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1 Introduction

The simplest model of herding is probably the following. There are two possible
states and the agents’ decision consists of either investing or refraining from in-
vesting. In the good state the investment yields a positive return and in the bad
state it yields zero. Each agent gets an informative signal about the true state,
and the signals are i.i.d. The cost of investment is one half of the return in the
good state, and the prior probability of the good state is one half. This means
that the agents are indifferent between investing and refraining when they have
but the prior information. If they get a good signal they strictly prefer to invest
and if they get a bad signal they strictly prefer to refrain. More generally, if an
agent, by observing the actions of his predecessors, can infer that the number
of good signals is greater than the number of bad signals he prefers to invest.
In the opposite case he prefers to refrain.

Kultti & Miettinen (2005) study this model with a twist that observing the
act of any previous agent involves a fixed costs c > 0. We find that no matter
how small the cost is the agents from the third agent on observe only the act
of the previous agent, and that a herd necessarily starts from the third agent on.

Even though this is a neat result it is not particularly general as the para-
meters of the model above are very special. There are several ways to address
the problem in a more general setting. First, the signal technology could allow
for a larger set of signals. This would probably be just a complication; any
agent would have a threshold value for the signal so that signals below this
value would lead him to refrain and signals above this value would lead him to
invest. The threshold would depend on the position of the agent in the queue
and on the actions of his predecessors.

Second, one could study situations where the agents are not indifferent be-
tween the two actions given the prior information. There are two interesting
cases that are mirror images. The prior is such that without any signals the
agents prefer to invest, and if they get a bad signal they update the probability
of the good state so low that they prefer to refrain. This is the problem we
aim to solve in this article. Notice that one could also study different costs of
investment but there are two ’free’ parameters, namely the cost of investment
and the prior probability and it is sufficient to let one of them vary.

2 Related Literature

Seminal contributions by Banerjee (1992) and Bikhchandani, Hirshleifer & Welch
(1992). A more involved herding model by Smith & Sorensen (2000). With
imperfect observability include Banerjee & Fudenberg (2004), Celen & Kariv
(2004) and Smith & Sorensen (1997). (To be completed...)
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3 Model

There is a set of agents {1, 2, . . . , N − 1, N}, N ∈ Z+, that have to make a deci-
sion to adopt the new technology or product. The agents make their decisions
sequentially where the order is exogenous and common knowledge among the
agents. The new technology/product can be either good or bad. In what follows
we customarily talk about adopting. There are two possible states of the world
Ω = {ω, ω̄} where ω denotes the good and ω̄ the bad state of the world. If
the state of the world is good then the adopting agent receives a benefit of b.
If the state of the world is bad then the adopting agent receives a benefit of
bL that is normalized to zero. The cost of adoption c = b

2 is same across the
states and agents. The prior probability that the state of the world is good (or
bad) is Pr(ω) = q, (Pr(ω̄) = 1− q). Each agent receives a signal Ŝ about the
state of the world from the set S = {S, S̄}, where S denotes a signal that the
state is good and S̄ is a signal that the state is bad. Agent i’s signal Ŝi = S
is denoted by Si and Ŝi = S̄ by S̄i. The conditional probabilities of the signals
are Pr(Si | ω) = p = Pr(S̄i | ω̄) > 1

2 and Pr(Si | ω̄) = (1− p) = Pr(S̄i | ω) < 1
2 .

Thus the signals are informative about the state of the world. The agents do not
automatically observe the actions taken by their predecessors, but they can get
the information about what some preceding agent did by paying a fee of ρ > 0
per observed predecessor. When an agent observes his predecessor he learns
only whether the predecessor adopted or not. No information is learned about
the observations that the predecessor has done. We assume that the agents
make their observation decisions sequentially. That is, an agent first observes
a predecessor, then conditional on his signal and the observed behavior he will
decide whether to make further observations or to adopt on the basis of the
current information. Observation cost is incurred at the time of observation.
This amounts to assuming that the observation cost is sunk once a predecessor
is observed. Once the agent decides that he does not want to make any more
observations he makes the decision about adopting. In the following Ai denotes
agent i’s decision to adopt and Āi denotes the decision to refrain. With W we
denote the agent’s decision to wait and observe more preceding agents.

3.1 Assumptions

Throughout the paper we make the following two assumptions

Assumption 1 P (ω) = q > 1/2

Assumption 2 q < p.

Assumption 1 states that adopting is a profitable option ex-ante. In the
case that this inequality is reversed, our results hold “as mirror images” when
”adopting” is replaced with ”not adopting”. Assumption 2 guarantees that the
agent’s problem is non-trivial. We need that the agent’s posterior belief about
the good state is less than 1/2 if he observes a bad signal. If this is not satisfied
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the first agent buys irrespective of his signal. Our requirement amounts to

P (ω|S̄i) =
(1− p)q

(1− p)q + p(1− q)
<

1
2
⇐⇒ q < p.

