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Abstract

Individuals living in society are bound together by a social network, the
complex of relationships that brings them into contact with other agents.
In many social and economic situations, individuals learn by observing the
behavior of others in their local environment. This process is called social
learning. Learning in incomplete networks, where different agents have
different information sets, is especially challenging: because of the lack
of common knowledge individuals must draw inferences about the actions
others have observed as well as about their private information. Whether
individuals can rationally process the information available in a network
is ultimately an empirical question. This paper reports an experimental
investigation of learning in three-person networks and uses the theoretical
framework Gale and Kariv (2003) to interpret the data generated by the
experiments. The family of three-person networks includes several non-
trivial architectures, each of which gives rise to its own distinctive learning
patterns. We find that the theory can account for the behavior observed
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in the laboratory in variety of networks and informational settings. To
account for errors in subjects’ behavior, we adapt the model of Quantal
Response Equilibrium of McKelvey and Palfrey (1995, 1998) and find that
its restrictions are also confirmed. The ‘goodness of fit’ is better for the
QRE model than for the game-theory model. This provides important
support for the use of QRE to interpret experimental data.

Journal of Economic Literature Classification Numbers: D82, D83,
C92.

1 Introduction
Social learning occurs when economic agents learn by observing the behavior of
others. Whether choosing a restaurant, adopting a new technology, or investing
in a portfolio, an individual’s actions can reveal useful private information. So,
in social settings, where agents can observe one another’s actions, it is rational
for them to try to learn from one another.
Individuals living in society are bound together by a social network, the

complex of relationships that brings them into contact with other agents, such as
neighbors, co-workers, family, and so on. An individual agent’s ability to observe
other agents is limited so, in practice, each agent has imperfect information
about the actions of agents in the same network.
Gale and Kariv (2003) study a model of Bayesian learning in social networks.

The social network is represented by a directed graph. Each agent is located at
a node of the graph and agent i can observe agent j if there is an edge leading
from node i to node j. Note that the links need not be symmetric: the fact that
i can observe j does not necessarily imply that j can observe i. Agents make
repeated choices from a finite set of actions. Information percolates through the
network as one agent after another changes his action in response to what he
observes his neighbors doing.
A simple example may clarify the setup in Gale and Kariv (2003). Many of

us are repeatedly in the situation where we have to choose the contribution to
a retirement plan such as a 401(k). It is natural for an individual to observe
his colleagues’ choices before making his own decision. Some of our colleagues,
having worked in the department for a long time, will have friends in other
departments and may know them well enough to have observed their 401(k)
choices as well. So, indirectly, one’s choice of 401(k) plan may be influenced by
individuals one does not know and cannot observe. Furthermore, the network
formed by these relationships may be large (“small-worlds” and “six degrees
of separation”) and complex. Nonetheless, a rational individual must take ac-
count of the network architecture in order to draw correct conclusions about
the information revealed by the choices he observes.
Bayesian learning requires an agent to assign the correct probabilities to a

potentially infinite set of states, implicitly constructing in his mind an infinite
hierarchy of beliefs. In the Gale-Kariv model, agents can revise their action as
more information becomes available. In this setting, the complexity of an agent’s
decision-problem increases over time. At the first date, an agent only has to
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interpret his private information. At the second date, he has to interpret his
neighbors’ actions and try to infer the private information on which it was based.
At the third date, because of the lack of common knowledge about actions, an
agent is forced think about his neighbors’ knowledge of other their neighbors’
actions and the private information they reveal. For example, consider a three-
person network in which agent A observes agent B, agent B observes agent
C, and agent C observes agent A. Agent A, in interpreting B’s actions in
the preceding period, has to think about the action B observed C choose in
the period before that, what private information B thought C had, and what
effect it had on B’s actions. Even in this three-person network, the exploitation
of this information requires subtle reasoning because actions are not common
knowledge. Lack of common knowledge forces agents to think about hierarchies
of beliefs.
Whether individuals can rationally process the information available in a

network is ultimately an empirical question. There is a large empirical literature
which shows evidence of learning in social networks in many areas. Among
others, Foster and Rosenzweig (1995) analyze technology adoption in developing
countries, and Duflo and Saez (2002, 2003) use a quasi-experimental setting
to show that the information transmission through social interactions affects
retirement-plan decisions. However, these observational studies are subject to
identification problems. Manski (1993, 1995) provides a formal exposition of
the issues involved in identifying social effects. In the laboratory, by contrast,
we can control subjects’ neighborhoods and their private information. This
provides an opportunity to test the model’s predictions and, at the same time,
study the effects of variables about which our existing theory has little to say.
In the present paper, we report on a series of laboratory experiments based
on a version of the Gale-Kariv model. Although the experimental setup is
quite simple, the analysis of the game is sometimes complex. To draw correct
inferences the subject must consider several levels of his hierarchy of beliefs.
The main conclusion of the paper is that the theoretical approach developed

here is indeed relevant for the interpretation of the experimental data. In par-
ticular, it shows that a parsimonious model does a good job of explaining the
data from a variety of networks and informational settings and provides a con-
sistent explanation of apparently irrational behavior. To test the usefulness of
the theory in interpreting the data, we first estimate a theoretically grounded,
structural model based on the theory of Gale and Kariv (2003), modified to al-
low for the possibility of occasional mistakes. Then we show that the structural
model does quite well in explaining the experimental data generated in a variety
of networks and treatments.
The data generated by these experiments can also be used to address a vari-

ety of important and interesting questions about individual and group behavior.
A related paper, Choi, Gale and Kariv (2004), uses the same data set to investi-
gate behavioral aspects of individual and group behavior, including comparisons
across networks and information treatments.
The experiments reported here involve three-person, connected social net-

works. We restrict attention to connected networks since obviously disconnected
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agents cannot learn from others. The case of three-person networks has several
non-trivial architectures, each of which gives rise to its own distinctive learning
patterns, and the Gale-Kariv model suggests that even in the three-person case
the process of social learning in networks can be complicated. The complete set
of networks is illustrated in Figure 1. A line segment between any two types
represents that they are connected and the arrowhead points to the participant
whose action can be observed. Three representative networks are used in the
experimental design:

• the complete network, in which each agent observes the actions chosen by
all the other agents;

• the circle network, in which each agent observes the actions chosen by
exactly one other agent and each agent is observed by someone;

• the star network, in which one agent (the center) observes the other two
agents and the two (peripheral) agents only observe the center.

