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Abstract

This paper studies a simple model of dynamic coordination with learning under incomplete

information. We show that strategic asymmetry arises where the predecessor’s strategy is a

strategic substitute for the successor’s while the latter is a strategic complement for the former.

The role of dynamics and learning is identified by comparing the strategic interactions in the

coordination games with different information and timing structures. We also demonstrate that

dynamics with learning induces players to take more aggressive strategies.
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1 Introduction

There are many social and economic situations where we observe others’ actions and these actions

influence our view of the world and outcome of our decision making. For example, consider firms

planning to adopt a new technology with network externality. The payoff to the adoption depends

on the underlying fundamentals and the number of adopters. The underlying fundamentals are

unknown and firms have private information about them. Then, some firm’s adoption induces re-

maining firms (1) to update judgements about fundamentals since the adopter’s private information

is (partially) revealed by its decision and (2) to change their prospects of success from network

effect.

These situations require consideration of dynamics, learning and coordination. The aim of this

paper is to develop a simple model that can analyze this kind of dynamic game. Especially, it

focuses on the following question: how does the existence of dynamics and learning change the

outcome of the static coordination game?

Dasgupta (2001) also tries to answer a similar question. In contrast to this paper, it assumes

the continuum of players in each period like the recent literature on dynamic coordination game

including Burdzy, Frankel, and Pauzner (2001) and Chamley (2003). However, since observing

actions from infinitely many players fully reveals the underlying fundamentals and makes the deci-

sion problem trivial, it works on the assumption of noisy observation of the history. Then dynamics,

the essence of which is the observation of the past, is obscured and it leads to results very different

from ours.

Focusing on single player’s binary action in each period and learning, this paper follows the

framework in the literature on herd behavior and informational cascade such as Banerjee (1992)

and Bikchandani, Hirshleifer, and Welch (1992). However, they do not consider (positive) payoff

externality characterizing coordination problem this paper is interested in.

We study a two-period, two-player game with one riskless action and one risky action. The

payoff to the risky action depends on the underlying state and the number of players taking risky

actions. Each player receives a noisy signal about the state and makes decisions in different periods.

The player who moves in the second period, player 2, observes the action of the player who moves
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in the first period, player 1, and makes inferences about his signal.

We show that strategic asymmetry arises in this simple dynamic coordination game with learn-

ing: player 1’s strategy is a strategic substitute1 for player 2’s strategy while player 2’s strategy

is a strategic complement to player 1’s strategy. This result is noticeable since most of the litera-

ture following Bulow, Geanakoplos, and Klemperer (1985) and Fudenberg and Tirole (1984) pays

attention to the strategically symmetric situations where both players regard others’ strategies as

either strategic complements or substitutes. We demonstrate that the strategic asymmetry is not a

special but rather a general feature in dynamic coordination games with learning.

To establish a benchmark for comparison, we first consider a static version of the model and

demonstrate that players’ strategies are strategic complements to each other. Then to identify the

role of dynamics alone, we analyze a version of the model where player 2 observes the signal as

well as the action of player 1 and show that player 2’s strategy is a strategic complement to player

1’s while player 1’s strategy does not influence player 2’s.

Comparing these different strategic interactions, we identify the role of dynamics and learning.

We then demonstrate that dynamics and learning induce players to take more aggressive strategy.

Finally, we show that the differences in strategic interaction fundamentally change the results of

comparative statics and emphasize the importance of identifying information and timing structure

in real economic problem.

The paper is organized as follows. In Section 2, the model of two-player coordination game

under incomplete information is presented with the basic assumptions. Section 3 analyzes three

versions of coordination game in sequence to highlight the difference in strategic interaction and

the role of dynamics and learning. The comparisons of equilibrium and comparative statics are

given in Section 4. We conclude in Section 5.

1Player 1’s strategy is a strategic substitute for (complement to) player 2’s strategy if player 2’s reaction function
is decreasing (increasing) in player 1’s strategy. This taxonomy of strategic interactions was introduced by Bulow,
Geanakoplos, and Klemperer (1985) and Fudenberg and Tirole (1984).
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2 The Model

There are two players i = 1, 2. Each player i chooses an action yi from a binary action space,

{0, 1}. Action 0 is riskless and guarantees the player zero payoff. On the other hand, action 1 is

risky in the sense that the utility from action 1 is θ + vi(n) where θ is an unknown state variable,

vi(n) is a strictly increasing function in n, and n is the number of players choosing action 1.

Hence two factors influence the payoff from the risky action. The first is how good the state of

the world is, θ, and the second is how many agents coordinate on the risky action, vi(n). The

additive separability of the utility is useful in distinguishing between uncertainties concerning the

underlying fundamentals and the actions of players. We call the latter the strategic uncertainty.

The state variable, θ, is drawn from a set Θ and unknown to players. All players have a common

non-degenerate prior distribution G0(θ) with E0(|θ|) < ∞, which has a strictly positive and smooth

density function. Each player i observes a private signal xi ∈ X ≡ (x, x) where x, x ∈ R ∪
{−∞,∞}. The signal xi is drawn independently from the same conditional distribution F (·|θ)
with the density f(·|θ). The density function, f(·|θ), is assumed strictly positive and continuous

for the whole domain, implying that no signal realization restricts the possible region of the state

variable conditional on the observation of the signal and the posterior distribution is smooth.

We make the following standard assumption to simplify analysis.

Assumption 1 f(x|θ) satisfies the strict monotone likelihood ratio property (strict MLRP).

It is well known that under Assumption 1, the posterior distribution, G(θ|x), is ranked by the

signal in the sense of first-order stochastic dominance: the posterior distribution on θ conditional

on the signal draw x, G(θ|x), is decreasing in x for every prior distribution G0(θ) (see Milgrom

(1981)).

