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Abstract

We characterize equilibrium in a dynamic investment game with two-dimensional

signals, where each firm observes its idiosyncratic cost of investment and a sig-

nal correlated with common investment returns. Investment-cost cutoffs for

type-1 firms (with the high common-value signal) and type-0 firms (with the

low common-value signal) are shown to satisfy a simple equation that does

not depend on the cost distribution. However, “reversals” are possible, where

beliefs about investment returns are decreasing in the number of firms that

invest in a given round. For some large markets, there is an initial surge in

investment, nearly revealing the state of the economy, and outcomes are (al-

most) efficient. For other large markets, there is a positive probability of no

investment, even when the return is high and all firms would stand to profit.
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1. Introduction

An enduring debate in Economics is whether markets efficiently aggregate the in-

formation of individual agents, and whether efficient allocations are the result. The

stakes are high. If markets are informationally efficient and lead to efficient alloca-

tions, the government should not interfere with the workings of markets. On the other

hand, if markets are not informationally efficient, then active government intervention

could improve welfare. For example, when the economy is in recession but the invest-

ment climate has improved, that information might be dispersed among many firms

who observe only a small piece of the overall picture. Firms with favorable informa-

tion might postpone investment until they are confident that other firms share their

assessment, thereby prolonging a recession. Properly formulated investment subsidy

programs would have the potential to improve economic welfare.

This paper addresses the issue of information aggregation and allocative efficiency

in a dynamic setting, where firms receive two signals and then face a sequence of

decisions about whether or not to invest. One signal is correlated with the aggregate

state of the economy, which in our context is the unknown return on investment

shared by all firms. We assume that this “common value” signal can take one of two

values, and call a firm receiving the favorable signal a type-1 firm and a firm receiving

the unfavorable signal a type-0 firm. The other signal is the cost of undertaking the

investment, which is firm specific and independent of the costs faced by other firms.

Observing the investment decisions of other firms could be used to improve inference

about the aggregate state, but firms must disentangle whether another firm invests

because it receives a favorable signal about investment returns or simply has a low

cost.

The closest papers in the literature are the articles by Chamley and Gale (1994)

and Chamley (2004), who analyze models in which the investment cost is a fixed

constant, so that the signal is one-dimensional. Chamley and Gale (1994) find that

there is a unique symmetric perfect Bayesian equilibrium, and that the equilibrium

is inefficient. There is a positive probability that little or no investment occurs,

even when the number of firms approaches infinity and investment is profitable for
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everyone. Indeed, firms are no better off than in the static game, in which firms must

invest without learning anything about other firms’ information. Chamley (2004)

introduces a distribution of beliefs about the investment return, resulting from private

information. Pure-strategy equilibrium is characterized, the possibility of multiple

equilibrium is demonstrated, and the case of a large number of agents is studied.

We introduce a richer informational environment than Chamley and Gale (1994)

or Chamley (2004). Signals are two-dimensional, reflecting information about a firm’s

private cost of investment, and information about the common investment return.

Introducing two-dimensional signals is important for several reasons. First, it makes

the inference problem more realistic and interesting. An investor can be a type-1 firm,

whose signal about the aggregate state of the economy is favorable. Alternatively, an

investor can be a type-0 firm, whose signal about the aggregate state of the economy

is unfavorable, but whose investment cost is low. Second, two-dimensional signals

allow for a phenomenon that is completely new to this literature, which we call a

“reversal.” The higher the number of firms that invest in round 0, the higher the

posterior probability each firm assigns to the high investment return. However, after

some histories, it is possible that the higher the number of firms that invest, the

lower the posterior probability each firm assigns to the high investment return. The

reason behind reversals, that a type-0 firm can be more likely to invest than a type-1

firm, is quite intuitive and nonpathelogical. After some histories, the marginal type-0

firm can have a much lower cost than the marginal type-1 firm, which encourages

investment by type-0 firms. This effect helps to offset the fact that type-1 firms have

more favorable information about investment returns.

The third reason for introducing two-dimensional signals is that it allows us to

contribute to the debate about informational efficiency of markets. While introducing

heterogeneous costs might make information aggregation less efficient, due to the more

difficult inference problem, it might make information aggregation more efficient, if

firms with a range of private cost realizations strictly desire to invest immediately.

This initial surge of investment could be highly informative.1 Gul and Lundholm

(1995) attribute any inefficiencies to the fact that investment must be all or nothing,

rather than varying with the strength of the signal. Their argument is that one can

1Chamley (2004) shows similar asymptotic possibilities in a model with one-dimensional signals.
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invert the investment function to recover the investor’s type. However, with two-

dimensional signals, continuous investment choices would not be fully revealing, so

this environment seems ideal for exploring the deeper causes of inefficient information

aggregation.2

Analyzing models with two-dimensional signals is notoriously difficult. Our equi-

librium characterization requires the development of intricate arguments to handle

two dimensions, while simple arguments could handle one dimension. However, the

model is surprisingly well behaved in some respects. Proposition 2 provides a general

existence result and a sharp characterization of equilibrium. For histories after which

both types invest with positive probability, we provide a simple formula relating the

investment costs of the marginal type-0 firm and the marginal type-1 firm. Surpris-

ingly, this relationship does not depend on the discount factor or the distribution

function for investment costs.

Our model is related to some of the papers on herd behavior and information

cascades. Bikhchandani, Hirshleifer, and Welch (1992) and Banerjee (1992) consider

a model in which each investor, in an exogenously determined sequence, faces an

investment decision after privately observing a signal related to investment yields.

Our model differs in the crucial timing dimension. Instead of facing an exogenously

given single opportunity to invest, our firms endogenously choose when to invest, if at

all. It is this ability to delay investment and free ride on the information provided by

others that leads to lower and later investment. Chari and Kehoe (2004) endogenize

the timing of investment, but in each period exactly one firm receives a signal, and in

their equilibrium the exogenous sequence of firms receiving signals plays a prominent

role.3

We want to distinguish our approach from the large literature on multiple equi-

2We assume that firms are risk neutral and can invest at most once, so any firm that invests
would invest to the maximal extent possible. However, with risk averse firms and more than one
signal, we conjecture that equilibrium would involve interior investment choices that do not fully
reveal the investor’s type. See also Chari and Kehoe (2004).

3Caplin and Leahy (1994) consider a model in which firms receive signals in each period, and
are allowed to suspend and restart investment. In Jeitchko and Taylor (2001), investors privately
observe the successes and failures of their investments, and update their beliefs about the unknown
probability of success in order to decide whether or not to continue the investment. Investment
returns depend on the overall level of investment as well as the success parameter, and at some point
a coordination avalanche occurs. See also Morris and Shin (1998) and Baliga and Sjostrom (2002)
for static games exhibiting this contagion effect.
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librium and Keynesian coordination failure or trading externalities, based on the

importance of self-fulfilling expectations of the actions that other agents are taking.4

To emphasize the role of information and inference, we entirely eliminate the effect of

one firm’s actions on another firm’s payoffs. We imagine that firms are not directly

competing with each other, so that profitability depends on the aggregate shock and

not the expansion decisions of other firms.5 The delay and possible collapse of in-

vestment arising in our model is reminiscent of the Keynesian story of self-fulfilling

pessimism.6

In section 2, we present the model, provide some preliminary results, and provide a

general existence/characterization result (Proposition 2). After histories allowing an

interior solution, a simple relationship is derived, relating the type-0 and the type-1

investment cutoffs. We provide an example of “reversals,” in which more investment

in round 0 is good news about investment returns, but more investment is bad news

after some histories. Section 3 considers asymptotic results, as the number of firms

approaches infinity. Some policy implications are discussed in section 4. Concluding

remarks are offered in section 5. Proofs are in the Appendix.