Assumption 3 The observation cost ρ is small enough to accommodate any
additional observations that may benefit the decision maker.

We elaborate more on what happens when this assumption is relaxed at the end
of the paper.

3.2 Strategies

A strategy for player i defines the predecessors to be observed and the action
taken by the agent as a function of the observed behavior.

Formally let a1
i : {S, S̄} −→ {A, Ā,W} denote the action that agent i takes

based on his own signal alone. Let O1
i : {S, S̄}×{a1

i (Ŝ)} −→ {1, 2, . . . , i−1}∪{∅}
determine the first person that agent i with signal Ŝ ∈ {S, S̄} observes1. We
denote the observed2 behavior of agent j by bj ∈ {A, Ā}.

Then let a2
i : {S, S̄} × B1 −→ {A, Ā,W} denote the action that agent i

takes based his own signal and the first observation, where we denote the set
of observed behavior as B1 := {{bj} : bj ∈ {A, Ā}, j = O1

i (Ŝ)}. Similarly let
O2

i : {S, S̄}×B1×{a2
i (Ŝ, ·)} −→ {1, 2, . . . , i−1}∪{∅}, denote the second person

that is observed.
Now let a3

i : {S, S̄}×B2 −→ {A, Ā,W} denote the action that agent i takes
based on his own signal and the two observations where the set of observed
behavior is now B2 := {{bi, bj} : bi, bj ∈ {A, Ā}, i, j ∈ O1

i ∪ O2
i }. Also let

O3
i : {S, S̄} × B2 × {a3

i (Ŝ, ·, ·)} −→ {1, 2, . . . , i − 1} ∪ {∅}, denote the third
person that is observed.

Then define recursively at
i : {S, S̄} × Bt−1 −→ {A, Ā,W} as the action that

agent i takes based on his own signal and the observation history {bj}j∈Ot−1 ,
where Bt−1 = {{bj}j∈Ot−1 : bj ∈ {A, Ā},∀j ∈ Ot−1} denotes the set of possible
observations and Ot−1 := ∪t−i

j=1O
j
i (Ŝ) ∈ P({1, 2, . . . , i− 1}) the set of observed

agents.
Also define recursively Ot

i : {S, S̄} × Bt−1 × {at−1
i (·)} −→ {1, 2, . . . , i − 1},

to be the map that determines the tth person that agent i observes with signal
Ŝ ∈ {S, S̄} and observation history {bj}j∈Ot−1 ∈ Bt−1.

Then agent i’s strategy can be defined as

σi(Ŝ) := (at
i(Ŝ, {bj}j∈Ot−1), Ot

i(Ŝ, at−1
i (Ŝ), {bj}j∈Ot−1))i−1

t=1.

Since the agents make a once-and-for-all decision it is reasonable to require that
any strategy satisfies Ot

i(·, a
t−1
i (Ŝ), ·) = ∅ whenever at−1

i (Ŝ) ∈ {A, Ā} and that
at

i(Ŝ, {bj}j∈Ot−1) = at−1
i (·), if at−1

i (·) ∈ {A, Ā} and there exists k ≤ t− 1 such

1We take Ok
i (Ŝ) = ∅ to denote that agent i observes no predecessors at round k ≥ 1.

2The agent making the observations should be clear from the context.
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that Ok
i = ∅. This requirement amounts to saying that once the agent makes his

decision, he makes no more observations, and that he ”sticks” to his decision,
as it is irreversible.

Hence the agent’s decision problem is divided to stages. At each stage agent
decides either to observe one more predecessor or to decide about adopting the
good.

4 Optimal Strategies

All agents i ≥ 3 have the same optimal strategy. We will first elaborate on
agents 1,2 and 3 and then finally prove optimality for agent k ≥ 3.

The choice of the first agent is dictated by his signal.

σ1(Ŝ) =

{
(A1, ∅) if Ŝ = S1

(Ā1, ∅) if Ŝ = S̄1

(1)

The second agent will observe the first agent only if the second agent has a
bad signal. If the signal is good observing that the first agent has a bad signal
cannot affect the second agent’s decision to adopt. Hence the second agent will
make no observations with a good signal. When the second agent has a bad
signal, observing the first agent is profitable. This is true since

P (ω|A1, S̄2) = q.

The second agent will optimally adopt, when he observes that the first agent
adopted. Naturally, if the first agent did not adopt then this only reinforces the
second agent’s belief that the state is bad and he refrains. Below we denote the
fact that agent j is observed by Oj . No confusion should arise about the agent
that makes the observation as it is clear whose strategy we consider.