We will consider three kinds of coordination game: static coordination game, dynamic coordi-

nation game without learning, and dynamic coordination game with learning. In these games, the

player’s strategy is a function of his own signal. We allow only monotonic strategy in the sense that

players choose the risky action for all signal observation higher than a threshold.2

2We cannot obtain monotonic strategy automatically in the game since we cannot not apply the concept of rational-
izability in the game with learning.
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Players receive information about the state from their own signals. However, there are other

ways of acquiring information in dynamic games. In the dynamic coordination game without

learning, player 2 also observes player 1’s signal. In the dynamic coordination game with learning,

player 2 infers player 1’s signal by observed action. Since the players follow the monotonic strate-

gies, the information revealed by player 1’s action takes the form of truncated interval of signal:

the signal of player 1 is higher or equal to some cutoff point. Lemma 1 shows the basic properties

of information updating in these situations.

Lemma 1 Under Assumption 1, the following results hold: for θ ∈ Θ and x, x′, k, l ∈ X ,

1. G(θ|x) is continuous and decreasing in x.

2. G(θ|x < k) and G(θ|x ≥ k) are continuous and decreasing in k.

3. G(θ|x, x′) is continuous and decreasing in x and x′.

4. G(θ|x < k, x′) and G(θ|x ≥ k, x′) are continuous and decreasing in k.

5. P(x′ ≤ l|x) is continuous and decreasing in x.

6. P(x′ ≤ l|x < k) and P(x′ ≤ l|x ≥ k) are continuous and decreasing in k.

7. E(θ|x) is continuous and increasing in x.

8. E(θ|x, x′) is continuous and increasing in x and x′.

9. E(θ|x < k), E(θ|x < k, x′), E(θ|x ≥ k) and E(θ|x ≥ k, x′) are continuous and increasing

in k.

Proof. See Appendix.

The results in Lemma 1 are quite natural. By the strict MLRP, higher signal is good news while

lower signal is bad news. If we do not observe the exact value of the signal and know only that it

is either higher or lower than some cutoff point, then as the cutoff point increases, it is more likely

that the unknown signal is high. Therefore, higher cutoff point is good news.
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The following assumption is required to guarantee that the reaction functions and the equilib-

rium are well defined.

Assumption 2 For every i,

sup
x∈(x,x)

lim
x′→x

E(θ|x, x′) + vi(2) < 0 and inf
x∈(x,x)

lim
x′→x

E(θ|x, x′) + vi(1) > 0. (1)

Assumption 2 implies that the signal is always important for decision making and therefore

should not be ignored: sufficiently low (high) signal makes the risky action inferior (superior) even

if the coordination is successful (unsuccessful). It can be regarded as a version of “limit dominance”

assumption which requires the extreme actions are strictly dominant for extreme signals in the

global game literature (see Morris and Shin (2003)). The following lemma is immediate from the

assumption.

Lemma 2 Assumption 2 implies that for every i and k,

lim
x′→x

E(θ|x ≥ k, x′) + vi(2) < 0 and lim
x′→x

E(θ|x < k, x′) + vi(1) > 0, (2)

and

lim
x′→x

E(θ|x′) + vi(2) < 0 and lim
x′→x

E(θ|x′) + vi(1) > 0. (3)

Proof. See Appendix.

Example 1 illustrates that the common assumption of normal distribution in the literature satis-

fies Assumption 1 and 2.

Example 1 Let θ be normally distributed with mean µ0 and variance σ2
0 . The signal xi, i = 1, 2 is

determined by xi = θ + εi where εi is drawn independently from the identical normal distribution

with zero mean and variance σ2 for all i. Then Θ = X = R, G(θ) = Φ( θ−µ0

σ0
) and f(x|θ) = φ(x−θ

σ
)
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where Φ(·) and φ(·) are the standard normal distribution and density function, respectively. Note

that φ(x−θ
σ

) is positive and continuous in x ∈ X = (−∞,∞).

It is well known that φ(x−θ
σ

) satisfies the strict MLRP. Additionally, it is a standard result in

Bayesian updating for normal distribution that E(θ|x) =
σ2µ0+σ2

0x

σ2+σ2
0

, E(θ|x, x′) =
σ2µ0+σ2

0(x+x′)
σ2+2σ2

0
and

P(x′ ≤ l|x) = Φ((l−σ2µ0+σ2
0x

σ2+σ2
0

)/
√

σ2(σ2+2σ2
0)

σ2+σ2
0

). Then we obtain sup
x

lim
x′→−∞

E(θ|x, x′)+vi(2) = −∞
and inf

x
lim

x′→∞
E(θ|x, x′) + vi(1) = ∞. ¥

Generally, the symmetry of reaction functions in a game alone does not guarantee that the

equilibrium is symmetric . The following proposition proves that the addition of strategic comple-

mentarity guarantees it. We present this simple and intuitive result here in a general form since

we do not find it in the literature. Consider a N -player game in which each player’s strategy set

is partially ordered. Let si and s−i respectively denote a player i’s strategy and a profile of other

players’ strategies and let bi(s−i) denote player i’s reaction function. Given an N -tuple s, define

T jks to be the N -tuple obtained from s by exchanging sj and sk.

Proposition 1 Suppose that reaction functions are symmetric in the sense that for all i, j, k ∈
{1, . . . , N}, bi(s−i) = bi(T

jks−i) and if s−i = s−j , bi(s−i) = bj(s−j). Then if players’ reaction

functions are nondecreasing, then all equilibria are symmetric.

Proof. Suppose that an equilibrium s∗ = (s∗1, . . . , s
∗
N) is not symmetric. Then there exist j

and k such that s∗j 6= s∗k. Without loss of generality, assume s∗j > s∗k. Since reaction functions are

symmetric, T jks∗ 6= s∗ should also be an equilibrium. Since s∗ and T jks∗ are equilibria, it follows

that s∗j = bj(s
∗
−j) and s∗k = (T jks∗)j = bj((T

jks∗)−j). Then, the only difference between s∗−j and

T jks∗−j is that player k’s strategy increases from s∗k to s∗j . But player j’s reaction decreases from

s∗j to s∗k and this contradicts the assumption of nondecreasing reaction functions. Therefore, all

equilibria should be symmetric.