2. The Model

There are n ≥ 2 risk-neutral firms or potential investors, and each firm privately

observes a signal correlated with the return on investment common to all investors.

Letting Z denote the investment return and Xi denote the “common value” signal

of firm i, we assume that Z ∈ {0, 1} and Xi ∈ {0, 1}. We also assume that the
4See Diamond (1982), Bryant (1983,1987), Milgrom and Roberts (1990), Cooper and John (1988),

and Jones and Manuelli (1992).
5The investment decision in our model is related to the decision to enter a market. See Dixit

and Shapiro (1986), Fudenberg and Tirole (1985), Vettas (2000), and in particular, papers that
incorporate private information by Bolton and Farrell (1990) and Levin and Peck (2003). The
present paper introduces common values, which allows us to interpret signals as information about
demand. Another major difference is that a firm’s revenues do not depend on the number of
entrants.

6Keynes (General Theory, p. 210) argues that pessimism causes consumers to reduce their de-
mand, a sort of inaction. The reduction in consumption demand is not combined with an order
for future consumption. Thus, firms could be deterred from investing, justifying the pessimism.
Similarly, in our model, when a firm with a strong signal does not invest, the fact that the firm
might be willing to invest in the future is not revealed to the market.
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unconditional expected return is 0.5, and that signals are independent, conditional

on Z. The accuracy of the signal is given by the parameter, α ∈ [1
2
, 1]:

pr(Z = 0 | Xi = 0) = pr(Z = 1 | Xi = 1) = α.

When we have α = 1
2
, common-value signals have no information content at all, and

when we have α = 1, a common-value signal fully reveals the aggregate state. Thus,

the parameter α effectively captures the informativeness of the common-value signal,

Xi. We call a firm that has received the high signal, Xi = 1, a type-1 firm and a firm

that has received the low signal, Xi = 0, a type-0 firm.

Each firm i also privately observes a second signal, representing the idiosyncratic

cost of undertaking the investment, ci. We assume that ci is independent of all

other variables, and distributed according to the continuous and strictly increasing

distribution function F , defined over the support, [c, c]. Assume that we have 0 ≤ c <

1 ≤ c. The structure of signals is common knowledge.

Impatience is measured by the discount factor, δ < 1. If firm i has cost ci and

the state is Z, its profits are zero if it does not invest, and δt(Z − ci) if it invests in

round t. We now describe the game. First, each firm observes its signals, (Xi, ci).

In each round, starting with round 0, each firm observes the history of play, and

firms not yet invested simultaneously decide whether to invest. More formally, for

t = 0, 1, ..., denote the action of firm i in round t as eti ∈ {0, 1}, where the action, 0,
represents no change in status (either not yet invested or invested in a previous round)

and the action, 1, represents investing in that round. We assume that once a firm

invests it remains invested. Let kt denote the number of firms who invest in round

t, kt =
Pn

i=1 e
t
i, and denote the history of length t as ht−1 = (k0, k1, ..., kt−1). We

will sometimes denote the history, ht, as (ht−1, kt). Let h denote the set of histories

of any length, including the null history observed in round 0. A strategy for firm i is

a mapping from signal realizations and histories into a decision of whether to invest,

satisfying the restriction that a firm can change its investment status at most once.

Our solution concept is symmetric Bayesian Nash equilibrium. Refinements are

not needed, because beliefs off the equilibrium path play no role in the analysis. If,

after some history, ht−1, kt = 0 is off the equilibrium path, then it must be the case

that all remaining firms are investing with probability one. After a deviation by firm
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i not to invest, the beliefs of other firms are irrelevant, since they have invested and

have nothing more to do. If, after some history, ht−1, kt = k > 0 is off the equilibrium

path, then it must be the case that no firm is investing. After a deviation by firm

i to invest, its payoff is determined independent of the future play of the game,

so the beliefs of other firms are irrelevant to the decision to deviate. The following

lemma is standard in the literature, and greatly simplifies the analysis, by showing

that equilibrium is characterized by cutoff investment costs, such that any firm with

investment cost below the cutoff will invest, if it has not already done so.

Lemma 1: Suppose that F is continuous over the nondegenerate support, [c, c].

Then any Bayesian Nash equilibrium has the interval property. For any history, ht−1,

that arises with positive probability in the equilibrium, there are functions, β0(h
t−1)

and β1(h
t−1), such that a type-0 firm (not previously invested) invests in round t if

and only if ci ≤ β0(h
t−1) holds, and a type-1 firm (not previously invested) invests in

round t if and only if ci ≤ β1(h
t−1) holds.

We now characterize equilibrium and provide some welfare results for the general

model. One might conjecture that the expected asset return, conditional on the

history ht−1, is always weakly increasing in kt. We show, below, that this conjecture

is false, in general. We show in Proposition 1 that expected asset returns are either

increasing in kt for both types, or decreasing in kt for both types. Proposition 2

shows that equilibrium exists, satisfies the one-step property, and exhibits a simple

relationship between β0(h
t−1) and β1(h

t−1) that is independent of the discount factor

or cost distribution.

Before characterizing this equilibrium, we introduce some notation. Let the num-

ber of firms that have invested during rounds 0 through t− 1 be denoted as n(ht−1),
given by n(ht−1) =

Pt−1
τ=0 k

τ . Let H denote the following ratio of probabilities7

H =
pr(ht−1 | Z = 0)
pr(ht−1 | Z = 1) .

Let P0(ht−1) denote the probability that we have Z = 1, given the history, ht−1, and

7Implicit in these conditional probabilities are the investment cutoffs chosen in rounds 0 through
t − 1, and the fact that the firm considering this history has not yet invested. For simplicity, we
suppress the dependence of H on the history, ht−1.
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given that a type-0 firm has not yet invested. Let P1(ht−1) denote the probability

that we have Z = 1, given the history, ht−1, and given that a type-1 firm has not yet

invested. Using Bayes’ rule, we have

P0(h
t−1) =

1

1 + Hα
(1−α)

and (2.1)

P1(h
t−1) =

1

1 + H(1−α)
α

(2.2)

Define the probability that a type-0 (respectively, type-1) firm invests in round t,

after the history ht−1, by

q0(h
t−1) =

F (β0(h
t−1))− F (β0(h

t−2))

1− F (β0(h
t−2))

, (2.3)

q1(h
t−1) =

F (β1(h
t−1))− F (β1(h

t−2))

1− F (β1(h
t−2))

. (2.4)

From (2.3) and (2.4), we see that finding the investment cost cutoffs for round t is

equivalent to finding the probabilities that a firm will invest in round t (having not

yet invested). DefineK∗(ht−1, q0, q1) to be the set containing all values of kt for which

investment is unprofitable in round t+1 for the marginal type-1 firm. Thus, we have

K∗(ht−1, q0, q1) = {k : P1(ht−1, kt = k; q0(h
t−1) = q0, q1(h

t−1) = q1) < β1(h
t−1)}.

Similarly, for type-0, define

K∗∗(ht−1, q0, q1) = {k : P0(ht−1, kt = k; q0(h
t−1) = q0, q1(h

t−1) = q1) < β0(h
t−1)}.