[Figure 1 here]

We chose these networks because they illustrate the main features of the com-
plete set of networks – the excluded networks can each be obtained by adding
a single link to one of the three chosen networks. For practical purposes, these
three networks “span” the set of networks and provide a reasonable test of the
theory.
In the experimental design, there are two equally likely events (states of

nature). We allow subjects to be of two types: informed agents, who receive
a private signal that is correlated with the unknown events, and uninformed
agents, who know the true prior probability distribution of the states but do
not receive a private signal. Each experimental round consisted of six decision-
turns. At each decision turn, the subject is asked to predict which of the two
events has taken place, basing his forecast on a private signal and the history
of his neighbors’ past decisions. Each experimental session, consisting of 15
rounds, used a single network and a single information treatment and a single
group of subjects.
We begin our analysis of the experimental data by calculating the equilibrium

strategies predicted by the Gale-Kariv model and use these to compute error
rates (the percentage of times subjects deviate from the equilibrium strategy).
Although there is some variation across decision-turns, networks and treatments,
the error rates are uniformly fairly low. Nonetheless, mistakes are made and
this should be taken into account in any theory of rational behavior.
This leads us to adopt the Quantal Response Equilibrium (QRE) model of

McKelvey and Palfrey (1995, 1998). We extend the basic model of Gale-Kariv
(2003) to allow for idiosyncratic preference shocks, which can be interpreted,
following Harsanyi and Selten, as the effect of a “trembling hand”. More pre-
cisely, the payoff from a given action in the perturbed game is assumed to be
a weighted average of the theoretical payoff and a logistic disturbance. The
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“weight” placed on the theoretical payoff is determined by a regression coeffi-
cient. This coefficient will be positive if the theory has any predictive power,
and will approach infinity if the theory predicts subjects’ behavior exactly. For
any finite value of the coefficient, there is a positive probability that the optimal
action predicted by the perturbed model will be different from the prediction
of the Gale-Kariv model. This allows us to account for “mistakes” in subjects’
behavior. It also shows us how subjects should rationally take into account the
mistakes of others when drawing inferences from their behavior.
The Gale-Kariv model has a natural recursive structure. At the first decision-

turn in any game, an agent makes a decision based on his private signal (if he
is informed) or his prior (if his uninformed). After he has made his decision,
he observes the actions chosen by his neighbors and updates his beliefs. At the
second turn, he chooses a new action based on his updated beliefs, observes the
actions chosen by his neighbors and the second turn, and updates his beliefs
again. At the third turn, he chooses a new action based on his information from
the second turn, and so on. Thus, at each turn, his decision is backward-looking
(based on past information).
The recursive structure of the model allows us to estimate the coefficients of

the QRE model for each decision-turn sequentially. For each network and treat-
ment, we begin by estimating a QRE using the data from the first turn. Then
we use the estimated coefficient from the first turn to calculate the theoretical
payoffs from the actions at the second turn. In effect, we are assuming subjects
have rational expectations and use the true mean error rate when interpreting
the actions they observe at the first turn. We then estimate the random-utility
model based on the perturbed payoffs and the observed decisions at the second
turn. Continuing in this way, we estimate the entire QRE for each network and
treatment.
The parameter estimates are highly significant and positive, showing that

the theory does help predict the subjects’ behavior. The predictions of the
QRE model are different from those of the basic game-theoretic model for two
reasons: first, because it allows agents to make mistakes and, secondly, because
it assumes that agents take into account the possibility that others are making
mistakes when drawing inferences from their actions. The “goodness of fit,” as
measured by the error rates, is better for the QRE model than for the game-
theory model.
We also conduct a series of specification tests to see whether the restrictions

of the QRE model are confirmed by the data and the results are strikingly in
conformity with the theory. The decision rules of the QRE model are qualita-
tively very similar to the empirical choice probabilities. In particular, the data
confirms the prediction of the logistic model that errors are more likely when
there is little at stake (payoff differences are small).
Our paper contributes to the large and growing body of work which studies

the influence of the network structure on economic outcomes. Goyal (2003) and
Jackson (2003) provide recent surveys of theoretical work in economics focusing
on social and economic networks and Kosfeld (2004) surveys the experimental
work. The paper most closely related to Gale and Kariv (2003) is Bala and Goyal
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(1998). The models differ in two ways. First, Bala and Goyal (1998) examines
the decisions of boundedly rational agents, who try to extract information from
the behavior of the agents they observe, but without taking account of the fact
that those agents also observe other agents. Second, in Bala and Goyal (1998),
agents observe payoffs as well as actions. In other words, it is a model of social
experimentation rather than social learning.
The paper also contributes to a large literature on social learning. Banerjee

(1992) and Bikhchandani, Hirshleifer and Welch (1992) (BHW) introduced the
basic concepts and their work was extended by Smith and Sørensen (2000).
These models show that social learning can easily give rise to herd behavior
or informational cascades, phenomena that have elicited particular interest and
can arise in a wide variety of social and economic circumstances. This is an
important result and it helps us understand the basis for uniformity of social
behavior. At the same time, these models are special in several respects. They
assume that each agent makes a once-in-a-lifetime decision and the decisions are
made sequentially. Further, when each agent makes his decision, he observes
the decisions of all the agents who have preceded him. In other words, it is a
game of perfect information.
Anderson and Holt (1997) investigate the social learning model of BHW

experimentally and replicate informational cascades in the laboratory. Following
Anderson and Holt (1997), a number of experimental papers analyzed different
aspects of social learning. Among others, Hung and Plott (2001), Kübler and
Weizsäcker (2003) and Çelen and Kariv (2004, 2005) extend Anderson and Holt
(1997) to investigate other possible explanations for informational cascades.
This growing body of experimental work in the social learning literature has
also successfully utilized QRE models.
The rest of the paper is organized as follows. The next section illustrates

some features of the underlying theory. Section 3 describes the experimental
design and procedures. Section 4 summarizes some important features of the
data. Section 5 provides the econometric analysis and Section 6 concludes.

2 Some theoretical examples
In this section we discuss briefly the theoretical implications of the model tested
in the laboratory. Gale and Kariv (2003) provide an extensive analysis of a
general version of the model.
A network consists of three agents indexed by i = A,B,C. Each agent i has

a set of neighbors, that is, agents whose actions he can observe. Let Ni denote
the neighbors for agent i. The neighborhoods {NA,NB, NC} completely define
a three-person network. These networks are illustrated in Figure 1 above.
There are two equally likely events (states of nature) denoted by ω = −1, 1.

With probability q an agent is informed and receives a private signal at the
beginning of the game. Signals take two values σ = −1, 1 and the probability
that the signal σ equals the true state ω is 2/3. By convention, we assume an
uninformed agent receives the signal σ = 0 in each state. The agent’s signals
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are assumed to be independently distributed conditional on the true state.
Time is divided into a finite set of dates indexed by t = 1, 2, ..., T . At the

beginning of each date t, agents are simultaneously asked to guess the true state.
Agent i’s action at date t is denoted by ait = −1, 1. Agent i receives a positive
payoff if his action ait equals the true state ω and zero otherwise. Then each
agent i observes the actions ajt chosen by the agents j ∈ Ni and updates his
beliefs accordingly. Thus, agent i’s information set at date t consists of his
private signal, if he observed one, and the history of neighbors’ actions.
We restrict attention to equilibria in which myopic behavior is optimal, that

is, it is rational for agents in equilibrium to choose the actions that maximize
their short-run payoffs at each date t. There are several reasons for focusing
on these equilibria. First, we want to stay close to the existing social-learning
literature, in which myopic behavior is usually optimal. Secondly, in the ab-
sence of forward-looking, strategic considerations, the equilibrium has a recur-
sive structure that simplifies the theoretical and econometric analysis. Thirdly,
our econometric results strongly suggest that myopic behavior is consistent with
the experimental data. Finally, a careful analysis shows that the tie-breaking
assumption that agents switch actions whenever they are indifferent between
continuing to choose the same action in the next period and switching to the
other action is fully revealing. Thus, there is no incentive to sacrifice short-run
payoffs in any period in order to influence the future play of the game.
Because of the symmetry of the example and the fact that signals take only