3 Dynamics and Learning

We now analyze a sequence of games to highlight the role of dynamics and learning. We begin

with the simultaneous action case and then extend to the sequential action cases with and without
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observing player 1’s signal.

3.1 Simultaneous Action

Each player cannot observe the other’s signal and action. Let i, j ∈ {1, 2} and i 6= j. Given player

j’s cutoff point ks
j , player i’s optimal strategy is given by

si(xi) =





1 if E(θ|xi) + vi(2)P(xj ≥ ks
j |xi) + vi(1)P(xj < ks

j |xi) ≥ 0

0 otherwise.

Therefore, player i’s optimal cutoff point ks
i for given agent j’s cutoff point ks

j is determined by

E(θ|ks
i ) + (vi(2)− vi(1))P(xj ≥ ks

j |ks
i ) + vi(1) = 0. (4)

Proposition 2 In the simultaneous action case, players’ strategies are strategic complements to

each other in the sense that one player’s optimal cutoff point for the other’s cutoff point is increas-

ing in the other’s cutoff point.

Proof. Let ks
j be given. Since E(θ|ks

i ) and P(xj ≥ ks
j |ks

i ) are continuous and increasing in

ks
i by Lemma 1, the left hand side of equation (4) is continuous and increasing in ks

i . Also, it is

less than 0 as ks
i → x and greater than 0 as ks

i → x by (3) in Lemma 2. Hence there exists a

unique ks
i ∈ X satisfying equation (4) once ks

j is given. Since the left hand side of equation (4) is

obviously decreasing in ks
j , ks

i must increase as ks
j increases to satisfy equation (4).

Higher cutoff point means more conservative strategy. The opponent’s conservative strategy

makes it difficult for the coordination to succeed. Therefore, the player takes a conservative strat-

egy when he expects the other’s conservative strategy. This is a typical coordination problem

characterized by strategic complementarity.

Proposition 3 There always exists an equilibrium in the simultaneous action case.

Proof. Let rs
i (k

s
j ) ∈ X, i, j = 1, 2, i 6= j denote the reaction function specifying player i’s

optimal cutoff point for each fixed cutoff point of player j. As shown in the proof of Proposition
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2, these functions are well defined. Since the left hand side of equation (4) is continuous in ks
i

and ks
j by Lemma 1, rs

i (k
s
j ) is continuous in ks

j . Equation (3) in Lemma 2 ensures there exist

ks
1, k

s
1 ∈ X such that E(θ|ks

1) + v1(2) = 0 and E(θ|ks
1) + v1(1) = 0, respectively. By continuity

results in Lemma 1, it follows that limks
2→x rs

1(k
s
2) = ks

1 and limks
2→x rs

1(k
s
2) = ks

1. On the other

hand, rs
2(k

s
1) > x and rs

2(k
s
1) < x. Therefore, rs

1(k
s
2) and rs

2(k
s
1) intersect each other at least once in

ks
1 − ks

2 plane (Figure 1).

-

6

ks
1

ks
2

r
ks

1

r
ks

1

r
Es∗

r
Es∗∗

rEs∗∗∗

rs
1(·)

rs
2(·)

FIGURE 1. Since player 1’s re-

action curve is lower than player

2’s reaction curve near ks
1 and

higher near ks
1, they intersect at

least once.

Proposition 3 proves only the existence of equilibrium, not the uniqueness. Static coordination

game often has multiple equilibria. Indeed “coordination” matters because the better equilibrium

is obtained if coordination succeeds. The global game literature such as Carlsson and Van Damme

(1993) and Frankel, Morris and Pauzner (2003) shows that there exists a unique equilibrium in a

large class of static coordination games of incomplete information.

However, for the purpose of this paper, it is enough to point out that the uniqueness is gener-

ally not guaranteed in the simultaneous action case. Before we demonstrate multiple equilibria in

Example 2, it is convenient to assume the symmetry of players, that is, v1(·) = v2(·).
Equation (4) with v(·) ≡ v1(·) = v2(·) makes players’ reaction functions symmetric. Then

Proposition 1 and 2 imply that equilibrium is always symmetric. Therefore equilibrium is obtained
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by (4) with ks ≡ ks
i = ks

j , which is

E(θ|ks) + (v(2)− v(1))P(x ≥ ks|ks) + v(1) = 0. (5)

Example 2 Assume the symmetry of players and consider the distributions of Example 1 with

µ = 0 and σ0 = 1. Then, G(θ) = Φ(θ), f(x|θ) = φ(x−θ
µ

), E(θ|x) = x
1+σ2 and P(x′ ≤ l|x) =

Φ((l − x
1+σ2 )/(

√
σ2(2+σ2)

1+σ2 )). From (5), we obtain

ks

1 + σ2
+ (v(2)− v(1))(1− Φ((ks − ks

1 + σ2
)/

√
σ2(2 + σ2)

1 + σ2
)) + v(1) = 0.

Rearrange the left hand side to define the function

h(ks) ≡ ks

1 + σ2
+ (v(2)− v(1))(1− Φ(

σk√
(1 + σ2)(2 + σ2)

)) + v(1).

Equilibrium is given by h(ks) = 0. Differentiating h(ks) with respect to ks yields

dh(ks)
dks = 1

1+σ2 − (v(2)− v(1)) σ√
(1+σ2)(2+σ2)

φ(·)
= σ√

1+σ2
√

2+σ2 (
√

2+σ2

σ
√

1+σ2 − (v(2)− v(1))φ(·)).

Since φ(·) ≤ 1√
2π

, h(ks) is nondecreasing if

√
2 + σ2

σ
√

1 + σ2
=

1

σ

√
1 +

1

1 + σ2
≥ v(2)− v(1)√

2π
(6)

so that h(ks) crosses 0 upward only once as ks increases. Therefore (6) is the sufficient condition

for the unique equilibrium.

Now, suppose (6) does not hold. It follows that there exists some k̂s satisfying dh(k̂s)
dks < 0.