We also define

Q(ht−1, k, q0, q1) ≡
pr(kt = k | ht−1, Z = 0, q0(ht−1) = q0, q1(h

t−1) = q1)

pr(kt = k | ht−1, Z = 1, q0(ht−1) = q0, q1(ht−1) = q1)
. (2.5)

The ratio, Q(ht−1, k, q0, q1), represents the likelihood that a firm that has not yet

invested observes k firms invest in round t, given that the state is low, relative to the

likelihood of observing k firms invest in round t, given that the state is high. This

likelihood ratio depends on the history, ht−1, and depends on the probabilities that a
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type-1 firm and a type-0 firm invest after ht−1.

Application of Bayes’ rule, and making explicit the dependence of P0(ht) and

P1(h
t) on q0(h

t−1) and q1(h
t−1), yields

P0(h
t−1, k; q0, q1) =

1

1 + α
1−αHQ(ht−1, k, q0, q1)

and (2.6)

P1(h
t−1, k; q0, q1) =

1

1 + 1−α
α
HQ(ht−1, k, q0, q1)

(2.7)

Proposition 1: If q1(ht−1) > q0(h
t−1) holds, then P0(h

t−1, k; q0, q1) and P1(ht−1, k; q0, q1)

are strictly increasing in k. If q1(h
t−1) < q0(h

t−1) holds, then P0(h
t−1, k; q0, q1) and

P1(h
t−1, k; q0, q1) are strictly decreasing in k. In other words, more investment in

round t implies a higher (lower) posterior probability that the state is high, if and

only if a type-1 firm invests in round t with a higher (lower) probability than a type-0

firm.

We now return to the general model. The expected profit that a type-1 firm with

cost ci saves in round t, due to the option of not investing in round t+1 when kt = k

occurs, is defined by

θk(h
t−1, q0, q1, ci) = pr(Z = 1, kt = k | ht−1,Xi = 1, q0(h

t−1) = q0, q1(h
t−1) = q1)[ci − 1]

+pr(Z = 0, kt = k | ht−1, Xi = 1, q0(h
t−1) = q0, q1(h

t−1) = q1)[ci].

Using Bayes’ rule, this equation can be simplified to

θk(h
t−1, q0, q1, ci) = [ci − 1]

pr(kt = k | ht−1, Z = 1, q0(ht−1) = q0, q1(h
t−1) = q1)

1 + H(1−α)
α

+

[ci]
pr(kt = k | ht−1, Z = 0, q0(ht−1) = q0, q1(h

t−1) = q1)

1 + α
H(1−α)

. (2.8)

For a type-0 firm, denote the profit savings as ηk(h
t−1, q1, q2, ci), defined by

ηk(h
t−1, q0, q1, ci) = pr(Z = 1, kt = k | ht−1,Xi = 0, q0(h

t−1) = q0, q1(h
t−1) = q1)[ci − 1]

+pr(Z = 0, kt = k | ht−1, Xi = 0, q0(h
t−1) = q0, q1(h

t−1) = q1)[ci].
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Using Bayes’ rule, this equation can be simplified to

ηk(h
t−1, q0, q1, ci) = [ci − 1]

pr(kt = k | ht−1, Z = 1, q0(ht−1) = q0, q1(h
t−1) = q1)

1 + Hα
1−α

+

[ci]
pr(kt = k | ht−1, Z = 0, q0(ht−1) = q0, q1(h

t−1) = q1)

1 + 1−α
Hα

. (2.9)

Proposition 2: Under our maintained assumptions, there exists an equilibrium

characterized as follows. After a history, ht−1, in which investment is unprofitable for

a type-1 firm with cost β1(h
t−2), investment ceases. If investment is profitable and

the previous type-0 cutoff is at c, β0(h
t−2) = c, then there may be a corner solution,

with q0(h
t−1) = 0 and q1(h

t−1) solving

¡
P1(h

t−1)− β1(h
t−1)

¢µ1− δ

δ

¶
=

X
k∈K∗(ht−1,0,q1)

θk(h
t−1, 0, q1, β1(h

t−1)) and

¡
P0(h

t−1)− c
¢µ1− δ

δ

¶
<

X
k∈K∗∗(ht−1,0,q1)

ηk(h
t−1, 0, q1, c).

Otherwise, type-1 firms and type-0 firms invest with positive probability, we have

K∗(ht−1, q0, q1) = K∗∗(ht−1, q0, q1), and the investment probabilities solve

¡
P1(h

t−1)− β1(h
t−1)

¢µ1− δ

δ

¶
=

X
k∈K∗(ht−1,q0,q1)

θk(h
t−1, q0, q1, β1(h

t−1)) and (2.10)

¡
P0(h

t−1)− β0(h
t−1)

¢µ1− δ

δ

¶
=

X
k∈K∗∗(ht−1,q0,q1)

ηk(h
t−1, q0, q1, β0(h

t−1)). (2.11)

Furthermore, whenever we have β0(h
t−1) > c, investment cutoffs are related according

to
β0(h

t−1)

1− β0(h
t−1)

=
β1(h

t−1)

1− β1(h
t−1)

(1− α)2

α2
. (2.12)

Proposition 2 characterizes an equilibrium. Starting with a history at which both

types invest with positive probability, all histories that are profitable for the low-

est cost uninvested type-1 firm are profitable for the lowest cost uninvested type-0

firm, and vice versa. Both cutoffs then shift together, until investment becomes
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unprofitable and ceases. The investment probabilities of type-0 and type-1 firms si-

multaneously solve (2.10) and (2.11), which impose the condition that these marginal

firms are indifferent between investing in round t and investing in round t + 1, if

and only if investment in round t+ 1 is profitable. It is remarkable that equilibrium

investment cutoffs are related according to equation (2.12), irrespective of the distri-

bution of costs and the discount factor. On the other hand, if c is sufficiently large

but less than α, then there is an initial phase of the equilibrium, in which a type 0

firm with cost c strictly prefers to delay investment. Proposition 2 provides a way to

compute an equilibrium, history by history, if the number of firms is not too large.

When the number of firms is fairly large, computing the entrire equilibrium might

not be practical, but Proposition 2 shows the way to compute the equilibrium cutoffs

for the first few rounds.

The proof of Proposition 2 overcomes several technical difficulties that arise only

when signals are multi-dimensional. With one-dimensional signals, there is a single

indifference equation determining the cutoff investor after any history. In our model,

there are two cutoffs that must be determined jointly. Establishing that there are in-

vestment probabilities of type-0 and type-1 firms that simultaneously solve (2.10) and

(2.11), or possibly a corner solution in which one of the types invests with probability

zero, occupies a large portion of the proof. The other difficulty lies in establishing the

one-step property. With one-dimensional signals, there is only one cutoff type of firm

after any history, and if that firm decides to wait, then it becomes more favorably in-

clined to invest than any other remaining firm. Therefore, this firm had better invest

in the next round whenever investment remains profitable, because no other firm will

invest before the most favorably inclined firm invests. However, in our model, there

is a cutoff type-0 firm and a cutoff type-1 firm. It is conceivable that the type-1 firm

with cost β1(h
t−1), rather than comparing investment in round t with investment in

round t+1 when it is profitable, can receive even higher profits by waiting until round

t + 2. This would be possible if a type-0 firm (with lower investment cost!) might

invest in round t+ 1. Fortunately, for the equilibrium constructed in Proposition 2,

the one-step property holds. Otherwise, (2.10) and (2.11) would no longer determine

equilibrium investment cutoffs.

