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When the accuracy of R falls below the accuracy of h, the second agent mimics the first

mover if the first mover has received signal R. He does not go against his own signal if

the first mover has received signal h. Therefore the probability of an incorrect L cascade

is high.   

When the signal accuracy of R is just above the signal accuracy of h,  ph =0.7 and

pR=7.001, we have the opposite situation.  If the first mover chooses the safe investment,

the second agent will follow his own signal. However if the first agent receives signal h,

the second agent will choose the risky project even if he receives signal R. The probability

that the true value of the risky project is high conditional on an h and then an R signal is

0.5004778. A positive information cascade starts right away with the second agent if the

first agent receives signal h. Therefore the probability of an incorrect H cascade is high.

At the point of symmetry where pR=0.7, the probability of an incorrect H cascade is equal

to the probability of an incorrect L cascade. This is why we observe the jumps in Figure

2.
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While our primary purpose here is to analyze the overall probability of an

inefficient cascade, it is worth noting that in many markets the primary interest is in the

probability of either inefficient positive or negative cascades. In many situations

analyzed using herding models there are important externalities from the market to

society at large. Bank panics, capital flight and stock market crashes have external

consequences which may induce a social planner to place a greater weight on inefficient

negative cascades rather than on inefficient positive cascades. In other markets the party

designing the structure of the market may not have an incentive to weigh all market

participants equally. In the IPO market, for example, the features of the market are not

controlled by a central planner, but rather by the firms offering companies for public sale.

These companies may try to increase the probability of an H outcome, whether efficient

or not. 

We have now established the main building blocks for understanding why an

increase in signal accuracy can lead to an increase in the probability of inefficient

herding. Below we show a straight forward example where the probability of an

inefficient cascade is non-monotonic in signal accuracy.     

IV. Inefficient Cascade Probabilities

As discussed above, the probability of an inefficient positive cascade can be non-

monotonic in signal accuracy. Since the inefficient cascade probability is given by the

inefficient positive cascade probability and the inefficient negative cascade probability

weighted by the ex ante probabilities of state H and state L, the inefficient cascade



10Once again, fixing the accuracy of the h signal at any different level does not
change the spirit of the results. 
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probability itself may be non-monotonic in signal accuracy when we have uneven ex ante

probabilities.  Here is a new payoff matrix:

Table 2

Risky
Project

Safe
Project

High State 2  1/2
Low State 0  1/2
ex ante Prob(High)= 0.25

The ex ante expected value from the risky project is still equal to the expected value from

the safe project. But now the risky project is more risky then before. If we constrain the

accuracy of signal h be equal to the accuracy of signal R, we still get the same

monotonicity result as in BHW with equal negative and positive incorrect cascade

probabilities. Now let us fix the signal accuracy of h, but vary the signal accuracy of R.

Figure 3 summarizes the simulation results for ph=0.7.10 
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Figure 3

The probability of an inefficient cascade is clearly non-monotonic in signal accuracy. It

jumps up at three levels of signal accuracy: At the 0.505 level, at 0.7 (the point of

symmetry), and at the 0.9275 level. Before explaining the particularities of these levels

of accuracy, let us gain some intuition into the  jaggedness of the plots. The non-

monotonicity of the probabilities presents itself as plots with sudden jumps up and down

rather then as differentiable graphs. This is due to the binary nature of the problem the

agent faces. The agent decides whether to follow his own signal or to go against his own

signal. As the signal accuracy improves in a continuous scale the expected value of each

of these options changes continuously, but the agent’s decision switches from one to the

other in a discrete jump.



- 13 -

At the point of symmetry we have the same sort of dynamics as in the previous

case. When pR is just below ph,the second agent always herds when the first agent chooses

L. Hence the probability of an inefficient L cascade is high. When pR is just above ph, the

second agent always herds when the first agent chooses H. Hence the probability of an

inefficient H cascade is high. Right at the point of symmetry the negative and positive

cascade probabilities are equal. Hence, we observe the inefficient positive cascade

probability jumping up and the inefficient negative cascade  probability jumping down.