discrete values, an agent is often indifferent between choosing ait = −1 and
ait = 1, in which case some tie-breaking rule has to be chosen. It is important
to note that the nature of the equilibrium play depends on the tie-breaking
assumption. Here we assume that, whenever an agent has no signal, he chooses
each action with probability 0.5 and, when an agent is indifferent between fol-
lowing his own signal and following someone else’s choice, he follows his own
signal. One may assume different tie-breaking rules, but our experimental data
supports this specification and it also eases the exposition and analysis. The
other advantage of this approach is that agents’ actions are also optimal given
perturbed beliefs that take into account the possibility that others make mis-
takes. We will point out and discuss alternatives whenever our tie-breaking
assumption becomes relevant. Note, however, that for the purpose of estimat-
ing the QRE model, the tie-breaking rule is irrelevant because the “trembling
hand” ensures that ties are probability zero events.
An agent’s equilibrium behavior in this game is conceptually very simple:

at each date he chooses the state he thinks is most likely and then he updates
his beliefs, using Bayes’ rule, based on what he observes the other agents do.
Bayesian updating is conceptually simple but it is computationally very difficult
because of the large number of information sets and the lack of common knowl-
edge. So we do not believe that subjects perform this calculation. Instead, they
use heuristics which mimic the effect of rational Bayesian maximizing behavior.
Gale and Kariv (2003) describe agents’ behavior formally and discuss the

essential elements of the weak perfect Bayesian equilibrium, so we skip the
model development and analysis and instead illustrate how the dynamics of
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actions and learning differ across networks and information structures. In order
to get a sense of the challenges of substantive rationality in different settings,
as well as the implications for equilibrium behavior of the different networks
and information treatments, we consider a series of theoretical examples of the
underlying game. We begin with the complete network.

2.1 The complete network

A network is complete if each agent can observe the actions of all the other
agents in the network. Otherwise the network is called incomplete. There
is a unique complete network, in which NA = {B,C}, NB = {A,C}, and
NC = {A,B}. The experimental design uses three information treatments,
corresponding to different values of the probability of being informed. We refer
to these as full information (q = 1), high information (q = 2/3), and low
information (q = 1/3), respectively.

Full-information (q =1) When every agent is informed, the equilibrium be-
havior is particularly simple and closely resembles the herd behavior found in
BHW. At the first date, each agent’s information consists of his private signal
σi. The true state is more likely to be σi so agent i puts ai1 = σi. At the second
date, each agent’s first-period action has revealed his signal and so the signals
are common knowledge. Since there must be at least two signals with the same
value, from date 2 onwards all agents agree on the most likely state and will
choose the same action at date 2 and every following period.
So, in this case, the equilibrium behavior is very simple. An informational

cascade at date 2 causes a herd that continues until the end of the game. Further,
the herd chooses the efficient action, based on the sum of agents’ information,
unlike the model of BHW. Here a rule of thumb that says “follow the majority”
would lead to both a rational and efficient outcome.

High-information (q = 2/3) Equilibrium behavior is slightly more compli-
cated when there is high information, because agents have to take account of
the possibility that some other agents are uninformed. In this case, information
revelation may continue after date 2. Suppose, for example, that agent A re-
ceives the signal σA = 1, agent B receives the signal σB = −1, and agent C is
uninformed σC = 0. At date 2, agent C observes that the actions of agents A
and B at date 1 do not match, so he is indifferent between the two actions. If
agent C takes action −1 at date 1 and switches to action 1 at date 2, he reveals
that he is uninformed. At date 2, agent A observes that B and C chose 1 in the
previous period, so he switches to action −1 at date 2. This can be confirmed
with a simple calculation using Bayes’ rule. However, at date 3, he realizes that
C is uninformed and since he is still not sure whether B is informed (B might
have chosen −1 two times in a row by chance), it is rational for him to switch
back to 1.
This example shows that the possibility of uninformed agents changes the

qualitative features of the equilibrium. First, we no longer necessarily get a herd
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at date 2 and learning continues after date 2. Secondly, learning continues even
if there is no change in an agent’s actions: the longer B persists in choosing
action −1, the more confident A is that B is informed; but there is always some
positive probability that B is uninformed and chose consistently by accident.
Note that this aspect of the equilibrium depends on our tie-breaking rule. If the
uninformed agent chooses the same action as last period when he is indifferent,
then the distribution of signals assumed above implies a herd on action −1 starts
at date 2.
Unlike the full-information case, the dynamics of actions and beliefs in the

high-information example above are complex and do not correspond to any
simple heuristics. The greater complexity of behavior stems from the fact that
agents have different amounts of information and the ability to revise decisions
reveals this asymmetry over time.

Low-information (q =1/3) Qualitatively, the low-information case is like
the high information case. The possible existence of uninformed agents allows
learning to continue after date 2. The main difference lies in the fact that agents
think it is much less likely that their opponents will be informed and hence have
less incentive to imitate them. Suppose, for example, that all the agents are
informed and that σA = 1, σB = 1, and σC = −1. A simple calculation shows
that agent C will continue to choose action −1 at date 2, because he thinks it
quite likely that A and B are uninformed. At date 3, agent C observes that A
and B chose action 1 again at date 2, which reinforces C’s belief that A and
B are informed. So here learning continues but the actions do not change. If
the game continues long enough (i.e., T is large) C will eventually switch. This
conclusion depends on our tie-breaking rule that indifferent uninformed agents
randomize.

2.2 The star network

The first incomplete network we examine is the star, in which NA = {B,C},
NB = {A}, and NC = {A}. The most interesting feature of this network is its
asymmetry: agent A can observe both B and C and thus has more information
than either. In fact, agent A is informed about the entire history of actions that
have already been taken, whereas B and C have imperfect information. So here
we can see the impact of both lack of common knowledge and asymmetry on
the dynamics of social learning.
Because of the imperfection of information, learning continues after date 2

even in the full information case. Suppose then that there is full information
(q = 1) and suppose the realizations of the signals are σA = 1, σB = 1, and
σC = −1. Now, at date 2, agent C only observes that his action at date 1 does
not match A’s action, so our tie-breaking assumption becomes relevant. The
tie-breaking rule requires that agent C continue to choose action −1 at date
2. Agent B, on the other hand, sees that agent A has chosen the same action
and this merely increases B’s belief that the true state is 1. From agent A’s
perspective, agent C’s signal cancels out agent B’s, so agent A’s belief about
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the true state is unchanged. At date 2, each agent will make the same choice
as at date 1.
Although the actions do not change between dates 1 and 2, information is

revealed. In particular, agent C knows that since A did not change his action
at date 2, A must have observed B choose 1 at date 1. Thus, C knows that A
and B both received the signal 1. Thus, it is optimal for C to switch to action
1 at date 3. We have again reached an absorbing state.
This example shows both the complexity of behavior under full information

and the subtlety of the reasoning that may be required to draw correct inferences
from the observed actions. Here, agent A serves as a communication channel
between agents B and C as well as a potential source of private information. It
can be shown by example that actions and beliefs may continue to evolve after
the third date.

2.3 The circle network

The second incomplete network is the circle, in which each agent observes one
other agent: NA = {B}, NB = {C}, and NC = {A}. In the circle, every agent
has imperfect information about the history of actions chosen in the game. Fur-
ther, each agent is forced to make inferences about what the others have seen. In
this network, the equilibrium reasoning required to identify the optimal strategy
is subtle, but the equilibrium strategy itself is quite simple: an informed agent
should always follow his own signal and an uninformed agent should imitate the
one other agent he can observe. This reminds us that substantive rationality
can be simpler than procedural rationality. It does not imply that behavioral
dynamics are simple. For example, if all agents are uninformed, it may take
a long time for the agents to discover this fact. Both beliefs and actions will
continue to evolve until this fact is revealed, after which our tie-breaking rule
implies that the agents’ behavior is random.