In evaluating the welfare of firms, one benchmark for comparison is the static
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game, in which firms decide whether to invest in round 0 or never invest. The in-

crease in welfare of the equilibrium allocation over the allocation from the static game

represents the social benefit of learning. Another potentially interesting benchmark

is the outcome of the “rigid-timing” game, in which firms face a once-and-for-all deci-

sion whether to invest in a randomly-determined sequence, observing the decisions of

firms ahead of it in the queue. This rigid timing model, with exogenous timing of the

investment decision, is usually assumed in the herding literature. This benchmark

allows us to measure the advantage or disadvantage of being able to choose when to

invest.

Corollary: For the equilibrium characterized in Proposition 2, expected profits,

conditional on (Xi, ci), are weakly higher than expected profits in the static game.

If there is a positive probability of investment in round 0, then expected profits are

strictly higher than in the static game for type-1 firms with ci > β1, and for type-0

firms with ci > β0.

Remark 1: In Chamley and Gale (1994), all firms have the same cost, and only

firms with the favorable signal (type-1 firms in our terminology) have an opportunity

to invest. Thus, all firms deciding whether to invest are identical. Chamley and Gale

find that there is a unique symmetric mixed-strategy equilibrium, and that ex ante

welfare is the same as in the static game, with only one round of investing. This strong

inefficiency result disappears when we have heterogeneity, including Chamley’s (2004)

model with one-dimensional and heterogeneous types. The Corollary indicates that

all firms that do not invest in round 0 receive strictly higher profits, in the equilibrium

to the flexible-timing game characterized in Proposition 2, than they would receive in

the static game. These firms benefit from the ability to learn from market activity.

Remark 2: The ex ante welfare comparison between the flexible-timing game and

the rigid-timing game is ambiguous. An advantage of the flexible-timing game is

that firms with the most favorable signals invest first, so that firms who benefit

most from observing market activity have an opportunity to delay their decision to

invest. A disadvantage of the flexible-timing game is that some type-1 firms, for

whom investment is profitable, delay their investment decision and thereby delay

their favorable information from being observed by the market. In Example 1 below,
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welfare is higher in the flexible-timing game. If we were to change the parameters,

however, welfare could easily be higher in the rigid-timing game. For example, consider

a game with two firms, n = 2, a discount factor close to one, and investment costs

uniformly distributed over [α− ε, α], for small positive ε. In the flexible-timing game,

the probability of investment in round 0 is close to zero, so welfare is close to zero.

In the rigid-timing game, the first firm to act will invest if and only if it is of type 1,

so the second firm will receive significant expected profits if it is also a type-1 firm.

Example 1: Consider the following example, with parameters, n = 2, α = .75, and

δ = 1, and a cost distribution that is uniform on [0, 1]. Table 1 shows the unique

symmetric equilibrium of our “flexible timing” game. For the purpose of comparison,

Table 1 also shows the unique equilibrium of the rigid timing game usually studied

in the herding literature.

flexible timing game rigid timing game

β0 0.17913 0.25

β1 0.66261 0.75

β0(1) 0.37576 0.35714

β1(1) 0.84417 0.83333

β0(0) no further investment 0.16667

β1(0) no further investment 0.64286

profit (ex ante) 0.16054 0.15848

Table 1: n = 2, δ = 1, α = .75, ci ∼ U [0, 1]

The fact that β0 and β1 are lower for the flexible timing game than for the rigid

timing game illustrates the incentive to delay investment, due to the option value of

not investing in round 1 if the other firm did not invest in round 0. A type-0 firm

with cost ci ∈ (0.17913, 0.25) would receive positive profit by investing in round 0, but
profit is higher by waiting until round 1. Similar reasoning applies to a type-1 firm

with cost, ci ∈ (0.66261, 0.75). The cutoffs for investing in round 1, after observing
the other firm invest in round 0, are higher for the flexible timing game than the rigid

timing game. The reason is that there is a stronger inference that the other firm is a

13



type-1 firm in the flexible timing game than in the rigid timing game, because β1/β0
is higher. Indeed, our simple example illustrates the role heterogeneous costs play

in diluting the information gathered from another firm’s investment. Suppose a firm

observes its rival invest in round 0, and could infer that the rival is type-1. Then the

hypothetical cutoffs for investment in round 1 would be eβ0(1) = .50 and eβ1(1) = .90.

The actual values are significantly lower, reflecting the fact that investment by the

rival is a noisy indicator that the rival is a type-1 firm. While the rival’s investment

is surely good news about the aggregate state, a firm must take into account the

possibility that the rival is a type-0 firm with low investment cost.

Choosing the limiting discount factor, δ = 1, allows a clean comparison of welfare

in the two games, since forcing one of the firms to delay investment in the rigid

timing game is not itself a source of inefficiency. Rather, any inefficiency that arises

when a type-1 firm delays investment is due to the fact that the other firm cannot

benefit from that information. Ex ante profit is higher for the flexible timing game,

so the gains from endogenous sorting outweigh the loss due to strategic delay for this

example. To put these profit values into perspective, ex ante profit in the static game

(where no learning is possible) is 0.15625, and ex ante profit would be 0.25 if signals

were perfectly accurate (α = 1). The market clearly benefits from the opportunity to

learn.

Reversals

We define a reversal to be an equilibrium in which more investment in round 0 is

good news, but after some histories, more investment in later rounds is actually bad

news. Reversals are impossible in the rigid timing game or in the flexible timing game

with deterministic costs. The reason that reversals are possible in the flexible timing

game with multi-dimensional signals is that, following a certain history, a type-0 firm

is more likely to invest than a type-1 firm. The following example of a reversal has

three firms, and if exactly one firm invests in round 1, expected revenues increase.

However, after one firm invests in round 0, type-0 firms are more likely than type-1

firms to invest in round 1, so investment in round 1 is bad news. Choosing an example

in which firms are infinitely impatient simplifies the calculations enormously, but the

qualitative features of the example continue to hold for small positive δ.

Example 2: Consider the following example, with α = .75, δ = 0, n = 3, and the
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distribution function given by,

F (ci) =
ci
5

for ci ≤ 5

The distribution function is uniform over the interval, [0, 5].8

Because firms are infinitely impatient, they will invest at the first profitable op-

portunity. Therefore, the equilibrium cutoffs are given by

β0(h
t−1) = P0(h

t−1) and

β1(h
t−1) = P1(h

t−1)

whenever kt−1 represents good news, in the sense that P0(h
t−1) > P0(h

t−2) and

P1(h
t−1) > P1(h

t−2) hold.9 If kt−1 represents bad news, then there is no more in-

vestment. Table 2 presents our computations of the equilibrium cutoffs for the first

few rounds.

expected revenue and probability of investing

cutoff for investment

history P0(h
t−1) P1(h

t−1) q0(h
t−1) q1(h

t−1)

null .25 .75 .05 .15

(0) no more investment 0 0

(1) .344488 .825472 .019892 .017758

(2) .480769 .892857 .048583 .033613

(1, 0) .344733 .825628 .0000526 .0000374

(1, 1) no more investment 0 0
Table 2

From Table 2, we see why reversals can occur in equilibrium. More investment in

round 0 is good news, because firms that invest are more likely to be type 1.10 If no

8Example 2 can easily be altered to have c = 1. Example 2 is equivalent to an example in which
we have F (ci) = ci

5 for ci ≤ 0.9, and F (ci) =
41ci
5 −

36
5 for 0.9 < ci ≤ 1.