Since dh(ks)
dks depends only on v(2) − v(1), we can find some v(·) with v(2) − v(1) unchanged

such that h(k̂s) = 0 and dh(k̂s)
dks < 0. Then h(ks) crosses 0 downward at k̂s and h(ks) = 0 has

at least two more roots since h(ks) is continuous in ks and limks→−∞ h(ks) = −∞ < 0 and

limks→∞ h(ks) = ∞ > 0.
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Hence we show that (6) is the necessary and sufficient condition that there exists a unique

equilibrium for every v(·). The left hand side of (6) is decreasing in σ and therefore a unique

equilibrium is obtained as the noise of private signal vanishes. This is a standard result in the

global game literature (see Morris and Shin (2003)). ¥

3.2 Sequential Action with Observed Signal

Consider a model with two periods, t = 1, 2. Players 1 and 2 choose actions in period 1 and 2,

respectively. Player 1 does not know player 2’s signal and action. But player 2 observes agent 1’s

signal and action.

Player 2’s cutoff point strategy maps from player 1’s action and signal space into the signal

space. Let ko
2(x1; y1) denote player 2’s cutoff point responding to player 1’s signal x1 and action

y1.

In period 2, after observing player 1’s signal and action, player 2’s optimal cutoff point is

determined by

E(θ|x1, k
o
2(x1; 1)) + v2(2) = 0 and E(θ|x1, k

o
2(x1; 0)) + v2(1) = 0,

or equivalently, E(θ|x1, k
o
2(x1; y1)) + v2(y1 + 1) = 0. (7)

Note that ko
2(·; ·) is fully determined by equation 7 without considering player 1’s cutoff point ko

1.

Lemma 3 Player 2’s optimal cutoff point ko
2(x1; y1) is continuous in x1 and decreasing in x1 and

y1.

Proof. Let x1 and y1 be given. The left hand side of equation 7 is continuous and increasing in

ko
2(x1; y1) by Lemma 1. By Assumption 2, it follows that there exists a unique ko

2(x1; y1) satisfying

equation 7 once x1 and y1 are given. Since the left side of equation 7 is continuous in x1 and

increasing in x1 and y1, the result follows.

Higher signal realization is good news about the state and higher observed action enhances

coordination. Therefore, player 2 takes more aggressive strategy when he observes a higher signal

or action.
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Given player 2’s cutoff point ko
2(·; 1), player 1’s optimal cutoff point ko

1 in period 1 is determined

by

E(θ|ko
1) + (v1(2)− v1(1))P(x2 ≥ ko

2(k
o
1; 1)|ko

1) + v1(1) = 0. (8)

Note that the marginal Player 1 with signal ko
1 considers player 2’s reaction to his signal ko

1 and

action 1 as represented by ko
2(k

o
1; 1).

We obtain the following result in contrast to Proposition 2.

Proposition 4 In the sequential action with observed signal case, player 2’s strategy is a strategic

complement to player 1’s strategy while player 1’s strategy do not influence player 2’s strategy.

Proof. Since the left side of equation (8) is continuous and decreasing in ko
2(k

o
1; 1), Lemma 1 and

3 implies that it is continuous and increasing in ko
1. By (3) in Lemma 2, it follows that there exists

a unique ko
1 once ko

2(·; 1) is given. Then since the left side of equation (8) is obviously decreasing

in ko
2(·; 1), ko

1 must increase as ko
2(·; 1) increases. This establishes the first part of the result. The

second part is straightforward in equation 7 which does not include ko
1.

Therefore, strategic interaction is one-way in this sequential action case. Player 2’s strategy

matters to player 1 because it changes the prospect of coordination. However, strategic interaction

in the reverse direction does not work. Note that player 2 makes a decision after he observes

player 1’s signal and action. Generally, the knowledge of the other’s strategy does not provide

more information than that of his signal and action. Player 2 bases his decision on the superior

information from the observed signal and the action and therefore does not need to consider player

1’s strategy. Player 1’s strategy influences only the chances of player 2’s observing action 1 in

period 1 but not player 2’s strategy itself.

This one-way strategic interaction implies a unique equilibrium as stated in Proposition 5.

Proposition 5 There always exists a unique equilibrium (ko∗
1 , ko∗

2 (·; ·)) under the sequential action

with observed signal.

Proof. Let ro
1(k

o
2(·; 1)) ∈ X denote the reaction function specifying player 1’s optimal cutoff

point for each cutoff point of player 2 observing the player 1’s action 1. As shown in the proof

of Proposition 4, this function is well defined so that player 1’s equilibrium cutoff point ko∗
1 =

11



ro
1(k

o∗
2 (·; 1)) is obtained once player 2’s equilibrium cutoff point ko∗

2 (·; 1) is given. Since ko∗
2 (·; ·) is

uniquely and independently determined in equation 7, the result follows.

By Proposition 4, player 1’s strategy depends only on player 2’s strategies. Then, the player in

the last period does not need to consider others’ strategies. Once the strategy in the last period is

determined, the player in the period before the last period does not face strategic uncertainty and

his strategy is determined. Therefore, dynamics alone removes strategic uncertainty completely in

finite horizon games by backward induction and guarantees a unique equilibrium.

3.3 Sequential Action with Private Signal

Now suppose that player 2 cannot observe player 1’s signal but can only infer it by observing player

1’s action. Therefore player 2’s cutoff point maps only from player 1’s action space into the signal

space. Let kp
2(y1) denote player 2’s cutoff point corresponding to player 1’s action y1.

Given player 1’s cutoff point kp
1 , player 2’s optimal cutoff point is determined by

E(θ|x1 ≥ kp
1, k

p
2(1)) + v2(2) = 0 and E(θ|x1 < kp

1, k
p
2(0)) + v2(1) = 0. (9)

Since player 1’s action reveals information about whether his private signal is greater than his cutoff

point or not, player 2 infers the state from this information as represented by E(θ|x1 ≥ kp
1, ·) and

E(θ|x1 < kp
1, ·).