2.4 Takeaways

The preceding examples have illustrated several features of the theory:

• Perhaps the most important point is that, in spite of the simplicity of the
game, the inferences agents must draw in order to make rational decisions
are quite subtle. In particular, because of the lack of common knowledge,
agents have to think about a large number of possible situations that are
consistent with their limited information.

• Even though the reasoning required to identify them is quite complex,
optimal strategies may be quite simple.

• Significant differences can be identified in the equilibrium behavior of
agents in different networks. We saw that in the complete network learn-
ing stops almost immediately if there is full information, whereas the exis-
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tence of asymmetrically informed agents is consistent with a longer period
of learning and more complex strategies.

• Similarly, different information treatments lead to different dynamics of
beliefs and actions. For example, comparing the full-information and high-
information treatments, we see that less time is required for beliefs and
actions to converge when information is full.

We have focused on examples that reveal some of the unexpected features of
the model. One must remember, however, that in many situations the outcome
is much simpler. As a general rule, we can say that initial diversity of private
information causes diversity of actions but that, as agents learn from each other,
diversity is replaced by uniformity (barring cases of indifference). Convergence
to a uniform action tends to be quite rapid, typically occurring within two to
three periods. Thus, what happens in those first few periods is important for
the determination of the outcome. Note, however, that the converse of the
convergence result – if all agents choose the same action, they have reached
an absorbing state and will continue to choose that action at every subsequent
date – is not true in general.
Finally, we note that in all treatments, except with very small probability

in the complete network under high-information, herds always adopt an action
that is optimal relative to the total information available to agents.
The potential complexity of equilibrium strategies and the complexity of the

reasoning typically required for substantive rationality confirm the importance
of verifying the relevance of the theory empirically.

3 Experimental design
The experiment was run at the Experimental Economics Laboratory of the Cen-
ter for Experimental Social Sciences (C.E.S.S.) at New York University. The
subjects in this experiment were recruited from undergraduate classes at New
York University and had no previous experience in network or social-learning
experiments. After subjects read the instructions (the instruction are available
upon request), the instructions were read aloud by an experimental adminis-
trator.1 A $5 participation fee and subsequent earnings for correct decisions
were paid in private at the end of the experimental session. Throughout the
experiment we ensured anonymity and effective isolation of subjects in order to
minimize any interpersonal influences that could stimulate uniformity of behav-
ior.2

We studied three connected, three-person network structures (the complete,
star, and circle networks) and three different information treatments (full, high,

1At the end of the first round subjects were asked if there were any misunderstandings. No
subject reported any difficulty understanding the procedures or using the computer program.

2Participants’ work-stations were isolated by cubicles making it impossible for participants
to observe other screens or to communicate. At the end of a session, participants were paid
in private according to the number of their work-stations.
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and low information). The network structure and the information treatment
were held constant throughout a given experimental session. In each session,
the network positions were labeled A, B, or C. A third of the subjects were
designated type-A participants, one third type-B participants and one third
type-C participants. The participant’s type, A, B, or C, remained constant
throughout the session. Each session consisted of 15 independent rounds and
each round consisted of six decision-turns.
The following process was repeated in all 15 rounds. Each round started

with the computer randomly forming three-person networks by selecting one
participant of type A, one of type B and one of type C. The networks formed in
each round depended solely upon chance and were independent of the networks
formed in any of the other rounds. The computer also chose one of two equally
probable urns, labeled R and W , for each network and each round. Urn R
contained 2 red balls, and 1 white ball. Urn W contained 1 red ball and 2 white
balls. The urn remained constant throughout the round. The choice of urn was
independent across networks and across rounds. In each decision-turn, subjects
were asked to predict which of the two urns had been chosen in that round.
To help subjects determine which urn had been selected, with probability

q = 1, 2/3, 1/3 each subject was allowed to observe one ball, drawn at random
with replacement, from the urn. Before subjects were called to make their
first decision, each was informed whether the computer had drawn a ball for
him and whether it was white or red. After everyone had seen his draw, each
subject was asked to input the letter of the urn, W or R, that he thought
was most likely to have been chosen by the computer. When all subjects in the
session had made a decision, each subject observed the choices of the subjects to
whom he was connected in his network. This completed the first of six decision-
turns in a round. Next, subjects were asked to make their second decision,
without observing a new draw from the urn. This process was repeated until
six decision-turns were completed. At each date, the information available to
subjects included the actions they had observed at every previous date.
When the first round ended, the computer informed subjects which urn had

actually been chosen and their individual earnings. Earnings at each round
were determined as follows: at the end of the round, the computer randomly
selected one of the six decision-turns. Everyone whose choice in this decision-
turn matched the letter of the urn that was actually used earned $2. All others
earned nothing. This procedure ensured that at each decision-turn subjects
would make their best guess as to which urn had been chosen. After subjects
learned the true urn and their earnings, the second round started by having
the computer randomly forming new groups of participants in networks and
selecting an urn for each group. This process was repeated until all the 15
rounds were completed.
Note that the experiment is different from the standard social-learning ex-

periments paradigm of Anderson and Holt (1997) in two important ways. First,
subjects can only observe the actions of subjects to whom they are connected
by a social network. Thus, actions are not public information and subjects can
observe the actions of some, but not necessarily all, of their neighbors. Second,
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subjects make decisions simultaneously, rather than sequentially, and can revise
their decisions rather than making a single, irreversible decision.
The experiments provide us with a rich set of data. Each of the nine sessions

(a single network and a single information treatment) comprised 18 subjects (or
in two cases, 15 subjects). A session consists of 15 rounds and each round
consists of six decisions. In each round, the subjects were randomly formed
into six (respectively, five) networks. So for each session we have observations
on 6 × 15 = 90 (respectively, 5 × 15 = 75) different rounds and a total of
18× 90 = 1520 (respectively 18× 75 = 1330) individual decisions. The diagram
below summarizes the experimental design (the entries have the form a / b
where a is the number of subjects and b the number of observations per type
and turn).

Information
Network Full High Low
Complete 18 / 90 15 / 75 18 / 90
Star 18 / 90 18 / 90 18 / 90
Circle 18 / 90 18 / 90 15 / 75

We use a variety of different treatments and network architectures to gen-
erate a variety of different outcomes which are representative of the theory.
More importantly, the variety of different outcomes provides a serious test of
the ability of a structural econometric model based on the theory to interpret
the data.

4 Overview of experimental data
In this section, we provide an overview of some important features of the exper-
imental data. We summarize these features of the data using three measures:
stability, efficiency and rationality. We explain the three measures and their mo-
tivations and report averages across different treatments. We do not describe
the data at the level of the individual subject. In a related paper, Choi, Gale
and Kariv (2004), we use the same data set to investigate more thoroughly the
behavioral aspects of individual and group behavior.

4.1 Herd behavior

One of the most important contributions of the social learning literature is to
provide a model of rational herd behavior. When rational individuals ignore
their own private information and “follow the herd,” information is lost, with
the result that inefficient actions may be chosen. Herd behavior arises in the
laboratory when, from some decision-turn on, all subjects take the same action.
We begin by with the positive question of existence of herd behavior and later
consider the normative question of efficiency. Herd behavior can be character-
ized in terms of two related phenomena, uniformity and stability of actions. At
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each turn t, uniformity is measured by a score function that takes the value 1 if
all subjects act alike and takes the value 0 otherwise. Stability is measured by
the proportion of subjects who continue to choose the same action they chose
at turn t− 1. Notice that uniformity of actions at some date t will persist and
lead to herd behavior if and only if stability takes the value 1 at all subsequent
turns t < s ≤ T . In such a case, we say that a herd of length T − t + 1 has
occurred in the laboratory. Our first observation describes the evolution of herd
behavior.