9Proposition 1 shows that good news for a type-0 firm is good news for a type-1 firm, and vice
versa.
10We see that, for a type-i firm (i = 0, 1), we have qi(2) > qi(1) > qi(0) and Pi(2) > Pi(2) > Pi(2).
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one invests in round 0, this is bad news, and there is no further investment. If one firm

invests in round 0, this is good news, as indicated by the fact that expected revenue

increases for both types. Notice, however, that after one firm invests in round 0, a

type-0 firm is more likely to invest than a type-1 firm. Therefore, after the history

(1, 1), the firm that invested in round 1 is much more likely to be a type-0 firm. While

the investment in round 0 is good news, the investment in round 1 is bad news, and

investment ceases. On the other hand, if no one invests in round 1, this is good news,

and we have a reversal. Notice that, if two firms invest in round 0, a type-0 firm is

also more likely to invest in round 1 than a type-1 firm. Expected revenue is higher

after the history (2, 0) than the history (2, 1), but since there is only one remaining

uninvested firm in round 1, obviously that firm does not learn anything from market

activity in round 1.

In Example 2, following a history of the form, (1, 0, 0, ...), there is always a pos-

itive probability of investment by a second firm, although this probability quickly

approaches zero. Each round in which there is no investment leads firms to slightly

increase their posterior probability of the good state. This scenario is reminiscent of

a war of attrition, although here there is no strategic interaction between firms.11 If

a second firm ever invests, this is bad news for the remaining firm, and investment

ceases.

3. The Model with Many Firms

In the limit, as n → ∞, the law of large numbers implies that the aggregate state
could be known with certainty if the firms were to pool their information. How efficient

will the investment market be at aggregating this information? Because we have a

large market, there will be many firms with costs near the lower bound, so c plays

an important role in characterizing the equilibrium. Proposition 3 characterizes the

round 0 investment cutoffs for the limiting equilibria, as n → ∞. Proposition 4
addresses overall equilibrium welfare.

11Reversals, in which more investment switches from being good news to being bad news, is
reminiscent of the phenomenon documented by Park and Smith (2003), in which timing games can
switch from a “preemptive explosion” to a war of attrition.
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Proposition 3: Fix α, δ, c, c, and the continuous and strictly increasing distribution

function, F . Consider a sequence of economies, indexed by n, and let (βn0 , β
n
1) be

equilibrium investment cutoffs in round 0 for the economy with n firms. Consider

a convergent subsequence, where (βn0 , β
n
1) → (β∗0, β

∗
1). Then we have the following

exhaustive possibilities:

(1) Parameters satisfy c > α [Region 1 in Figure 1], and cutoffs satisfy β∗0 =

β∗1 = c,

(2) Parameters satisfy α(1−δ)
1−αδ < c < α [Region 2 in Figure 1], and cutoffs satisfy

β∗0 = β∗1 = c,

(3) Parameters satisfy (1−α)(1−δ)
1−(1−α)δ < c < α(1−δ)

1−αδ [Region 3 in Figure 1], and cutoffs

satisfy β∗0 = c and β∗1 =
α(1−δ)
1−αδ ,

(4) Parameters satisfy c < (1−α)(1−δ)
1−(1−α)δ [Region 4 in Figure 1], and cutoffs satisfy

β∗0 =
(1−α)(1−δ)
1−(1−α)δ and β∗1 =

α(1−δ)
1−αδ ,

We now discuss the equilibria characterized in Proposition 3, leaving the more

complicated part (2) for last. In region 1, for all firms, the cost exceeds the expected

return, so no one would be willing to be the first to invest. Since no one invests in round

0, no further inference is made, and investment never occurs. This equilibrium is

inefficient, because when investment returns are high, Z = 1, investment is profitable

for all firms (ex post), yet no investment takes place. We also have no investment in

the rigid timing game. For equilibria corresponding to part (3), type-0 firms do not

invest in round 0, and type-1 firms invest with probability F (βn1). By the law of large

numbers, the limiting fraction of firms that invest in round 0 is αF (β∗1) if the state is

high, Z = 1, and the limiting fraction of firms that invest in round 0 is (1−α)F (β∗1) if
the state is low, Z = 0. Thus, activity in round 0 reveals the state, thereby justifying

the hypothesized investment behavior in round 0. The outcome is nearly first-best

efficient.12 For equilibria corresponding to part (4), the limiting equilibrium cutoffs

12The only departures from first-best efficiency are that (i) some firms might invest in round 0
in the low state, and (ii) some firms might delay their investment until round 1 in the high state.
However, if it takes one round for a fully informed planner to communicate the state to the firms, it is
impossible to improve on the equilibrium. By contrast, the rigid timing game outcome is inefficient
even ignoring delays (assuming c > 0), because a finite sequence of noninvestment can stop all
investment forever.
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for round 0 are

β∗0 =
(1− α)(1− δ)

1− (1− α)δ
and β∗1 =

α(1− δ)

1− αδ
.

By the law of large numbers, the limiting fraction of firms that invest in round 0 is

αF (β∗1) + (1− α)F (β∗0) if the state is high, Z = 1, and the limiting fraction of firms

that invest in round 0 is (1 − α)F (β∗1) + αF (β∗0) if the state is low, Z = 0. Thus,

activity in round 0 reveals the state, thereby justifying the hypothesized investment

behavior in round 0. Again, the equilibrium is nearly first-best efficient, while the

rigid-timing game can exhibit inefficient herding.

c
-

region 1

region 2

region 3

region 4

1-alpha 1alpha

delta

1

Figure 1

The more difficult and interesting case occurs when we consider equilibria de-

scribed in part (2) of Proposition 3. Limiting investment cutoffs satisfy β∗0 = β∗1 = c,

so the probability that any particular firm invests in round 0 approaches zero. How-

ever, if firms are certain that there will be no investment, a type-1 firm with cost close

to c should invest in round 0. This issue has been treated rigorously in the literature,

for the case of one-dimensional signals, and the same logic applies here as well. For

sufficiently large n, type-0 firms strictly prefer not to invest in round 0, βn0 = c. The
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cutoff for investment by type-1 firms is approaching c, but the probability of kt = 0

has a well-defined limit that is between zero and one. Thus, observing only one or

two firms invest in round 0 could be good news, for all values of n.

When δ approaches one and n approaches infinity, the limiting probability that

no firm ever invests, given that we are in the high state, Z = 1, can be computed as³
α(1−c)
(1−α)c

´−α/(2α−1)
.The limiting probability that no firm invests in the low state can

be computed as
³
(1−c)(1−α)

αc

´(1−α)/(2α−1)
. (Derivations are available from the authors.)

These probabilities of no investment are significant. For example, if we have δ → 1,

n→∞, c = 1/2, and α = 2/3, the probability of no investment in the good and bad

states, respectively, are 1/4 and 1/2.

When we observe enough investment in round 0 to keep the process moving,

investment could cease at some point in the future. What can be said about investment

beyond round 0, in the good state and in the bad state, and what are the welfare

implications?