Given player 2’s cutoff point kp
2(1), player 1’s optimal cutoff point in period 1 is determined by

E(θ|kp
1) + (v1(2)− v1(1))P(x2 ≥ kp

2(1)|kp
1) + v1(1) = 0. (10)

The following proposition is the main result of the paper.

Proposition 6 In the sequential action with private signal case, player 1’s strategy is a strategic

substitute for player 2’s strategy while player 2’s strategy is a strategic complement to player 1’s

strategy.

Proof. Let kp
1 be given. The left hand side of equation (9) is continuous and increasing in kp

2(y1)
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by Lemma 1. By equation (2) in Lemma 2, there exists a unique kp
2(y1) satisfying equation (9) once

kp
1 is given. Then, since the left side of equation (9) is increasing in kp

1 by Lemma 1, kp
2(y1) must

decrease as kp
1 increases to satisfy equation (9). This establishes the first part of the proposition.

The second part can be proved in the same manner as Proposition 4 and is omitted.

As shown in Lemma 1, the information revealed by player 1’s risky action choice becomes more

favorable for the state as he takes a more conservative strategy with higher cutoff point . Therefore

player 2 takes a more aggressive strategy. On the other hand, player 2’s more conservative strategy

decreases the possibility of coordination and induces player 1 to take a more conservative strategy

in the same way as the simultaneous action and the sequential action with observed action cases.

Therefore, there is strategic asymmetry in this case: one player regards his opponent’s strategy

as a strategic complement while the other player regards his opponent’s strategy as a strategic

substitute. An example of strategic asymmetry was given in Bulow, Geanakoplos and Klemperer

(1985): if industry marginal revenue is decreasing in total output and a firm produces more than

half the total market output, then the large firm may regard the fringe firms’ products as strategic

complements while its competitive fringe regards the large firm’s products as strategic substitutes.

But strategic asymmetry has been regarded as an exception and most of the literature has paid little

attention to it.

The contribution of this paper is to show that the strategic asymmetry is a general feature of

the dynamic coordination and learning problem. Though it seems natural to think that the positive

payoff externality in coordination game generates strategic complementarity directly, the addition

of learning induces strategic substitution even in the coordination game.

To understand this seemingly surprising result, notice first that in the static coordination game,

one player’s lower cutoff point induces the other’s lower cutoff point only by increasing the pos-

sibility of his taking action 1. Therefore, if his action is kept constant, then the change of his

cutoff point does not make a difference in the prospect of coordination. The role of dynamics is

to make player 2’s strategy depend on player 1’s action choice, that is, to control player 1’s action

when player 2 decides his reaction to player 1’s different strategies. That’s why player 1’s strategy

does not influence player 2’s strategy even with positive payoff externality in sequential action with

observed signal case.
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Then, the addition of learning gives player 1’s strategy a different channel through which it

interacts with player 2’s strategy. Player 1’s different strategies change player 2’s strategy by trans-

mitting different information about his signal. Here player 1’s lower cutoff point indicates that his

signal is less favorable and induces player 2’s higher cutoff point.

Though strategic uncertainty is preserved in this case contrary to the sequential action with

observed signal, the strategic symmetry implies a unique equilibrium as stated in Proposition 7.

Proposition 7 There always exists a unique equilibrium (kp∗
1 , kp∗

2 (1), kp∗
2 (2)) in the sequential ac-

tion with private signal case.

Proof. Let rp
1(k

p
2(1)) ∈ X and rp

2(k
p
1) ∈ X denote the reaction functions specifying player 1’s

optimal cutoff point for each cutoff point of player 2 observing player 1’s risky action choice and

player 2’s optimal cutoff point after observing player 1’s risky action choice for each cutoff point

of player 1, respectively. As shown in the proof of Proposition 6, these functions are well defined.

They are also continuous since the left hand side of the first equation in (9) and equation (10) are

continuous in kp
1 and kp

2(1). Equation (2) in Lemma 2 ensures that there exist kp
1, k

p
1 ∈ X such

that E(θ|kp
1) + v1(2) = 0 and E(θ|kp

1) + v1(1) = 0. By continuity in Lemma 1, it follows that

limkp
2(1)→x rp

1(k
p
2(1)) = kp

1 and limkp
2(1)→x rp

1(k
p
2(1)) = kp

1 . On the other hand, rp
2(k

p
1) > x and

rp
2(k

p
1) < x. Since rp

1(k
p
2(1)) is upward sloping and rp

2(k
p
1) is downward sloping in kp

1−kp
2(1) plane

by Proposition 6, rp
1(k

p
2(1)) and rp

2(k
p
1) intersect each other only once (Figure 2). Once kp∗

1 and

kp∗
2 (1) are determined, kp∗

2 (0) is uniquely determined by the second equation in (9)).

-

6

kp
1

kp
2(1)

r
kp

1

r
kp

1

rE
p∗

rp
1(·)

rp
2(·)

FIGURE 2. Since the slopes of

players’ reaction functions have

the different signs, the difference

between these reaction functions

is monotone as we move along

either axis. Therefore, they inter-

sect only once.
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The uniqueness result in Proposition 7 presents a striking contrast to Dasgupta (2001) where

two-period dynamic coordination game with learning is not always guaranteed to have a unique

equilibrium with switching strategies. This difference is caused by the assumption of the contin-

uum players in his paper. Once the cutoff point is given, a player’s action can be regarded as a

binomial random variable with a distribution uniquely determined by the state variable. If players

are symmetric and receive conditionally independent signals, players’ actions are different realiza-

tions of the same random variable. Then the observation of realizations by an infinite number of

players fully reveals the underlying state variable by the law of large numbers and makes trivial the

decision-making in later periods. This is exactly how an informational cascade always occurs in

Bikhchandani, Hirshleifer and Welch (1992).

To avoid this problem, Dasgupta (2001) assumes that player 2 observes the proportion of player

1s taking risky actions only with noise. It may be a reasonable assumption in the model with a large

number of players but may not be a good one for identifying the role of dynamics. Then player

2’s strategy depends not only on player 1’s action but also on the noisy signal on top of it. The

role of dynamics to control the history in decision making does not work any more. The strategic

complementarity from the past to the future revives since player 1’s aggressive action makes it more

likely that player 2 is in history better for risky action. Hence his model lies somewhere between

the static and the dynamic coordination allowing multiple equilibria in two-period setting.