σ2(Ŝ) =


(A2, ∅) if Ŝ = S2

(W,O1) if Ŝ = S̄2 and a2(S̄2, b1) =

{
A2 if b1 = A1

Ā2 if b1 = Ā1

(2)

Third agent’s problem is more subtle. If the third agent has a good signal
he wants to make sure that there is at least one good signal, because in this
case adopting is profitable. The ”cheapest” way to verify this is to observe
the second agent’s action. If the second agent did not adopt, it implies that
two bad signals are observed. Observing that the second agent adopted will
again imply that at least one good signal is observed by one of the third agent’s
predecessors. Observing that the first agent did not adopt, is not sufficient to
rule out adopting when the third agent has a good signal. If this observation is
made the third agent wants to further observe the action of the second agent,
which by itself is sufficient to provide him the information that he needs.
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When the third agent has a bad signal observing the first agent is the best
policy. The third agent wants to be sure that he refrains only in the case that
the number of “inferable” bad signals is larger than the number of “inferable”
good signals. By observing that the first agent did not adopt the first agent can
assure himself that there are two bad signals and that adopting is not profitable
irrespective of the signal of the second agent. Similarly if the first agent is
observed to adopt then there is no way to infer the signal of the second agent
by observing his action. Hence the third agent can infer that there is one good
and one bad signal. He then updates his beliefs about the state to be equal to
the prior belief and adopts.

Consider what happens when the third agent observes the second agent
instead. In the case that the second agent did not adopt then all predecessors
signals are inferable and the same decision is made as if the third agent observed
the first agent’s action. However, if the second agent adopts then the third agent
wants to see the first agent’s choice. In the case that the first agent adopted
then, as above, the number of inferable good signals is equal to the number
of inferable bad ones. In the case that the first agent refrains, all signals are
inferable, but the first agent’s action is sufficient to determine the third agent’s
optimal action. In the appendix we show that the third agent always prefers to
observe the first agent to observing the second agent when he has a bad signal.

Proposition 1 When players 1 and 2 act according to equations (1) and (2)
the optimal strategy for player i even (i ≥ 4) is

σi(Ŝ) =


(W,Oi−2) if Ŝ = Si and ai(Si, bi−2) =

{
Ai if bi−2 = A

Āi if bi−2 = Ā

(W,Oi−1) if Ŝ = S̄i and ai(S̄i, bi−1) =

{
Ai if bi−1 = A

Āi if bi−1 = Ā

(3)

and the optimal strategy for player i odd (i ≥ 3) is

σi(Ŝ) =


(W,Oi−1) if Ŝ = Si and ai(Si, bi−1) =

{
Ai if bi−1 = A

Āi if bi−1 = Ā

(W,Oi−2) if Ŝ = S̄i and ai(S̄i, bi−2) =

{
Ai if bi−2 = A

Āi if bi−2 = Ā

(4)

We prove the proposition through the following five lemmata.

Lemma 1 If all agents play according to the strategies (3) and (4) then a herd
gets started if two consecutive agents take the same action.

Proof. Suppose that players i and i+1 (i ≥ 1) take action Ā. Now the strategy
for agent i+2 prescribes that he observes either agent i or agent i+1 and mimics
his action.

Lemma 2 If all agents play according to the strategies (3) and (4) then the
only signal realization with which herd does not get started is the one where all
odd agents have bad signals and all even agents have good signals.
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Proof. Suppose to the contrary, that there exist some other realization of
signals with which the herd does not start. This string of signals must have an
instance where there are either two consecutive good or bad signals. Suppose
that the players i and i + 1. (W.l.o.g. assume that i is even.) get the same
signals. If the two signals are both good. Then agent i observes agent i − 2
and agent i + 1 observes agent i. Now to avoid herd from starting we need that
agents i and i + 1 take different actions. But now whatever agent i chooses will
be copied by agent i + 1 and by the lemma 2 above this leads to a herd getting
started. Similarly if the signals are bad then agent i observes agent i − 1 but
then agent i + 1 also observes agent i − 1 and hence the agents take the same
action, a contradiction.

Denote the set of predecessors of agent i by Φi. Fix the signal of agent i,
Ŝi ∈ {S, S̄} and let Z ⊂ Φi. Partition the set of observations into sets Oi(Z)
and Ōi(Z) where

Oi(Z) =
{
{bj}j∈Z : P (ω|{bj}j∈Z , Ŝi) ≥ 1/2

}
Ōi(Z) =

{
{bj}j∈Z : P (ω|{bj}j∈Z , Ŝi) < 1/2

}
.