Proposition 4: Fix α, δ, c, c, and the continuous and strictly increasing distribution

function, F . Consider a sequence of economies, indexed by n, and let W n(0, ci) and

Wn(1, ci) be equilibrium profits, conditional on being a type-0 or type-1 firm with

investment cost ci, for the economy with n firms. Consider a convergent subsequence,

where (Wn(0, ci),W
n(1, ci))→ (W ∗(0, ci),W

∗(1, ci)). Then we have:

(1) In region 1, W ∗(0, ci) =W ∗(1, ci) = 0,

(2) In region 2,

δ

µ
α− c

1− c

¶µ
1− α

α

¶
(1− ci) ≤ W ∗(0, ci) ≤

1

δ

µ
α− c

1− c

¶µ
1− α

α

¶
(1− ci),

δ

µ
α− c

1− c

¶
(1− ci) ≤ W ∗(1, ci) ≤

1

δ

µ
α− c

1− c

¶
(1− ci),

(3) In region 3,

W ∗(0, ci) = δ(1− α)(1− ci),

W ∗(1, ci) = δα(1− ci) for ci ≥
α(1− δ)

1− αδ
,

W ∗(1, ci) = α− ci for ci <
α(1− δ)

1− αδ
,
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(4) In region 4,

W ∗(0, ci) = δ(1− α)(1− ci), for ci ≥
(1− α)(1− δ)

1− (1− α)δ
,

W ∗(0, ci) = 1− α− ci, for ci <
(1− α)(1− δ)

1− (1− α)δ
,

W ∗(1, ci) = δα(1− ci) for ci ≥
α(1− δ)

1− αδ
,

W ∗(1, ci) = α− ci for ci <
α(1− δ)

1− αδ
.

The intuition for Proposition 4 is that, once the investment cutoffs are above c,

the fraction of firms that have invested will reveal the state. In region 1, we have

no investment. In regions 3 and 4, firms that do not invest in round 0 invest in

round 1 in the high state, and do not invest in the low state. In region 2, whether

or not a positive fraction of firms invest depends delicately on the exact realizations

of investment costs for the type-1 firms with the lowest costs. Basically, P1(ht−1)

and P0(h
t−1) replace α and 1 − α in determining which region the economy moves

into. During the round in which the economy first moves into region 3 or region 4,

a positive fraction of firms invest, but the state is not yet known. Therefore, there

can be overinvestment as well as underinvestment. There is a positive probability

that investment never takes off in the high state, and there is a positive probability

that a positive fraction of firms invest in the low state. For this reason, it is difficult

to characterize welfare when the economy begins in region 2. However, the welfare

bounds we establish in part (2) are extremely accurate when δ is close to 1. For δ

arbitrarily close to 1, equilibrium profits are exactly determined, and the probability

of overinvestment is zero.

Suppose that we have δ ' 1. Then there is no chance of overinvestment, where a
positive fraction of firms invest in the bad state. Consider what happens to welfare

as we vary c. For c = 0, we haveW ∗(0, ci) = (1−α)(1−ci) andW ∗(1, ci) = α(1−ci),
which implies that we achieve the first-best. Firms receive the profits they would

receive if they acted with full knowledge of the state. For small c, the outcome is

nearly first-best efficient. The chance of investment collapse (the fraction investing in
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the good state is zero) is small. As c rises, the chance of investment collapse rises, but

if the fraction investing becomes positive, all firms will know that the state is high

and invest.

Back to the general case, notice that the characterization in Proposition 4 does not

assume anything about the distribution, F , except that it is continuous and strictly

increasing! The only feature of F that affects equilibrium profits is the lower support,

c. If we start in region 3 or 4, and consider any firm, then changing the distribution

in any way that lowers c will have no effect on the firm’s expected profits. However,

if we start in region 2, then lowering c will increase the firm’s expected profits. If we

start in region 1, then lowering c enough to move the economy into another region

will increase the firm’s expected profits; if we remain in region 1, then there is no

effect.

Let us summarize the efficiency properties of large markets. Suppose all firms

would delay investment if waiting allows firms to learn the state (region 1 or region

2). Then equilibrium is inefficient, free riding limits information flow and leads to

underinvestment. However, equilibrium yields higher welfare than the static game in

region 2. When some firms receive favorable enough signals that they would not delay

investment, even if waiting would allow them to learn the state (region 3 or region

4), then the market aggregates information efficiently. Even though a single firm has

a blunt instrument for conveying information, invest or not, a market with a large

number of firms can be highly informative. Our asymptotic results show similarities

to Chamley (2004), who considers a model with one-dimensional types.

4. Policy Implications

In this section we consider the welfare implications of subsidies or taxes on invest-

ment.13 One might think that a small subsidy would improve welfare, by increasing

information flow as a result of the increased incentive to invest. This is true in Cham-
13Of course, more sophisticated mechanisms could achieve complete information outcomes, by

having firms report their types and giving firms suggestions about whether to invest. However,
such mechanisms seem inconsistent with markets, and would lead to difficulties outside the scope of
the present analysis. Moreover, our point in this section is that simple investment policies are likely
to be ineffective or worse. Investment incentives should be targeted, to encourage information flow.
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ley and Gale (1994), with one-dimensional types.14 However, the issue is far more

subtle with two-dimensional types, because the beneficial effect of encouraging in-

vestment by type-1 firms is offset by the harmful effect of encouraging investment

by type-0 firms. Let s denote a subsidy given to investors during the round in which

they invest (a tax if s is negative). For the case of two firms, the effect of a subsidy

on welfare is ambiguous. For ci ∼ U [0, 1], α = 0.75, δ = 0.9, it turns out that a small

investment subsidy is welfare diminishing! On the other hand, if we choose a distrib-

ution putting more mass on higher costs, F (c) = c3, then a small subsidy encourages

more investment by type-1 firms than type-0 firms, leading to higher welfare.15

We now consider the optimal permanent subsidy for arbitrarily large economies.

Proposition 5: Consider an arbitrarily large economy, and assume c ≤ 1. The

optimal subsidy, s∗, is given by

s∗ = max[0, c− α(1− δ)

1− αδ
]. (4.1)

From Proposition 5, we see that the optimal subsidy for large economies is either

zero, or a targeted subsidy that induces an arbitrarily small fraction of firms to invest

in round 0. The purpose of the subsidy is not to generate a lot of investment for its

own sake, but to generate enough investment to release a lot of information to the

market. Because the subsidy considered in Proposition 5 is permanent, then when

the investment return is high, all firms eventually invest and receive the subsidy.

However, it is possible to design a temporary subsidy only received by those who

invest in round 0, yielding the same welfare as (4.1), but with a per capita subsidy

payment arbitrarily close to zero. The optimal temporary subsidy for a large economy

is max[0, c(1− αδ)− α(1− δ)].16

14A small subsidy increases welfare in the pure common value case of our model as well. Although
type-0 firms are allowed to invest, the equilibrium is such that type-1 firms mix and type-0 firms do
not invest initially.
15Details available from the authors. Based on differentiating the welfare function with respect

to s, we conjecture that subsidies are always welfare diminishing for the uniform distribution, but
have not been able to sign the enormous expression.
16Investing in round 0 yields a type-1 firm with cost c expected profits of α − c + s. Waiting,

and learning the state, yields expected profits of αδ(1− c). The (limiting) optimal subsidy makes
a type-1 firm with cost c indifferent between investing in round 0 and waiting.
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5. Conclusions

A reasonable argument is that firms could credibly announce their signals to the mar-

ket, thereby avoiding the inefficiencies arising in our model due to limited information

flow. Similar criticisms could be made to much of the literatures on herding and co-

ordination failures. We would respond to this argument on two levels. First, our

analysis benefits from the useful abstraction of eliminating any strategic interaction

between firms’ investment decisions. Given that a firm invests, its profits depend only

on the aggregate state and not on how many other firms invest. However, it remains

to be seen whether firms would willingly reveal their favorable information to com-

peting firms.17 Second, it is costly to send and to receive communication, especially

in large markets. In a model that includes a communication decision as well as an

investment decision, there may be an incentive for firms to free-ride by not incurring

the communication costs. As the size of the market increases, the communication

cost might rise, and the information content of a single firm’s communication might

fall.