Observation 1 There is an upward trend in the degree of uniformity and a
high and constant level of stability in all treatments, with the result that,
over time, subjects tend to follow a herd more frequently.

Support for this observation is presented in Table 1 which shows, turn by
turn, the average level of stability and uniformity and the percentage of rounds
in which subjects followed a herd from that turn on (Table 1A). For comparison
purposes, the experimental results are presented along with the theoretical pre-
dictions which are derived with the help of simulations (Table 1B).3 Note that,
by definition, the number of herds is monotonically non-decreasing over time,
but the increase in stability and uniformity is not implied by the definitions. It
appears to be the result of learning and information aggregation.

[Table 1 here]

Next, we turn to the frequencies of herd behavior in different networks and
treatments. We observe that, within a given decision-turn, in some treatments
there is no significant difference between the frequencies of herd behavior, but
the situation is clearly reversed, particularly in early turns, in other treatments.

Observation 2 (Networks) In the complete and star networks, the frequency
of herds is highest under full-information and lowest under low-information;
in the circle, the frequency of herds under low-information is the same as
under high-information but lower than under full-information.

Observation 3 (Information) Under full-information, the frequency of herds
in the complete network is the same as in the star but higher than in the
circle; under high-information the frequency of herds in the circle network
is the same as in the star but lower than in the complete network; under
low-information, there are no significant differences between the frequen-
cies of herd behavior in the different networks.

The first evidence about the frequencies of herd behavior is provided in
Table 1. The relevant support for Observations 2 and 3 comes from Figure 2
which presents, in graphical form, the data from Table 1 on herd behavior in

3We compute the measures with the help of simulations that were carried out by MatLab.
An experiment starts by drawing a vector of private signals. We then collect the actions
generated by this vector according to the model. Each experiment was repeated 105 times.
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each network under all information treatments (Figure 2A), and for all networks
under each information treatment (Figure 2B). A set of binary Wilcoxon tests
indicates that the differences are significant at the 5 percent level.

[Figure 2 here]

The right column of Table 1 summarizes, treatment by treatment, the aver-
age level of stability and uniformity over all turns and the expected length of
herd behavior. Note that in all networks the expected length of herd behavior
increases with the probability q that an individual subject receives a signal.
Also, under full and high information, the expected length of herd behavior in
the complete network is greater than in the star, and is greater in the star than
in the circle. Under low-information, the expected length of herds in the circle
is greater than in the star.
Convergence to a uniform action is more rapid in the complete network under

full-information, where it is common knowledge that all subjects are informed
and all actions are common knowledge. In contrast, diversity continues for a
longer time under high and low information and in the star and circle networks.
We conjecture that the absence of common knowledge makes it harder for sub-
jects to interpret the information contained in the actions of others and requires
them to perform more complex calculations.
Recall that in the specific parametric model underlying our experimental

design, except the complete network under high-information, herds always entail
correct decisions in all treatments. Thus, it is particularly interesting that
almost all herds longer than three turns selected the right action, but some
differences can be identified in the behavior of different networks. These facts
are summarized in the following observation.

Observation 4 Relative to the information available, herds tend to entail cor-
rect decisions. There are, however, significantly more incorrect herds in
the complete network under high-information.

Evidence for this observation is also provided by Table 1. The numbers in
parentheses are the fractions of herds that choose the wrong action, defined
relative to the information available.

4.2 Informational efficiency

One of the central concerns in the study of social learning is the efficiency of
information aggregation. Like Anderson and Holt (1997), we use expected payoff
calculations to measure the efficiency of the decisions made by our subjects in
the laboratory. As a benchmark we use the payoff to a hypothetical agent
who has access to all private information in his network. Define the efficient
expected payoff to be the expected earnings of an agent who makes his decision
based on the entire vector of signals; define the private-information expected
payoff to be the expected earnings of an agent who makes his decision on the
basis of his own private signal; and define the random expected payoff to be
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the expected earnings of an agent who randomizes uniformly between the two
actions. Finally, for each turn, let the actual expected payoff be the expected
earnings from the subject’s actual decision in the laboratory. The sum of the
efficient, private-information, random, and actual payoffs, for all rounds, will be
denoted by πe, πp, πr and πa, respectively.
In order to assess the quality of aggregation and use of information within

a network, the efficiency of decisions is measured separately for informed and
uninformed individuals in two ways:

actual efficiency =
πa − πr
πe − πr

,

private-information efficiency =
πp − πr
πe − πr

.

Thus, the actual (private-information) efficiency is the difference between the
actual (private-information) expected payoff πa (πp) and the random-choice ex-
pected payoff πr as a fraction of the difference between the efficient expected
payoff πe and the random-choice expected payoff πr. Note that actual efficiency
varies by decision turn whereas private-information efficiency is constant across
all turns in a round. Notice also that efficient decisions have an efficiency of one
and random decisions have an efficiency of zero. The comparison of actual and
private-information efficiencies is useful in determining the extent to which in-
formed and uninformed subjects use the information revealed by their neighbors’
actions. Table 2 summarizes the actual and private-information efficiencies in all
networks and information structures (Table 2A), and the theoretical predictions
which are derived with the help of simulations (Table 2B).

[Table 2 here]

We next turn our attention to analyze how efficient our subjects were in using
the information revealed by their neighbors’ actions. The next two observations
report average actual-efficiency calculations to measure the informational effi-
ciency within a given network, information treatment, and turn.

Observation 5 (Network) In the complete network, average actual-efficiency
is highest under full-information and lowest under low-information; in the
star, average actual-efficiency under full-information is the same as un-
der high-information but higher than under low-information; in the circle,
the levels of average actual-efficiency are the same under all information
treatments.

Observation 6 (Information) Under full-information, average actual-efficiency
is highest in the complete network and lowest in the circle; under high- and
low-information, there are no significant differences between the levels of
average actual-efficiency in the different networks.

The support for Observations 5 and 6 comes from Figure 3, which presents
the data from Table 2 by comparing the total actual efficiency in each network
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under all information treatments (Figure 3A), and for all networks under each
information treatment (Figure 3B). Figure 3B also depicts the average private-
information efficiency over all subjects within each information treatment. A set
of binary Wilcoxon tests indicates that all the differences above are significant
at the 5 percent level.

[Figure 3 here]

4.3 Rationality

Rationality is measured by the percentage of times subjects follow an equilibrium
strategy. At the first and second decision-turns, the data supports the following
observation.

Observation 7 Over all treatments, only 5.8 percent of the first-turn actions in
each round were inconsistent with the information implicit in the private
signal. At the second turn, although there are significant differences across
information sets, the error rates are uniformly fairly low.

Evidence for Observation 7 is given by the diagram below, which reports the
error rates, i.e., the percentage of times subjects deviate from the equilibrium
strategy, at the second turn. The data is grouped according to the number of
actions observed, i.e., all types in the complete network and type A (the center)
in the star observe N = 2 actions, and all types in the circle network and types
B and C in the star observe N = 1 actions. The numbers in parentheses are
the percentages of decisions in which subjects were indifferent between the two
actions.