Definition 1 Agent i is adequately informed by observing the set of predecessors
Z ⊂ Φi at Ŝi, if for all B ⊂ Φi \ Z we have

{bj}j∈Z ∈ Oi(Z) =⇒ P (ω|{bj}j∈B∪Z , Ŝ) ≥ 1/2
and

{bj}j∈Z ∈ Ōi(Z) =⇒ P (ω|{bj}j∈B∪Z , Ŝ) < 1/2

for all (equilibrium) observations {bj}j∈B ∈ {A, Ā}|B|.

I.e. agent i is “adequately informed” by observing the predecessors in Z if
there does not exist any set B ⊂ Φi \Z such that by observing the predecessors
in B in addition to Z causes agent i to change his decision about adopting.

Lemma 3 If σi is an optimal strategy for agent i, then agent i is adequately
informed with σi.

Proof. Suppose not. Let Ŝi ∈ {S, S̄} and Z be the set of observed predecessors
under σi. Then there exists a set B ⊂ Φi and a realization of observed actions
{bj}j∈B such that either

P (ω|{bj}j∈Z , Ŝ) ≥ 1/2 and P (ω|{bj}j∈Z , {bj}j∈B , Ŝ) < 1/2
or

P (ω|{bj}j∈Z , Ŝ) < 1/2 and P (ω|{bj}j∈Z , {bj}j∈B , Ŝ) ≥ 1/2,
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for some realization of actions {bj}j∈Z . Assume that the first case holds3. Then

E[ui(σi)|{bj}j∈Z , Ŝ] =
∑

{bj}j∈B∈B

P ({bj}j∈B |{bj}j∈Z , Ŝ)
(
P (ω|{bj}j∈Z , {bj}j∈B , Ŝ)b− c

)
<

∑
{bj}j∈B∈B\B̄

P ({bj}j∈B |{bj}j∈Z , Ŝ)
(
P (ω|{bj}j∈Z , {bj}j∈B , Ŝ)b− c

)
= E[ui(σ′i)|{bj}j∈Z , Ŝ],

where B denotes the possible (equilibrium) observations from B,

B̄ :=
{
{bj}j∈B ∈ B : P (ω|{bj}j∈Z , {bj}j∈B , Ŝ) < 1/2

}
and under σ′i the decision to adopt is made after observing additionally the
predecessors in B. The behavior with regard to adopting is the same in σ′i as
in σi whenever P (ω|{bj}j∈Z , {bj}j∈B , Ŝ) > 1/2 and differs otherwise. Since we
assumed that the observation costs ρ(B) are small enough to allow any beneficial
observations, the inequality holds even when the costs are accounted for. But
this contradicts the optimality of σi.

Lemma 4 If all agents k < i behave according to the strategies in the propo-
sition 1 then there exist agents ai(S) and ai(S̄) in Pi such that agent i is ade-
quately informed by observing ai(S) or ai(S̄).

Proof. First note that if an agent can detect that a herd has started, then it
is optimal for the agent to join the herd. By lemma 3 above, observing that an
even agent refrains implies that Ā herd has started. Similarly observing that
an odd agent accepts implies that A herd has started. We show that using the
strategy in the proposition 1 agent i becomes adequately informed.

1.) i is even:

a.) If i has a signal Si then he observes i− 2. Observing

- Āi−2 ⇒ Ā herd ⇒ Āi

- Ai−2 ⇒

{
A herd ⇒ Ai or
no herd before agent i− 2

If no herd has started before agent i− 2 then there are i−2
2 good and bad

signals among the predecessors of agent i− 1. Now in case agent i− 1 has
a bad signal the agents up until i have received exactly i

2 good and bad
signals. The posterior probability of the good state in this case is

P
(
ω
∣∣∣ i

2
good and bad signals

)
=

[p(1− p)]
i
2 q

[p(1− p)]
i
2 [q + (1− q)]

= q.

3The other case is similar and omitted for brevity.
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Hence it is worth adopting for i irrespective of the signal of i− 1.

b.) If i has a signal S̄i then he observes i− 1. Observing

- Āi−1 ⇒

{
Ā herd ⇒ Āi or
no herd before agent i− 1

If no herd has started before agent i − 1 then there are i−2
2 good and

i−2
2 + 1 bad signals among the predecessors of agent i. Since i has a bad

signal the agents up until i have received exactly i
2 + 1 good and i

2 − 1
bad signals. The posterior probability of the good state in this case is

P
(
ω
∣∣∣ i

2
− 1 good and

i

2
+ 1 bad signals

)
=

[p(1− p)]
i
2−1(1− p)2q

[p(1− p)]
i
2−1[(1− p)2q + p2(1− q)]

≤ 1/2

(1− p)2q − p2(1− q) ≤ 0
q − p(2q(1− p) + p) ≤ q − p((1− p) + p) = q − p < 0.

Hence it not is worth adopting for i.