Our assumption of conditional independence implies that, for large economies,

the state could be known for certain if firms pool their information. Future work

will extend the model to information structures in which the state cannot be known

with certainty. One idea is to replicate the economy, so that there are n classes of

firms, with r identical firms in each class receiving identical signals. As r approaches

infinity, the aggregate information possessed by all firms remains constant. A special

feature of the replication economy is that firms know that there is a tie for who

has the lowest cost, leading to complicated mixed-strategy equilibria, in spite of the

continuous investment cost distribution. We are currently exploring this and other

information structures.

A macroeconomic interpretation of the model is that the economy is in recession,

17Although investment by competing firms might be harmful to investment returns, the opposite
might be true. In line with the coordination failure literature, investment by other firms could
stimulate economic activity and increase investment returns. Here, the question is whether a firm
would want to admit that it has a weak signal.
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but the investment climate might have improved. In equilibrium, firms with favorable

signals might delay their investment, and there is a positive probability that no one

invests, even if the investment climate has improved and the recession should be over.

Although this is the implication of the theory, notice that firms with low investment

costs are almost indifferent between investing in round 0 and waiting, and that com-

mon knowledge of rationality might be a strong assumption in practice. Some type-1

firms might instead see profitable opportunities and invest, as in Keynes’ notion of

animal spirits. The fascinating point here is that this urge to invest can actually im-

prove the informativeness of markets, thereby improving economic efficiency! This

phenomenon would be interesting to test experimentally.

6. Appendix: Proofs

Proof of Lemma 1. A type-1 firm that invests in round t receives expected

profit, pr(Z = 1 | ht−1,Xi = 1) − ci. Suppose the firm does not invest, and instead

chooses continuation strategy, si. The equilibrium strategies of the other firms and

the history, ht−1, determine the expected profit from the continuation strategy, which

can be written as R1(ht−1, si) − ϕ1(h
t−1, si)ci, where R1(h

t−1, si) denotes expected

discounted revenue of a type-1 firm and ϕ1(h
t−1, si)ci denotes expected discounted

investment cost of a type-1 firm, given ht−1 and si. If, given the history, ht−1, a

type-1 firm with cost ci invests in round t, it follows that

pr(Z = 1 | ht−1,Xi = 1)−R1(h
t−1, si) ≥ [1− ϕ1(h

t−1, si)]ci (6.1)

holds for all continuation strategies, si. From (6.1), and the fact that ϕ1(h
t−1, si) < 1

holds, it follows that (6.1) holds as a strict inequality for all c0i < ci and all continuation

strategies, si. Therefore, if a type-1 firm with cost ci invests in round t, a type-1

firm with a lower cost also invests in round t, unless it has already invested. An

identical argument applies to type-0 firms. Because F is continuous and the support

is nondegenerate, the probability that a firm’s cost is exactly β0(h
t−1) or β1(h

t−1) is

zero, so assuming that firms with these cutoff costs invest is without loss of generality.

This establishes the interval property of equilibrium. ¥
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Proof of Proposition 1. We will derive and simplify expressions for the numerator

and denominator of Q(ht−1, k, q0, q1). These expressions are complicated by the fact

that, given the state, we do not know the number of type-1 firms who have not yet

invested at the beginning of round t. Let α0 denote the probability that a firm is of

type-0, given that the state is low, given the history, ht−1, and given that the firm

has not invested by the beginning of round t. Similarly, let α1 denote the probability

that a firm is of type-1, given that the state is high, given the history, ht−1, and given

that the firm has not invested by the beginning of round t. From Bayes’ rule, we have

α0 = pr(Xj = 0 | ht−1, Z = 0, j not invested) =
1

1 + 1−α
α

h
1−F (β1(ht−2)
1−F (β0(ht−2)

i , (6.2)
α1 = pr(Xj = 1 | ht−1, Z = 1, j not invested) =

1

1 + 1−α
α

h
1−F (β0(ht−2)
1−F (β1(ht−2)

i . (6.3)
The following probabilities are conditional on firm i not having invested before

round t. Let n denote the number of firms that have not yet invested before round

t, not including firm i. Of these firms, let κ denote the number of type-1 firms, and

let k1 denote the number of these type-1 firms that invest in round t. Then we can

write:

pr(kt = k | ht−1, Z = 0) =
kX

k1=0

nX
κ=k1

⎡⎣ ¡nκ¢αn−κ
0 (1− α0)

κ
h¡

κ
k1

¢
qk11 (1− q1)

κ−k1
ih¡

n−κ
k−k1

¢
qk−k10 (1− q0)

n−κ−k+k1
i ⎤⎦

(6.4)

and

pr(kt = k | ht−1, Z = 1) =
kX

k1=0

nX
κ=k1

⎡⎣ ¡nκ¢ακ
1(1− α1)

n−κ
h¡

κ
k1

¢
qk11 (1− q1)

κ−k1
ih¡

n−κ
k−k1

¢
qk−k10 (1− q0)

n−κ−k+k1
i ⎤⎦ .

(6.5)

Equations (6.4) and (6.5) can be simplified as follows:

pr(kt = k | ht−1, Z = 0) =
µ
n

k

¶
Ak(1−A)n−k and (6.6)

pr(kt = k | ht−1, Z = 1) =
µ
n

k

¶
Bk(1−B)n−k, (6.7)
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where A ≡ α0q0+(1−α0)q1 and B ≡ (1−α1)q0+α1q1. From (2.5), (6.6), and (6.7),

we have

Q(ht−1, k, q0, q1) =

µ
1−A

1−B

¶nµ
A(1−B)

B(1−A)

¶k

. (6.8)

Equations (2.6) and (2.7) imply that P0(ht−1, k; q0, q1) and P1(h
t−1, k; q0, q1) are in-

creasing in k if and only if Q(ht−1, k, q0, q1) is decreasing in k. From (6.8), it follows

that Q(ht−1, k, q0, q1) is decreasing in k if and only if B > A holds, which is equivalent

to the condition,

(α0 + α1 − 1)(q1 − q0) > 0. (6.9)

Algebraic manipulation of equations (6.2) and (6.3) establishes that α0+α1−1 must
be positive, and the result follows. ¥

Proof of Proposition 2. Define G0(h
t−1, q0, q1) and G1(h

t−1, q0, q1) by

G1(h
t−1, q0, q1) =

¡
P1(h

t−1)− β1(h
t−1)

¢µ1− δ

δ

¶
−

X
k∈K∗(ht−1,q0,q1)

θk(h
t−1, q0, q1, β1(h

t−1)) and (6.10)

G0(h
t−1, q0, q1) =

¡
P0(h

t−1)− β0(h
t−1)

¢µ1− δ

δ

¶
−

X
k∈K∗∗(ht−1,q0,q1)

ηk(h
t−1, q0, q1, β0(h

t−1)). (6.11)

In (6.10) and (6.11), we treat β0(h
t−1) as a function of q0 and β1(h

t−1) as a function of

q1, based on (2.3) and (2.4). These expressions represent the net advantage of invest-

ing in round t, as opposed to investing in round t+1 if and only if investment remains

profitable. We first establish that, after any history, there exist q0 and q1 such that

one of the following conditions holds: (i) G0(h
t−1, q0, q1) = G1(h

t−1, q0, q1) = 0, (ii)

G0(h
t−1, 0, q1) < 0 andG1(h

t−1, 0, q1) = 0, (iii)G0(h
t−1, q0, 0) = 0 andG1(h

t−1, q0, 0) <

0, (iv) G0(h
t−1, 0, 0) < 0 and G1(h

t−1, 0, 0) < 0. We next establish that these invest-

ment probabilities determine an equilibrium.