Information N = 2 N = 1
Full 12.5 (0.00) 4.40 (44.4)
High 17.8 (16.2) 16.7 (0.00)
Low 20.3 (36.9) 26.9 (0.00)

4.4 Summary

In summary, the experimental data exhibit a strong tendency toward herd be-
havior and a marked efficiency of information aggregation. The data also suggest
that there are significant and interesting differences in average subject behavior
among the three networks and three information treatments. We have sug-
gested that these differences might be explained by differences in the amount of
common knowledge and the symmetry or asymmetry of the network or the in-
formation treatment. The reader is referred to Choi, Gale, and Kariv (2004) for
a fuller discussion of these issues. Finally, we have noted the high degree of ra-
tionality in subject behavior. Nonetheless, mistakes are made. We take explicit
account of the possibility of mistakes in the next section where we introduce a
model of Quantal Response Equilibrium.
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5 Econometric Analysis
To explain the agent’s propensity to choose an action different from the one
predicted by the basic theory, we assume that each agent’s payoff is perturbed
by an idiosyncratic preference shock that has a logistic distribution. The logit
equilibrium can be summarized by a choice probability function following a
binomial logit distribution :

Pr (ait = 1|Iit) =
1

1 + exp (−βitxit)
,

where ait is the action of agent i at date t, Iit is agent i’s information set at
date t, βit is a coefficient, and xit is the difference between the expected payoffs
from actions a = 1 and a = −1, respectively. The choice of action becomes
purely random as βit goes to zero, whereas the action with the higher expected
payoff is chosen for sure as βit goes to the infinity. For positive values of βit,
the choice probability is increasing in xit.
In the QRE model, a rational subject must predict his neighbors’ choice

probabilities correctly to calculate the posterior probabilities correctly. In effect,
we assume that subjects have rational expectations about their neighbors’ true
error rates (determined by the true value of beta) and use the estimated beta
coefficients to approximate the true beta. Thus subjects use the estimated
betas from the prior decision turn t − 1 to update their posterior beliefs and
expected payoffs at any decision-turn t > 1. These in turn determine the choice
probabilities via the logistic response function given above.
We use repeatedly the standard maximum likelihood (ML) method for the

estimation of the logistic random-utility models. The data employed to imple-
ment the ML estimation for betas at each turn are the current actions and the
implied expected payoffs for the current period. Taking into account the influ-
ence of the networks and information treatments on the calculation of expected
payoffs, we pool homogeneous data at each turn to reduce sampling errors in the
estimation of betas. At the first decision-turn, in any network and information
treatment, decisions are based only on private information. So all the data from
the first turn of the experiment were pooled to provide a unique beta estimate.
The information treatment and the number of neighbors matter in the compu-
tation of expected payoffs at the second turn. So we pooled the data of subjects
who observed the same number of neighbors in the same information treatment
to estimate a set of second-turn beta estimates: betas were estimated separately
for each information treatment and for each of two groups of subjects, (a) all
subjects in the complete network and type-A subjects in the star network and
(b) all subjects in the circle network and type-B and type-C subjects in the star
network. From the third turn on, we estimate betas separately for each network
and information treatment and, in the case of the star network, distinguished
the betas for the center (type A) and the periphery (types B and C).
We can illustrate the recursive estimation procedure with reference to the

circle network. At the first decision-turn, we calculate the difference in ex-
pected payoffs, xi1, conditional on the private signals for i = A,B,C. Then
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the beta for the first decision-turn is estimated via the ML logit estimation.
Then the beta estimate for the first turn, bβ1, is used to determine the choice
probabilities of each subject’s neighbor j, Pr (aj1|Ij1), for each possible Ij1.
These choice probabilities, together with Bayes’ rule, are used to calculate the
posterior probability that the state is ω = 1 conditional on subject i’s infor-
mation set, Pr (ω = 1|Ii2), which in turn determines the difference in expected
payoffs, xi2(bβ1). Analogously, the beta estimate for the second turn, bβ2, can be
obtained. Note that the estimation procedure follows precisely each subject’s
inference problem in the theory and it becomes more involved at later decision-
turns. At the third turn, the incomplete structure of the circle network requires
each subject to make inferences about the behavior of his neighbor’s neighbor k.
Thus, the beta estimates for the first and second turns are used to determine the
choice probabilities of his neighbor j at the first and second turn, Pr (aj1|Ij1)
and Pr (aj2|Ij2), and the choice probabilities of his neighbor’s neighbor k at the
first turn, Pr (ak1|Ik1). Again, together with Bayes’ rule, these probabilities are
used to compute the posterior probabilities and thus the difference in expected
payoffs at the third turn, xi3(bβ1, bβ2), which serves as the independent variable
in the estimation of the beta for the third turn. Continuing in this manner, we
can estimate the entire logit equilibrium models for the circle network and each
information treatment. The procedure is analogous for the other networks. The
details for the inference problem in the QRE model for each network are rele-
gated to the Appendix. Table 3 presents the results of the ML logit equilibrium
estimation. Standard errors are given in parentheses.

[Table 3 here]

All the beta estimates are significantly positive. This implies that, under
the specification of the logistic distribution, the behavior of subjects is not
entirely random and the model of logit equilibrium has some predictive power
in interpreting their behavior in the laboratory. Although it seems difficult to
identify any marked behavioral differences of beta estimates across networks and
information treatments, we found at least one apparent cross-sectional feature
of the beta series: for each decision turn up to and including the fifth, the
estimate beta coefficients from the circle network are monotonic with respect to
information treatment. That is, for a fixed decision turn t the beta coefficient
is lowest for the full-information treatment, higher for the high-information
treatment, and highest for the low information treatment. Figure 4 provides a
graphical re-presentation of the beta series in the complete, star (type A and
types B and C) and circle networks.

[Figure 4 here]

Figure 4 indicates that subjects in the circle network are more sensitive to
the difference in (theoretical) expected payoffs in the high and low information
treatments. Recall that, in this network, the reasoning required to identify op-
timal strategies is complex, but the strategies themselves are quite simple: an
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informed subject should always follow his own signal and an uninformed sub-
ject should imitate the one other subject he can observe. We conclude that,
overall, subjects were more likely to follow these strategies in lower information
treatments. However, the differences may be explained by compositional differ-
ences resulting from the changes in the proportion of informed and uniformed
subjects.
Although the results of the logit analyses show some power in predicting

the behavior observed in the laboratory, further investigation is needed to de-
termine whether this parametric specification of QRE fits the data well. In
particular, the parametric specification implies that the probability distribution
of choices has the familiar logistic shape and that subjects are more likely to
make “mistakes” when the differences in expected payoffs are small. To test the
predictions of the model, we first perform a series of graphical comparisons be-
tween predicted logit choice probabilities and empirical choice probabilities. The
predicted logit choice probabilities across networks and treatments are graphed
using the corresponding beta estimates. We use the method of nonparametric
regression estimation to represent the empirical choice probabilities. Specifi-
cally, define yit = 1{ait=1}, where 1{·} is an indicator function. Assume that
the true relation between yit and xit may be expressed in terms of the condi-
tional moment E[yit|xit] = G (xit), where G : R → [0, 1]. Then given a data
set {(yit, xit)}ni=1we employ the Nadaraya-Watson estimator with a Gaussian
kernel function for the choice probability associated with each of the parametric
cases.4 Note that we construct the data of expected payoffs xit, for t ≥ 2, using
the logistic distribution specification. The bandwidth is chosen to be n−1/5.5

In all cases the selected bandwidths provided properly smoothed kernel regres-
sion estimates. Figure 5 shows a set of comparisons between these two choice
probabilities.