- Ai−1 ⇒ A herd ⇒ Ai

2.) i is odd:

a.) If i has a signal Si then he observes i− 1. Observing

- Āi−1 ⇒ Ā herd ⇒ Āi

- Ai−1 ⇒

{
A herd ⇒ Ai or
no herd before agent i− 1

If no herd has started before agent i− 1 then there are i−1
2 good and bad

signals among the predecessors of agent i. Since i has a good signal the
agents up until i have received exactly i−1

2 + 1 good and i−1
2 bad signals.

The posterior probability of the good state in this case is

P
(
ω
∣∣∣ i− 1

2
+ 1 good and

i− 1
2

bad signals
)

=
[p(1− p)]

i−1
2 pq

[p(1− p)]
i−1
2 [qp + (1− p)(1− q)]

≥ 1/2.

Hence it is worth adopting for i.

b.) If i has a signal S̄i then he observes i− 2. Observing

- Āi−2 ⇒

{
Ā herd ⇒ Āi or
no herd before agent i− 2
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If no herd has started before agent i − 2 then there are i−3
2 good and

i−3
2 + 1 bad signals among the predecessors of agent i − 1. Now if agent

i − 1 has a good signal the agents up until i have received exactly i−1
2

good and i−1
2 + 1 bad signals. The posterior probability of the good state

in this case is

P
(
ω
∣∣∣ i− 1

2
good and

i− 1
2

+ 1 bad signals
)

=
[p(1− p)]

i−1
2 (1− p)q

[p(1− p)]
i−1
2 [(1− p)q + p(1− q)]

≤ 1/2.

Hence it not is worth adopting for i irrespective of the signal of i− 1.

- Ai−2 ⇒ A herd ⇒ Ai

Note that in the proof there are two cases where agent i cannot infer what
the signal of his immediate predecessor is4. However observing agent i’s prede-
cessor’s action and (possibly) inferring his signal does not change the decision
whether to adopt or refrain by agent i. It is immediate that an agent, who
decides about adopting without any observations, is not adequately informed.
Since the proposed strategy involves only one observed predecessor it is at least
as good as any other strategy that makes the agent adequately informed. Hence
the strategies are optimal as further observation is costly.

Lemma 5 The strategies in proposition 1 are optimal.

Proof. Suppose not. Denote the optimal strategy and the strategy of propo-
sition 1 for agent i by σ∗i and σi respectively. Then by lemmas 3 and 4 agent
i is adequately informed under both strategies. The only strategy where there
are strictly less observation costs than under σi is when agent i makes no ob-
servations at all, but this cannot be optimal for any agent i ≥ 3. Hence the
observation costs in σ∗i are at least as high as in σi. Disregarding the possibly
different observations costs in σ∗i and σi we have that

E[ui(σ∗i )] > E[ui(σi)],

which implies that there must exist a realization of behavior {bj}j<i such that
the decision to adopt under σ∗i differs from the decision to adopt under σi. By
lemma 4 behavior in σi is optimal with respect to the information observed.
But this implies that under σ∗i there is some additional information that causes
a decision different from σi and contradicts that agent i is adequately informed
under σi.

4Cases 1.a. and 2.b.
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Corollary 1 Optimal strategy is unique.

Proof. Since the strategy of proposition 1 is optimal each player can make at
most one observation in any optimal strategy.

For any agent i observing a predecessor k such that |i − k| > 2 is not part
of an optimal strategy, since there are realizations of signals for which neither
A nor Ā herd starting after agent k can be ruled out. Hence agent i is not
adequately informed by such an observation.

If i has a signal Si then observing his immediate odd predecessor j is not a
part of an optimal strategy. If Āj is observed then either a herd where nobody
adopts or no herd has started. Agent i can find out which case prevails with
probability 1 by observing one more agent, namely his immediate even prede-
cessor. (Observing any other even predecessor k leaves the possibility that Ā
herd starts after k.) Hence agent i is not adequately informed when he observes
his immediate odd predecessor.

If i has a signal S̄i then observing his immediate even predecessor j is not a
part of an optimal strategy. If Aj is observed then either a herd where everyone
adopts or no herd has started. Agent i can find out with probability 1 which
case prevails by observing one more agent, namely his immediate odd predeces-
sor. (Observing any other odd predecessor k leaves the possibility that A herd
starts after k.) Hence agent i is not adequately informed when he observes his
immediate even predecessor.