4 Discussion

We have presented three different information and timing structures to demonstrate how strategic

interaction between players changes fundamentally. We compare equilibria and comparative statics

for these different models.
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4.1 Equilibrium

We first compare the equilibrium cutoff points of the three models. It is useful to collect equations

satisfied by the equilibrium cutoff points for the three models.

In the simultaneous action case, the equilibrium cutoff point ks∗
1 and ks∗

2 are determined by the

following equations:

E(θ|ks∗
1 ) + (v1(2)− v1(1))P(x ≥ ks∗

2 |ks∗
1 ) + v1(1) = 0, (11)

E(θ|ks∗
2 ) + (v2(2)− v2(1))P(x ≥ ks∗

1 |ks∗
2 ) + v2(1) = 0. (12)

In the sequential action with observed signal case, the equilibrium cutoff points ko∗
1 and ko∗

2 (ko∗
1 ; 1)

satisfy the following equations:

E(θ|ko∗
1 ) + (v1(2)− v1(1))P(x2 ≥ ko∗

2 (ko∗
1 ; 1)|ko∗

1 ) + v1(1) = 0, (13)

E(θ|ko∗
1 , ko∗

2 (ko∗
1 ; 1)) + v2(2) = 0. (14)

In the sequential action with private signal case, the equilibrium cutoff points kp∗
1 and kp∗

2 (1)

satisfy the following equations:

E(θ|kp∗
1 ) + (v1(2)− v1(1))P(x2 ≥ kp∗

2 (1)|kp∗
1 ) + v1(1) = 0, (15)

E(θ|x1 ≥ kp∗
1 , kp∗

2 (1)) + v2(2) = 0. (16)

Since player 2’s cutoff points in these cases are functions on the different domains, they are not

directly comparable. Hence we focus only on player 1’s cutoff point. We find that dynamic and

learning make player 1 more aggressive as stated in Proposition 8.

Proposition 8 1. Player 1 in the sequential action with private signal case takes the most ag-

gressive strategy in three cases

2. Player 1 takes a more aggressive strategy in the sequential action with observed signal case

16



than in the simultaneous action case if

E(θ|ks∗
1 , ks∗

2 ) + v2(2) > 0. (17)

Proof. 1. Since the left hand side of equation (15) is increasing in kp∗
1 and decreasing in kp∗

2 (1),

comparing equation (15) with equation (11) shows either kp∗
1 < ks∗

1 and kp∗
2 (1) < ks∗

2 or kp∗
1 ≥ ks∗

1

and kp∗
2 (1) ≥ ks∗

2 hold. Suppose kp∗
1 ≥ ks∗

1 and kp∗
2 (1) ≥ ks∗

2 . Since E(θ|·, ·) is increasing, it follows

from equation (16) that E(θ|x1 ≥ ks∗
1 , ks∗

2 ) + v2(2) ≤ 0. However, E(θ|x1 ≥ ks∗
1 , ks∗

2 ) + v2(2) >

E(θ|ks∗
2 ) + (v2(2)− v2(1))P(x ≥ ks∗

1 |ks∗
2 ) + v2(1) = 0 by E(x ≥ k, x′) ≥ limk→x E(x ≥ k, x′) =

E(x′), which is a contradiction. Therefore, kp∗
1 < ks∗

1 .

Now, suppose kp∗
1 ≥ ko∗

1 . Note that E(θ|x ≥ k, x′) =
R x

k E(θ|x,x′)f(x,x′)dxR x
k f(x,x′)dx

> E(θ|k, x′). Then

comparing equation (14) with equation (16) shows kp∗
2 (1) < ko∗

2 (ko∗
1 ; 1). Then E(θ|kp∗

1 )+ (v1(2)−
v1(1))P(x2 ≥ kp∗

2 (1)|kp∗
1 )+v1(1) > E(θ|ko∗

1 )+(v1(2)−v1(1))P(x2 ≥ ko∗
2 (ko∗

1 ; 1)|ko∗
1 )+v1(1) = 0

which contradicts equation (15). Hence kp∗
1 < ko∗

1 .

2. Since the left hand side of equation (13) is increasing in ko∗
1 and decreasing in ko∗

2 (ko∗
1 ; 1),

comparing equation (13) with equation (11) shows that either ko∗
1 < ks∗

1 and ko∗
2 (ko∗

1 ; 1) < ks∗
2

or ko∗
1 ≥ ks∗

1 and ko∗
2 (ko∗

1 ; 1) ≥ ks∗
2 hold. Suppose ko∗

1 ≥ ks∗
1 and ko∗

2 (ko∗
1 ; 1) ≥ ks∗

2 . Then it

follows from equation (14) that E(θ|ks∗
1 , ks∗

2 ) + v2(2) ≤ 0 which contradicts the assumption of

E(θ|ks∗
1 , ks∗

2 ) + v2(2) > 0. Therefore, ko∗
1 < ks∗

1 .

Consider the marginal player 1 who receives a signal equal to his cutoff point. In the sequen-

tial action with private signal case, his risky action makes player 2 think his signal is much more

favorable than his actual signal while his signal is precisely revealed in the sequential action with

observed signal case. Therefore, player 1’s risky action induces player 2 to take a more aggres-

sive strategy in the private signal case than in the observed signal case and player 1 takes a more

aggressive strategy in the private signal case based on the expectation of such response of player 2.

To compare the dynamic cases with the static case, note that players take more aggressive

strategies as they are more certain of the success of coordination. The observation of player 1’s risky

action assures player 2 of the success of coordination and induces him to take a more aggressive

strategy. Considering this effect of his risky action on player 2, player 1 in dynamic cases is
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more certain of the success of coordination than players in the static case. Therefore, if players’

information about the state in the static case is the same as the dynamic cases, player 1 would take

a more aggressive strategy in dynamic cases.