[Figure 5 here]

In each of the graphs in Figure 5, a solid line represents the nonparamet-
rically estimated choice probability of action 1 and two dashed lines around
the solid one represent 95% pointwisely-constructed confidence intervals of the
nonparametrically estimated choice probability. A dotted line represents the

4The Nadaraya-Watson estimator for G (·) is given by

G (x) =
n

i=1

K
xit − x

h
yit /

n

i=1

K
xit − x

h
,

where h is a bandwidth and K (·) is a kernel function. The Gaussian kernel function is given
by K (u) = 1√

2π
exp − 1

2
u2 for u ∈ R.

5The optimal bandwidth in the nonparametric kernel regression with a single independent
variable is proportional to n−1/5. We tried several methods of automatic bandwidth-selection
such as Generalized Cross Validation. However, the bandwidth yielded by those methods
resulted in a kernel regression estimate that was too irregular to be plausible. It is interesting
to note that the literature of bandwidth selection in nonparametric regression indicates that
automatic bandwidth selection is not always preferable to graphical methods with a trial and
error approach. See Pagan and Ullah (1999, p.120).
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parametrically estimated logit choice probability for the same action. A beta
estimate and a selected bandwidth are reported at the top of each panel. These
graphical comparisons presents a rough indication for goodness of fit. Somewhat
surprisingly, the fits are generally good except for the cases of type-A subjects in
the star network with full information. In particular, the empirical data confirm
the main prediction of the QRE model that errors are more likely when payoff
differences are small. Furthermore, the logit estimated choice probabilities lie
between the two lines of confidence interval in many cases. We investigated the
irregularity in the case of type-A subjects in the star network with full infor-
mation and found it was caused by a combination of the small-sample problem
and one subject’s “irrational” behavior.6

The graphical comparison is highly suggestive but a formal test is more con-
vincing, so we performed specification tests for the functional-form assumption
of the logistic random-utility model using Zheng’s (1996) test. Given the un-
known relation between yit and xit for any decision-turn t, we test the null
hypothesis that the logit equilibrium model is correct:

H0 : Pr
£
E (yit|xit) = G

¡
β0txit

¢¤
= 1 for some β0t ∈ R,

where G (βx) = 1/ (1 + exp (−βx)). The alternative hypothesis is, without a
specific alternative model, that the null is false:

H1 : Pr [E (yit|xit) = G (βtxit)] < 1 for all βt ∈ R.

Note that the alternative includes all the possible departures from the null
model.7 The results of the series of specification tests are reported in Table 4.
P -values are reported in parentheses.

[Table 4 here]

The bandwidth is selected to be cn−1/5, where c is equal to 1. The test
results in Table 4 confirm the previous graphical comparisons. In most of the
cases p-values are fairly high and support strongly the parametric specifications.
As seen in the graphs, we reject the null in the case of type-A subjects in
the star network with full information at decision-turns t = 3, 5, 6 with 5%

6The subject played the following strategy (a1, a2, a3, a4, a5, a6) = (1, 0, 1, 0, 1, 1) in 12 out
of 15 rounds. Further, in 9 rounds out of 12, the optimal strategy required the subject to
choose action 0 for all decision-turns. Most of the time, he did not even coordinate with his
own signal.

7The test statistic Tn is given by

Tn =

n
i=1 j=1

j 6=i
K

xi−xj
h

eiej

n
i=1 j=1

j 6=i
2K2 xi−xj

h
e2i e

2
j

1/2
,

where K (·) is a kernel function, h is a bandwidth, and ei = yit −G(βxit) with beta estimate
β under the null. Under some mild conditions, the asymptotic distribution of Tn under the
null hypothesis is the standard normal (Theorem 1 in Zheng, 1996).
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significance level. Interestingly, we also reject the null at the third turn, in the
high-information, circle-network treatment, with 5% significance level.8

6 Conclusion
Many economic decision problems involve incomplete and asymmetric informa-
tion. That is, agents are uncertain about some underlying decision-relevant
event and the information about it is shared asymmetrically among them. Con-
sequently, agents have a very strong incentive to learn by observing the behavior
of others. In social settings, agents are part of a social network and can only
observe the actions of agents to whom they are connected through the net-
work. Thus, networks are natural tools for understanding the social learning
phenomenon.
Whether agents can rationally process the information available in a net-

work is ultimately an empirical question. To test the relevance of the theory,
we have undertaken an experimental investigation of learning in three-person
networks and focus on using the theoretical framework of Gale and Kariv (2003)
to interpret the data generated by the experiments. The family of three-person
networks includes several non-trivial architectures, each of which gives rise to its
own distinctive learning patterns. The theory suggests that even in the three-
person case the process of social learning in networks can be complicated. This
confirms the importance of verifying the relevance of the theory empirically.
Somewhat surprisingly we find that the theory, modified to include the pos-

sibility of errors, does a good job of interpreting the subjects’ behavior. Despite
the complexity and sophistication of the decision-making required by the the-
ory, the decision rules of the QRE model appear to be qualitatively very similar
to the data. The series of specification tests we conducted to see whether the
restrictions of the QRE model are confirmed by the data and the results are
strikingly in conformity with the theory. This provides strong support for the
use of theoretical models as the basis for structural estimation and the use of
QRE to interpret experimental data.
The model and results that we have developed provide a foundation for fu-

ture theoretical and experimental research of social learning in networks and
the techniques can be applied to other setups such as random graphs, and dy-
namic graphs where the set of neighbors observed changes over time. We can
also use the same methodology to examine more complex network architectures.
Obviously, different network architectures and information structures may lead
to different outcomes. This remains a subject for further theoretical and exper-
imental research.

8To investigate whether the test results are sensitive to the choice of bandwidth, we also
calculated the test statistics when c is equal to 0.5 and 2. On the whole, we obtained the
quite similar results with a small variation.
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7 Appendix
The Gale-Kariv model is extended to allow for the possibility of errors in the
behavior of subjects, which leads us to the QRE version of the model. The QRE
model assumes that agents receive idiosyncratic preference shocks. Formally, for
agent i at turn t = 1, 2, ..., T , the random utility from a binary action a ∈ {−1, 1}
is given by

Ua
it = βitπ

a
it + εait, for a ∈ {−1,1} ,

where πait represents an observed (theoretical) expected payoff from action a
and coefficient βit parametrizes the sensitivity of choices to such observed ex-
pected payoffs. Random variable εait represents agent i’s preference shock for
action a, which is assumed to be privately observed only by agent i. The choice
probability for action a ∈ {−1,1} can be obtained, given agent i’s information
set Iit at turn t, by

Pr (a = 1|Iit) = Pr
©
U1
it > U−1it

ª
= Pr

©
ε−1it − ε1it < βitxit

ª
,

where xit := π1it−π−1it denotes the difference in expected payoffs between action
1 and −1 given information set Iit.9 For tractability, we adopt a parametric
version of the QREmodel called the logit-equilibrium model where εait is assumed
to be independently and identically distributed according to the type I extreme
value with cumulative distribution F (ε) = exp (−e−ε) for any a ∈ {−1,1}, each
agent i and all t = 1, 2, ..., T .10 The assumption of error structures implies no
serial correlation of errors across turns for an individual and no cross-sectional
correlation of errors across individuals.
In computing the expected payoffs at each turn, an agent uses different levels

of hierarchies of beliefs to infer his neighbors’ signals through their observed
actions, depending on the structure of networks. The hierarchies of beliefs are
mainly grouped into three categories: beliefs about (i) his neighbor’s private
signal, (ii) his neighbor’s trembling in actions, and (iii) his neighbor’s neighbor’s
actions at previous turns if hidden to the subject. To see how such hierarchies
of beliefs are utilized in updating beliefs, consider type-i agent in a network
for i ∈ {A,B,C} with his neighbors Ni ⊂ {A,B,C}. At turn t, type-i agent’s

infomation set is given by Iit =
n
σi, (ajs)

t−1
s=1 | j ∈ N i

o
, where N i := {i} ∪Ni.