5 Comparison to the Basic Model

Consider the herding model above in the ”regular” scenario where all agents
observe all their predecessors’ actions. Then it is easy to verify that the herd
gets started if either the first agent adopts or if two consecutive agents take
the same action. Hence whenever the observation costs are low enough to allow
for observations, the probability with which a herd gets started after any agent
k ≥ 1 is same as if there were no costs of observation. However this relies on
the assumption that costs are low enough to allow for every agent to observe
according to the strategy of proposition 1. In the appendix we show that if
the second and third agents behave according to the prescribed strategy then
all following agents will do the same. If the cost ρ > 0 is such that all agents
until i act according to the prescribed strategy then the cost ρ′ that makes
agent i + 1 prefer acting on his own signal alone is larger than the cost ρ. As
the observation costs are same for all agents the they will behave according the
prescribed equilibrium whenever the second and third agents do. Denote this
bound for the cost by ρ̄. There also exists an upperbound ρ̂ > 0 such that
if ρ > ρ̂ then no observations are made. We know what happens whenever
ρ ∈ [0, ρ̄) ∪ [ρ̂,∞). In the case that ρ ∈ [ρ̄, ρ̂) there are many things that may
take place in equilibrium and we do not understand this region completely as
different cases emerge that depend on the values of p and q.
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6 Conclusion

In this paper we find the optimal strategy for the agents in a simple herding
model where observations are costly. We find that contrary to the case where the
prior probability of good and bad state is equal, herding arises probabilistically
when observation costs are small. In the symmetric setup considered by Kultti
& Miettinen (2005) herding arises necessarily in equilibrium. We conjecture that
this equilibrium is a limit result of the current model in a specific region of the
parameter space as the prior probability of the good state goes to 1/2. However
we do not study this case here. We don’t know yet if there is an equilibrium
where herding is neccessary in the case of asymmetric priors.
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7 Appendix

7.1 Third agent’s observations with a bad signal

Expected utility from observing the first agent (3rd agent buys after having
observed that the 1st agent bought)

P (A1|S̄3)
(
P (σ|A1, S̄3)2b− b

)
=

P (A1, S̄3)
P (S̄3)

( P (A1, S̄3|σ)P (σ)
P (A1, S̄3|σ)P (σ) + P (A1, S̄3|σ̄)P (σ̄)

2b− b
)

=
P (A1, S̄3|σ)P (σ) + P (A1, S̄3|σ̄)P (σ̄)

P (S̄3|σ)P (σ) + P (S̄3|σ̄)P (σ̄)
×(2P (A1, S̄3|σ)P (σ)− P (A1, S̄3|σ)P (σ)− P (A1, S̄3|σ̄)P (σ̄)

P (A1, S̄3|σ)P (σ) + P (A1, S̄3|σ̄)P (σ̄)
b
)

=
(P (A1, S̄3|σ)P (σ)− P (A1, S̄3|σ̄)P (σ̄)

P (S̄3|σ)P (σ) + P (S̄3|σ̄)P (σ̄)
b
)

=
p(1− p)(2q − 1)

(1− p)q + p(1− q)
> 0, since q >

1
2
. (5)

Expected utility from observing the second agent (2nd agent has a good
signal)

P (σ|A2, S̄3)2b− b =
P (A2, S̄3|σ)P (σ)

P (A2, S̄3|σ)P (σ) + P (A2, S̄3|σ̄)P (σ̄)
2b− b

=
P (A2, S̄3|σ)P (σ)− P (A2, S̄3|σ̄)P (σ̄)
P (A2, S̄3|σ)P (σ) + P (A2, S̄3|σ̄)P (σ̄)

b

=
P (S1, S̄3 ∨ S̄1, S2, S̄3|σ)P (σ)− P (S1, S̄3 ∨ S̄1, S2, S̄3|σ̄)P (σ̄)

P (A2, S̄3|σ)P (σ) + P (A2, S̄3|σ̄)P (σ̄)
b

=
p(1− p)(1 + (1− p))q − p(1− p)(1 + p)(1− q)

P (A2, S̄3|σ)P (σ) + P (A2, S̄3|σ̄)P (σ̄)
b

=
p(1− p)[(2− p)q − (1 + p)(1− q)]

P (A2, S̄3|σ)P (σ) + P (A2, S̄3|σ̄)P (σ̄)
b

This is non-negative if

(2− p)q − (1 + p)(1− q) ≥ 0
i.e. if,

q ≥ 1 + p

3
.