However, player 2 receives additional information about the state in dynamic cases. Consider

first the sequential action with private signal case. In this case, player 1’s risky action gives player

2 the information that player 1’s signal is higher than some cutoff point. Note that regardless of the

value of the cutoff point, this information is better than no information in the simultaneous action

case since no information is equivalent to the information that player 1’s signal is higher than the

lowest possible signal. Therefore, player 1 in sequential action with private signal case takes a

more aggressive strategy than players in simultaneous action case.

Now, consider the marginal player 1 again. If his signal is sufficiently low, then player 2 could

take a more conservative strategy after observing his signal even if player 2 observes his risky

action. Then player 1 would take a more conservative strategy in sequential action with observed

signal case than in simultaneous action case. It matters whether the marginal player 1’s signal, that

is, the equilibrium cutoff point of player 1 is high or low. That is what the condition (17)) is about.

Inserting v2(2) = −E(θ|ks∗
2 )+ (v2(2)− v2(1))P(x < ks∗

1 |ks∗
2 ) from equation (12) into equation

(17), we obtain the equivalent condition

E(θ|ks∗
1 , ks∗

2 ) > E(θ|ks∗
2 )− (v2(2)− v2(1))P(x < ks∗

1 |ks∗
2 ).

This requires exactly the observation of the marginal player 1’s signal not to be too bad news to the

marginal player 2 in the simultaneous action case.

Assuming the symmetry of players by ks∗ ≡ ks∗
1 = ks∗

2 , we can examine the above condition

further. Recalling the results in Example 1, we obtain E(θ|ks∗) =
σ2µ0+σ2

0ks∗

σ2+σ2
0

and E(θ|ks∗, ks∗) =

σ2µ0+2σ2
0ks∗

σ2+2σ2
0

under the assumption of normal distribution. Then E(θ|ks∗, ks∗) ≥ E(θ|ks∗) if and only

if ks∗ ≥ µ0. If the equilibrium cutoff point is higher than the prior mean, then the observation of

an additional signal equal to the cutoff point in the simultaneous action case is good news to the

marginal player 2 and the introduction of dynamics makes player 1 more aggressive. Note also that

if the prior distribution is sufficiently vague which corresponds to σ2
0 → ∞ in the above normal
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distribution case, then E(θ|ks∗, ks∗) ≥ E(θ|ks∗) is always satisfied by E(θ|ks∗, ks∗) ' E(θ|ks∗) '
ks∗.

In summary, dynamics and learning lead player 1 to take a more aggressive strategy. Dynamics

alone requires the equilibrium cutoff point not to be very low in order to make player 1 aggressive.

4.2 Comparative Statics

Next we consider an idiosyncratic shock shifting vi(·), i = 1, 2. For the analysis, it is useful to

focus on the reaction functions.

We have shown in Section 3 that the following reaction functions are well defined and con-

tinuous: rs
1(k

s
2) and rs

2(k
s
1) in the simultaneous action case; ro

1(k
o
2(·; 1)) in the sequential action

with observed signal case; rp
1(k

p
2(1)) and rp

2(k
p
1) in the sequential action with private signal case.

Propositions 2, 4 and 6 ensures that rs
1(k

s
2), r

s
2(k

s
1), r

o
1(k

o
2(·; 1)) and rp

1(k
p
2(1)) are upward sloping

and rp
2(k

p
1) is downward sloping.

By Propositions 3,5 and 7, equilibrium always exists and is determined by the intersection of

these reaction functions in the corresponding planes except for the sequential action with observed

signal case where ko∗
2 (·; 1) is first determined independently of ko∗

1 and then ko∗
1 is determined by

ko∗
1 = ro

1(k
o∗
2 (·; 1)).

Multiple equilibria in the simultaneous action case make the comparison complicated. To avoid

these difficulties, we consider only the case where there exists a unique equilibrium. The litera-

ture studying the condition of unique equilibrium in this kind of static coordination game and the

example of such condition were presented in Section 3.1.

We showed in the proof of Proposition 3 that limks
2→x rs

1(k
s
2) = ks

1 and limks
2→x rs

1(k
s
2) = ks

1

while rs
2(k

s
1) > x and rs

2(k
s
1) < x for some ks

1, k
s
1 ∈ X . Therefore player 1’s reaction function

rs
1(k

p
1) should be steeper at the equilibrium than player 2’s reaction function rs

2(k
p
2) for the unique

equilibrium (Figure 3). Then since the increase of vi(·) moves the reaction functions of player i

inward, the following results are straightforward (Figure 4).
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FIGURE 3. Here player 1’s reac-

tion curve is steeper than player

2’s reaction curve at the unique

equilibrium point Es∗∗∗∗. Note

that in Figure 1, player 2’s reac-

tion curve is steeper than player

1’s at one equilibrium point Es∗∗

so that they produce (at least) two

more intersections, that is, two

more equilibria.
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1(·)r′p1 (·)

rp
2(·)

¾

FIGURE 4. We illustrate the se-

quential action with private sig-

nal case when there is a positive

shock to player 1. Player 1’s re-

action function shifts inward and

equilibrium moves from Ep∗ to

E′p∗

Proposition 9 Suppose there exists a unique equilibrium in the simultaneous case.

1. If there is a positive shock to player 1, then in equilibrium,

(a) both players are more aggressive in the simultaneous action case.

(b) player 1 is more aggressive while player 2 do not change in sequential action with

observed signal case.

(c) player 1 is more aggressive while player 2 is more conservative in sequential action

with private signal case.
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2. If there is a positive shock to player 2, then in equilibrium, both players are more aggressive

in all cases.

These results are driven by different strategic interactions which determine the slopes of reac-

tion functions. The fact that the comparative statics analysis differs fundamentally depending on

whether players’ strategies are strategic complements or substitutes is well known since Bulow,

Geanakoplos, and Klemperer (1985) and Fudenberg and Tirole (1984). We present Proposition 9

to underscore the importance of identifying information and timing structure in analyzing a given

situation since they determine strategic interactions.