The posterior belief that the true state is ω = 1 conditional on Iit is given, via

9 In our experimental setting, the difference in two payoffs is written as xit =
2 [2Pr (θ = 1|Iit)− 1]. Varing earnings does not change any qualitative results in the esti-
mation of beta coefficients but only affects the scale of them.
10The variance of this distribution is normalized to be π2/6. It is well known that beta

coefficients and the variance in the error term can not be separately identified.
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Bayes’ rule, by

Pr (ω = 1|Iit) =
Pr (Iit|ω = 1)

Pr (Iit|ω = 1) + Pr (Iit|ω = −1)

=
Pr (σi|ω = 1)

Qt−1
s=1

Q
j∈Ni

Pr (ajs|Iis, ω = 1)P
ω Pr (σi|ω)

Qt−1
s=1

Q
j∈Ni

Pr (ajs|Iis, ω)
,

where the second equality comes from the assumptions of distributions of errors
and signals.11 The formula says that an agent processes information by forming
a belief about new observation at each turn given information set available up
to that turn as well as conditional on the state of the world. Thus, the focus is,
in what follows, on how to decompose such beliefs about new observation into
various hierarchies of beliefs, depending on the structure of networks.

The Complete Network We only consider type-A’s inference problem,
whose information set at t = 1, 2, .., T is given by IAt = {σA, (aAs, aBs, aCs)s=1,...,t−1},
because of the homogeneity of the positions in the complete network. Due to the
common knowledge of the history of the play, type-A agent only needs to infer
his neighbors’ private signals while considering the possibility of their errors.
Thus, for instance, the belief about type-B’s action at turn t conditional on IAt
and state ω is decomposed into

Pr (aBt|IAt, ω) = Pr
³
aBt| {aAs, aBs, aCs}t−1s=1 , ω

´
=

X
σB

Pr
³
aBt|σB, {aAs, aBs, aCs}t−1s=1 , ω

´
Pr
³
σB | {aAs, aBs, aCs}t−1s=1 , ω

´
=

X
σB

Pr (aBt|IBt) Pr
³
σB| {aAs, aBs, aCs}t−2s=1 , aBt−1, ω

´
,

where Pr (aBt|IBt) contains different values of σB in the different summands.
Note that the first term in each summand represents type-B’s choice probability,
which is independent of the state of the world, and the second term does type-
A’s belief about type-B’s signal conditional on relevant information and state ω.
Each second term in the summands can be further decomposed into, for t ≥ 3,

Pr
³
σB| {aAs, aBs, aCs}t−2s=1 , aBt−1, ω

´
=

Pr (aBt−1|IBt−1) Pr
³
σB| {aAs, aBs, aCs}t−3s=1 , aBt−2, ω

´
P

σ0B
Pr
¡
aBt−1|I 0Bt−1

¢
Pr
³
σ0B| {aAs, aBs, aCs}

t−3
s=1 , aBt−2, ω

´ .
The Circle Network Type-A’s information set at turn t is given by

IAt = {σA, (aAs, aBs)s=1,...,t−1}. The inference problem becomes more inter-
esting from t ≥ 3 due to the lack of common knowledge of the history: type-A
11 If t < 2, then the set (ajs)

t−1
s=1 is empty. In general, we adopt the convention throughout

this appendix that a set is considered as empty whenever it is the case.
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agent needs to consider type-C’s action in processing information from type-B’s
actions. For any s ≥ 2,

Pr (aBs|IAs, ω) = Pr
³
aBs| {aAp, aBp}s−2p=1 , aBs−1, ω

´
=

X
σB ,(aCm)

s−1
m=1

Pr
³
aBs|σB, {aAp, aBp, aCp}s−2p=1 , aBs−1, aCs−1, ω

´
×Pr

³
σB| {aAp, aBp, aCp}s−2p=1 , aBs−1, aCs−1, ω

´
×Pr

³
(aCm)

s−1
m=1 | {aAp, aBp}

s−2
p=1 , aBs−1, ω

´
=

X
σB ,(aCm)

s−1
m=1

Pr (aBs|IBs) Pr
³
σB | {aBp, aCp}s−2p=1 , aBs−1, ω

´
×Pr

³
(aCm)

s−1
m=1 | {aAp, aBp}

s−2
p=1 , aBs−1, ω

´
.

Note that type-A’s belief about new observation entails beliefs about type-C’s
actions at all previous turns because they affect beliefs about type-B’s signal
and trembling. And those beliefs are, further, decomposed into

Pr
³
(aCm)

s−1
m=1 | {aAp, aBp}

s−2
p=1 , aBs−1, ω

´

=

s−1Q
p=1

Pr(aBp| {aBk, aCk}p−1k=1 , ω) Pr
³
aCp| {aCk, aAk}p−1k=1 , ω

´
P
(a0Cm)

s−1
m=1

s−1Q
p=1

Pr(aBp| {aBk, a0Ck}
p−1
k=1

, ω) Pr
³
a0Cp| {a0Ck, aAk}

p−1
k=1

, ω
´ .

The Star Network The interaction between heterogeneous agents in the
star network has also a salient feature in updating beliefs. First, consider type-A
agent who has the perfect knowledge over the history of the play. Just as agents
in the complete network, type-A agent only needs to infer his neighbors’ signals
with the consideration of trembling. However, the nature of forming beliefs is
quite different because both agents on the periphery can only interact through
type-A agent. For any s ≥ 2,

Pr (aBs|IAs, ω) = Pr
³
aBs| {aAp, aBp}s−1p=1 , ω

´
=

X
σB

Pr
³
aBs|σB , {aAp, aBp}s−1p=1 , ω

´
Pr
³
σB | {aAp, aBp}s−1p=1 , ω

´
=

X
σB

Pr (aBs|IBs) Pr
³
σB| {aAp, aBp}s−2p=1 , aBs−1, ω

´
.

Consider the inference problem of an agent on the periphery, for example,
type-B. Just as agents in the circle network, type-B agent should consider the
impact of type-C’s unobserved actions on type-A’s observed actions. But, the
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nature of inference is also different because his action does not directly influence
type-C’s decision problem: for any s ≥ 2,

Pr (aAs|IBs, ω) = Pr
³
aAs| {aAp, aBp}s−1p=1 , ω

´
=

X
σA,(aCm)

s−1
m=1

Pr (aAs|IAs) Pr
³
σA| {aAp, aBp, aCp}s−2p=1 , aAs−1, ω

´
×Pr

³
(aCm)

s−1
m=1 | {aAp, aBp}

s−1
p=1 , ω

´
.

The last term is further extended as follows:

Pr
³
(aCm)

s−1
m=1 | {aAp, aBp}

s−1
p=1 , ω

´

=

s−1Q
p=1

Pr
³
aAp| {aAk, aBk, aCk}p−1k=1 , ω

´
Pr
³
aCp| {aAk, aCk}p−1k=1 , ω

´
P
(a0Cp)

s−1
p=1

s−1Q
p=1

Pr
³
aAp| {aAk, aBk, a0Ck}

p−1
k=1 , ω

´
Pr
³
aCp| {aAk, a0Ck}

p−1
k=1 , ω

´ .
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