Expected utility from observing the second agent (when the assumption
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above holds)

P (A2|S̄3)
(
P (σ|A2, S̄3)2b− b

)
=

P (A2, S̄3)
P (S̄3)

× P (A2, S̄3|σ)P (σ)− P (A2, S̄3|σ̄)P (σ̄)
P (A2, S̄3|σ)P (σ) + P (A2, S̄3|σ̄)P (σ̄)

b

=
P (A2, S̄3|σ)P (σ) + P (A2, S̄3|σ̄)P (σ̄)

P (S̄3|σ)P (σ) + P (S̄3|σ̄)P (σ̄)
×

P (A2, S̄3|σ)P (σ)− P (A2, S̄3|σ̄)P (σ̄)
P (A2, S̄3|σ)P (σ) + P (A2, S̄3|σ̄)P (σ̄)

b

=
P (S1, S̄3 ∨ S̄1, S2, S̄3|σ)P (σ)− P (S1, S̄3 ∨ S̄1, S2, S̄3|σ̄)P (σ̄)

P (S̄3|σ)P (σ) + P (S̄3|σ̄)P (σ̄)
b

=
p(1− p)[(2− p)q − (1 + p)(1− q)]

(1− p)q + p(1− q)
> 0, by assumption.

(6)

Then the difference between equations (5) and (6) is

p(1− p)
(2q − 1)− (3q − 1− p)

(1− p)q + p(1− q)
= p(1− p)

p− q

(1− p)q + p(1− q)
> 0.

7.2 Cost boundary

In this section it is assumed that all preceding agents are behaving according to
the strategy of proposition 1.

Utility for an agent with signal Ŝ ∈ {S, S̄} from observing the kth person is
given by

P (Ak|Ŝ)(P (ω|Ak, Ŝ)2b− b) =
P (Ak, Ŝ)

P (Ŝ)

(P (Ak, Ŝ|ω)P (ω)
P (Ak, Ŝ)

2b− b
)

=
2bP (Ak, Ŝ|ω)P (ω)− b

(
P (Ak, Ŝ|ω)P (ω) + P (Ak, Ŝ|ω̄)P (ω̄)

)
P (Ŝ)

=
P (Ak, Ŝ|ω)P (ω)− P (Ak, Ŝ|ω̄)P (ω̄)

P (Ŝ)
b (7)

We first define a limit for the cost of observation ρ̄2 such that if ρ > ρ̄2 then
the second agent will rather act upon his own signal. It is clear that we only
need to consider the case where the second agent has a bad signal. In this case
we compare the expected utility from observing to the utility from not adopting.

Expected utility form observing agent 1 when 2 has a bad signal is

P (A1, S̄|ω)P (ω)− P (A1, S̄|ω̄)P (ω̄)
P (S̄)

b− ρ =
p(1− p)(2q − 1)

q(1− p) + (1− q)p
b− ρ.
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The expected utility from not adopting is zero hence we have that agent 2
will observe 1 with a bad signal only if

ρ ≤ p(1− p)(2q − 1)
q(1− p) + (1− q)p

b ≡ ρ̄2. (8)

The expected utility for the third agent from observing agent 2 with a good
signal is

P (A2, S|ω)P (ω)− P (A2, S|ω̄)P (ω̄)
P (S)

b− ρ =
p2q(2− p)− (1− p)2(1− q)(1 + p)

pq + (1− p(1− q)
b− ρ.

(9)

The utility from adopting without any observations is

P (σ|S3)2b− b =
P (S3|σ)P (σ)

P (S3)
2b− b =

pq − (1− p)(1− q)
pq + (1− p)(1− q)

b. (10)

Now agent 3 behaves according to the strategy of proposition 1 if (9) is larger
than the utility from relying on her own signal alone (10). This is true only if

ρ ≤ p(1− p)[p(1− q)− q(1− p)]
pq + (1− p)(1− q)

b ≡ ρ3.

The limit that determines whether agent 3 wants to observe agent 1 with
a bad signal is equal to (8). We claim that if ρ ≤ ρ̄ ≡ min{ρ̄2, ρ3} then the
agents will behave according to the equilibrium strategies of proposition 1. We
show that when all predecessors of an agent act according to the strategies
of proposition 1 the expected utility from using the strategy of proposition 1
increases with the agent’s number in the sequence. This implies that the cost
has to be even higher than ρ̄ for an agent k > 3 to prefer acting on his own
signal alone.

Suppose that k is even. Then the probability that Ak is observed when the
state is good or bad respectively is

P (Ak|σ) = p

k/2−1∑
i=0

(1− p)ipi + (1− p)k/2pk/2−1

and

P (Ak|σ̄) = (1− p)
k/2−1∑

i=0

(1− p)ipi + pk/2(1− p)k/2−1
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Hence the utility for agent i from observing an even predecessor k with a
good signal is

P (Ak, S|ω)P (ω)− P (Ak, S|ω̄)P (ω̄)
P (S)

b =

q

P (S)

[
p2

k/2−1∑
i=0

(1− p)ipi + (1− p)k/2pk/2
]
−

(1− q)
P (S)

[
(1− p)2

k/2−1∑
i=0

(1− p)ipi + pk/2(1− p)k/2
]

=
[qp2 − (1− q)(1− p)2]

k/2−1∑
i=0

(1− p)ipi + (1− p)k/2pk/2(2q − 1)

P (S)

=

[qp2 − (1− q)(1− p)2]
P (S)

1− (1− p)k/2pk/2

1− p + p2
+

(1− p)k/2pk/2(2q − 1)
P (S)

.