Since the ex ante probability of L is 0.75, the positive cascade probability has a higher

weight in the ex ante inefficient cascade probability. At the point of symmetry the

probability of an inefficient cascade jumps up from 0.18 to 0.30.

  Let’s now examine the jump at 0.505. Set signal pR at 0.5 - just below 0.505.

Imagine four agents in the following sequence of actions: H,L,H,H. At this level of signal

accuracy none of these agents herd. Their actions do reflect their private signals. Having

observed this sequence, it is optimal for the fifth agent not to herd. He will follow his

own signal. But when we set the accuracy at 0.51 – just above 0.505 – having observed

the same sequence (and once again at this level of accuracy the actions of the four agents

do reflect their private signals) it is optimal for the fifth agent to herd to H. Therefore,

just past the 0.505 level, the probability of an inefficient H cascade jumps up. And the

probability of an inefficient L cascade jumps down. The weighted average, the

probability of an inefficient cascade jumps up from 0.32 to 0.335. There are of course

many alternative sequences of signals one can observe before herding starts. The

discontinuities in the probabilities arise at points where small changes in parameters



11This suggests that the results would be stronger in models where there are
relatively few pre-herding sequences that arise in practice. This feature is typical of
models with exogenous timing. Typically in models with endogenous timing, such as
Chamley and Gale (1994), large numbers of agents invest before herding commences so
the likelihood of any particular sequence of decisions will be small. Nevertheless, Pastine
(2005) shows that similar non-monotonicty results can arise in these frameworks as well.
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switch agents in some sequence from one action to the other. The size of the

discontinuity is then related to the likelihood of that sequence.11    

A third jump up in the probability of an inefficient cascade is at the accuracy level

0.927. If the accuracy level is in the neighborhood of 0.927 the second agent goes with

his own signal when the observes the first agent pick L. If the third agent observes the

sequence L and L, he will go with his own signal if the signal accuracy of R is just above

0.927. But he will herd to L if the accuracy is just below 0.927. Hence as the signal

accuracy improves from 0.927, the probability of an incorrect L cascade jumps down. At

the same time the probability of an incorrect H cascades jumps up. The net effect on the

probability of an inefficient cascade is a jump up.     

V. Conclusion

The general impression in the literature so far is that an increase in signal accuracy  leads

to a decline in  the probability of inefficient herding. Indeed, the simulation results within

a symmetric framework in BHW support of this proposition. However, this paper shows

that the probability of an inefficient cascade may go down with signal accuracy when the

signals are of asymmetric accuracy. In fact, signals are typically of different accuracies.

For instance, a good job candidate has a high probability of successfully

presenting himself in an office meeting. A bad candidate has a lower probability of

successfully presenting himself. Now imagine, schools stop training bad candidates for

presentation skills. This new policy leads to a decline in the probability of the bad

candidate successfully presenting himself.  The signal accuracy of a bad candidate goes



12See Hung and Plott (2001) for information cascades in sequential voting. 
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up. So the informational value of a good presentation increases. As the signal accuracy

goes up, the probability that a bad candidate gets a  job offer due to potential employers’

herding12 may go down or up. This can be for instance represented in Table 2. The safe

project is to hire an adjunct professor with a payoff ½ . The risky project is to hire a

tenure-tract professor with either a 2 or a 0 payoff. See Figure 3 for ph fixed and pR

varying. An increase in  pR can lead to an increase in the probability of an inefficient

positive cascade (hiring a bad candidate).  

A similar argument can be made for higher accounting standards which might be

instituted to help the reduce probability of inefficient herding. The paper suggest that

jumping into a policy debate with the conviction that improved standards would always

reduce the likelihood of inefficient cascades might be misleading. With improved

standards, it would be more likely to observe a bad report for a bad firm (pR8). This leads

to the decrease of the probability of investing in a bad firm. But when a good report is

observed, herding may start  early since one would put more informational weight on a

good report. This leads to the increase in the probability of investing in a bad firm.  The

second effect may overwhelm the first depending on the initial levels of signal accuracy.
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