Consider again the example stated in Introduction. There are two firms, 1 and 2 in market A.

They contemplate adopting a new technology which exhibits network externality. The payoff to

the adoption of the technology depends on its unknown intrinsic value and the number of firms

adopting it. Now, imagine firm 1 makes investment in market B where the technology can be also

used. Hence this investment increases firm 1’s overall payoff to adopting the new technology. Then,

how does this firm 1’s investment in market B change firms’ decisions in market A? Proposition 9

implies that it depends on the information and timing structure in market A.

If firms are not able to commit to their adoption decisions and therefore make a decision simul-

taneously, the investment in market 1 promotes their adoptions of the technology. Now, suppose

that firm 1 can commit to its decision in market A. If its assessment of the intrinsic value of the

technology is exposed, for example, by its financial reports once it adopts the technology, then the

investment induces firm 1’s adoption while it does not change firm 2’s decision. On the other hand,

if firm 1’s assessments of the value of the technology is not disclosed, the investment fosters firm

1’s adoption while it impedes firm 2’s. Finally, if firm 2 can commit to its decisions in market A,

then the investment always promotes firm 1’s adoption.

Proposition 9 also requires an empirical study of the economy to pay attention to the infor-

mation and timing structure. For example, consider an economic boom where there are positive

shocks to all economic agents in the economy but suppose that the sizes of the shocks are different.

Proposition 9 implies that if the positive shock to player 1 is sufficiently bigger than that to player 2,

then even the positive shocks to the economy makes player 2 conservative in the sequential action
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with private signal case (Figure 5). Therefore, if an empirical economist tries to statistically infer

the state of the economy by obtaining data about the activities of the economic agents, he should

control the variable representing the information and timing structure in his analysis.
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FIGURE 5. Even the overall pos-

itive shocks can make player 2

conservative in the sequential ac-

tion with private signal case if the

shift of player 1’s reaction func-

tion is sufficiently bigger than

that of player 2’s reaction func-

tion.

5 Concluding Remarks

In this paper, we have investigated the role of dynamics and learning in a sequence of coordina-

tion games under incomplete information. We have shown that dynamics and learning make a

fundamental difference in strategic interaction between players.

We construct the model under a general condition regarding the distribution of state variable and

signal. It makes our main result robust to various assumptions on distribution. Additionally, though

we restrict our analysis to two-period, two-player case in this paper, it is clear from the arguments

that the main result still hold in N -period, N -player case: in the static coordination game, play-

ers’ strategies are strategic complements to each other; in the dynamic coordination game without

learning, there exists only one-way strategic interaction, that is, only player 2’s strategy is a strate-

gic complement to player 1’s; in the dynamic coordination game with learning, strategic asymmetry

arises where player 1’s strategy is a strategic substitute for player 2’s while the latter is a strategic

complement to the former.

However, we have assumed the order of player’s actions is exogenously given in the dynamic

cases which is the main limitation of this paper. We conjecture it is possible to extend the model
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so that the order is endogenously determined by the parameter representing heterogeneity among

players’ utilities as Farrell and Saloner (1985) does under the different assumption of the complete

information about the state.

Finally, by focusing on two-period, two-player case, we need not consider the possibility of

herd behavior: two players are too small to make a herd. In fact, we assume that the signal is

always important (Assumption 2) so that we remove the possibility of player’s ignoring his own

signal. However, allowing the herd behavior will enrich the model especially when we generalize

the model to N -period, N -player case.

We are studying these and related issues and we believe there are many other interesting ques-

tions in the dynamic coordination problems.

Appendix

The proofs of Lemma 1 and Lemma 2 are provided here.

Proof of Lemma 1 1. Since G(θ|x) =
R

θ′≤θ f(x|θ′)dG(θ′)R
θ′∈Θ f(x|θ′)dG(θ′) , the continuity of f(x|θ′) in x implies

the result. The other continuity results in Lemma 1 are obtained by the continuity of G(θ|x) or

the integration by the corresponding factors. As already stated, Assumption 1 implies G(θ|x) is

decreasing in x.

2. Note that G(θ|x < k) =
R k

x G(θ|x)f(x)dx
R k

x f(x)dx
where f(x) =

∫
θ′∈Θ

f(x|θ′)dG(θ′) is the uncondi-

tional density of x. Since G(θ|x < k) is a weighted average of G(θ|x) with the weight f(x)R k
x f(x)dx

> 0

and G(θ|x) is decreasing in x, G(θ|x < k) is decreasing in k. Likewise, it can be shown that

G(θ|x ≥ k) is decreasing in k.

3. and 4. Since the signals x and x′ are conditionally independent, it holds that f(x, x′|θ) =

f(x|θ)f(x′|θ) where f(x, x′|θ) is the joint conditional density of x and x′. Therefore, f(x, x′|θ) is

continuous in x, x′ and satisfies the strict MLRP. Then the results follows in the same way as 1. and

2.

5. Note that P(x′ ≤ l|x) =
∫

θ∈Θ
F (l|θ)dG(θ|x) and F (l|θ) is decreasing in θ by the strict

MLRP. Then, the fact that G(θ|x) is decreasing in x implies the result.
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6. The relation between P(x′ ≤ l|x) and P(x′ ≤ l|x < k) corresponds to that between G(θ|x)

and G(θ|x < k). Therefore, the result can be shown in the same way as 2.

7. to 9. These results follow by the strict first-order stochastic dominance proved in 2. to 5. ¥

Proof of Lemma 2 SinceE(θ|x ≥ k, x′) =
R x

k E(θ|x,x′)f(x,x′)dxR x
k f(x,x′)dx

andE(θ|x < k, x′) =
R k

x E(θ|x,x′)f(x,x′)dx
R k

x f(x,x′)dx

where f(x, x′) =
∫

θ′∈Θ
f(x, x′|θ′)dG(θ′) is the unconditional joint density of x and x′, (2) follows

by (1). (3) is obtained by k → x and k → x in (2). ¥
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