Now as k −→∞ we get that

P (Ak, S|ω)P (ω)− P (Ak, S|ω̄)P (ω̄)
P (S)

b −→
k−→∞

qp2 − (1− q)(1− p)2

P (S)(1− p + p2)
.

To see that agent i wants to rather observe agent k than agent k − 2 note
that

[P (Ak, S|ω)P (ω)− P (Ak, S|ω̄)P (ω̄)]b− [P (Ak−2, S|ω)P (ω)− P (Ak−2, S|ω̄)P (ω̄)]b =

b[qp2 − (1− q)(1− p)2][(1− p)k/2−1pk/2−1]− (2q − 1)(1− p)k/2−1pk/2−1(1− (1− p2)p2) =

b(1− p)k/2−1pk/2−1
[
qp2 − (1− q)(1− p)2 − (2q − 1)(1− p(1− p))

]
> 0

Since

qp2 − (1− q)(1− p)2 − (2q − 1)(1− p(1− p)) =
qp2 − 1 + q + 2p− 2pq − p2 + p2q

−2q + 2pq − 2p2q + 1− p + p2

= p− q.

The utility for agent i from observing an even predecessor k with a bad
signal is
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P (Ak, S̄|ω)P (ω)− P (Ak, S̄|ω̄)P (ω̄)
P (S̄)

b =
1

P (S̄)

[ q(1− p)[p
k/2−1∑

i=0

(1− p)ipi + (1− p)k/2pk/2−1−

(1− q)p[(1− p)
k/2−1∑

i=0

(1− p)ipi + pk/2(1− p)k/2−1

]

=
p(1− p)

k/2−1∑
i=0

(1− p)ipi+

[q(1− p)2 − (1− q)p2]pk/2−1(1− p)k/2−1.

Again as k −→∞ we get that

P (Ak, S̄|ω)P (ω)− P (Ak, S̄|ω̄)P (ω̄)
P (S̄)

b −→ p(1− p)(2q − 1)
(1− p + p2)P (S̄)

.

Now the term g(·, ·) = q(1 − p)2 − (1 − q)p2 < 0. When p = q we get that
q(1 − p)2 − (1 − q)q2 = q(1 − q)(1 − 2q) < 0. Taking the derivative of g with
respect to p we get that −2q(1−p)−2(1− q)p < 0. Hence whenever p increases
from p = q this term becomes more negative. It should be clear that agent i
is better off observing agent k = n than agent k = n − 2 as the positive term,

p(1− p)
k/2−1∑

i=0

(1− p)ipi, is larger and the negative term, q(1− p)2− (1− q)p2, is

multiplied with a smaller number.
Consider next the case where agent i has a bad signal. Now suppose that k

is odd. Then the probability that Ak is observed when the state is good or bad
respectively is

P (Ak|σ) = p

k−1
2∑

i=0

(1− p)ipi

and

P (Ak|σ̄) = (1− p)

k−1
2∑

i=0

(1− p)ipi.

Now the expected utility from observing an odd predecessor k with a good signal
is

P (Ak, S|ω)P (ω)− P (Ak, S|ω̄)P (ω̄)
P (S)

b =
[p2q − (1− p)2(1− q)]

k−1
2∑

i=0

(1− p)ipi

P (S)
b.
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Now as k −→∞ this expected utility goes to

P (Ak, S̄|ω)P (ω)− P (Ak, S̄|ω̄)P (ω̄)
P (S̄)

b −→ p2q − (1− p)2(1− q)
(1− p + p2)P (S̄)

b.

Similarly the expected utility when the signal is bad is

P (Ak, S̄|ω)P (ω)− P (Ak, S̄|ω̄)P (ω̄)
P (S̄)

b =
p(1− p)(2q − 1)

k−1
2∑

i=0

(1− p)ipi

P (S̄)
b.

As k −→∞ we get that

P (Ak, S̄|ω)P (ω)− P (Ak, S̄|ω̄)P (ω̄)
P (S̄)

b −→ p(1− p)(2q − 1)
(1− p + p2)P (S̄)

b.

Now it is immediate that the expected utility from observing an odd prede-
cessor k is larger than the expected utility from observing k − 2 predecessor as
terms is the series increase with k. Hence whenever it is worth for the second
and the third agent to observe one predecessor (with both signals) all other
agents will also observe according to the equilibrium strategy. Hence there ex-
ists a lower bound ρ̄ > 0 such that if ρ < ρ̄ the proposed equilibrium emerges
as a result.
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