It is easy to see that θk(h
t−1, q0, q1, β1(h

t−1)) and ηk(h
t−1, q0, q1, β1(h

t−1)) are

continuous functions of q0 and q1. Suppose (q0, q1) is a point of discontinuity in
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K∗(ht−1, q0, q1), in which k is dropped from the set. This can only occur when

θk(h
t−1, q0, q1, β1(h

t−1)) = 0 holds. Therefore, G1(h
t−1, q0, q1) is continuous in (q0, q1).

An identical argument holds for G0(h
t−1, q0, q1). Suppose that a type-1 firm with cost

β1(h
t−2) or a type-0 firm with cost β0(h

t−2) would receive strictly positive expected

profits by investing in round t. Let bq1 denote the value of q1 for which a type-1 firm
with the corresponding cost, β1(h

t−1) based on (2.4), receives zero expected profits

by investing in round t, P1(ht−1) − β1(h
t−1) = 0. Similarly, let bq0 denote the value

of q0 for which a type-0 firm with the corresponding cost, β0(h
t−1) based on (2.3),

receives zero expected profits by investing in round t, P0(ht−1)− β0(h
t−1) = 0.18

Case 1: bq1 > bq0
We know that G1(h

t−1, bq1, bq1) = 0 holds, because nothing is learned by market
activity in round t, so a type-1 firm with cost bq1 receives zero expected profits by
investing or waiting. We must have G1(h

t−1, q0, bq1) < 0 for all q0 < bq1, because
investing in round t yields zero profits, but observing all remaining firms invest in

round t increases the posterior probability of Z = 1, so there is a positive option

value of waiting. We must have G1(h
t−1, q, q) > 0 for all q < bq1, because nothing

is learned by market activity in round t, and investment is profitable for a type-1

firm with cost q. In Figure 2, G1 < 0 holds along the entire segment with height bq1,
between the vertical axis and the 45◦ line. Also, G1 > 0 holds along the 45◦ line below

the point (bq1, bq1). By continuity, the G1 = 0 manifold must go from the point, (bq1, bq1)
to somewhere on the vertical axis, lying below the segment, q1 = bq1 and above the
45◦ line. Denote the vertical intercept of the G1 = 0 manifold by eq1, which satisfies
G1(h

t−1, 0, eq1) = 0.19
18If investment is unprofitable for a type-i firm, let bqi = 0.
19Our conjecture is that the vertical intercept is unique, but otherwise let eq1 be the intercept of

the G1 = 0 manifold that first reached along the path from the point (bq1, bq1).
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Clearly we must either have G0(h
t−1, 0, eq1) < 0 and G1(h

t−1, 0, eq1) = 0, or else

G0(h
t−1, 0, eq1) ≥ 0 and G1(h

t−1, 0, eq1) = 0. If the latter is true, then we have

G0(h
t−1, 0, eq1) ≥ 0 and G0(h

t−1, bq1, bq1) < 0 (which follows from bq1 > bq0), so by
continuity, there must be some point on the G1 = 0 manifold for which we also have

G0(h
t−1, q0, q1) = 0.

Case 2: bq1 ≤ bq0
By the same reasoning used in case 1, there is a G0 = 0 manifold running from the

point, (bq0, bq0) to somewhere on the horizontal axis, lying to the left of the segment,
q0 = bq0 and below the 45◦ line.20 Denote the horizontal intercept of the G0 = 0

manifold by eq0, which satisfies G0(h
t−1, eq0, 0) = 0 (see Figure 3). Clearly we must

either have G0(h
t−1, eq0, 0) = 0 and G1(h

t−1, eq0, 0) < 0, or else G0(h
t−1, eq0, 0) = 0

and G1(h
t−1, eq0, 0) ≥ 0. If the latter is true, then we have G1(h

t−1, eq0, 0) ≥ 0 and

G0(h
t−1, bq1, bq1) < 0 (which follows from bq1 < bq0), so by continuity, there must be

some point on the G0 = 0 manifold for which we also have G1(h
t−1, q0, q1) = 0.

20If we have bq1 = bq0 = 0, so that investment is unprofitable for all remaining firms, then
G0(h

t−1, 0, 0) < 0 and G1(h
t−1, 0, 0) < 0 must hold.
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FromProposition 2, there exist k∗ and k∗∗ such that we have eitherK∗(ht−1, q0, q1) =

{kt : kt < k∗} and K∗∗(ht−1, q0, q1) = {kt : kt < k∗∗}, or K∗(ht−1, q0, q1) = {kt : kt >
k∗} and K∗∗(ht−1, q0, q1) = {kt : kt > k∗∗}. The following argument will consider the
case in which we have K∗(ht−1, q0, q1) = {kt : kt < k∗} and K∗∗(ht−1, q0, q1) = {kt :
kt < k∗∗}, but the argument for the other case is identical. Multiplying (6.10) by
[α + (1− α)H]G1(h

t−1, q0, q1), and using (2.1) and (2.8), we see that G1(h
t−1, q0, q1)

is positive (respectively, zero) if and only ifµ
1− δ

δ

¶
[α(1− β1(h

t−1))− (1− α)Hβ1(h
t−1)]−

(1− α)Hβ1(h
t−1)pr(kt < k∗ | Z = 0) + α(1− β1(h

t−1))pr(kt < k∗ | Z = 1)
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is positive (respectively, zero). Now define

Y1(h
t−1) =

(1− α)Hβ1(h
t−1)

α(1− β1(h
t−1))

and

Q∗ =
pr(kt < k∗ | Z = 0)
pr(kt < k∗ | Z = 1) .

It follows that G1(h
t−1, q0, q1) is positive (respectively, zero) if and only ifµ

1− δ

δ

¶£
1− Y1(h

t−1)
¤
−
£
Y1(h

t−1)Q∗ − 1
¤
pr(kt < k∗ | Z = 1) (6.12)

is positive (respectively, zero). Defining

Y0(h
t−1) =

αHβ0(h
t−1)

(1− α)(1− β0(h
t−1))

and

Q∗∗ =
pr(kt < k∗∗ | Z = 0)
pr(kt < k∗∗ | Z = 1) ,

a similar argument implies that G0(h
t−1, q0, q1) is positive (respectively, zero) if and

only if µ
1− δ

δ

¶£
1− Y0(h

t−1)
¤
−
£
Y0(h

t−1)Q∗∗ − 1
¤
pr(kt < k∗∗ | Z = 1) (6.13)

is positive (respectively, zero).

Claim 1: G1(h
t−1, q0, q1) = G0(h

t−1, q0, q1) = 0 implies that k∗ = k∗∗, and there-

fore, Q∗ = Q∗∗, hold.

Proof of Claim 1: Suppose instead that k∗ < k∗∗ holds (without loss of gen-

erality). Then we have [Y0(ht−1)Q∗∗ − 1] pr(kt < k∗∗ | Z = 1) = Y0(h
t−1)pr(kt <

k∗∗ | Z = 0) − pr(kt < k∗∗ | Z = 1) = [Y0(h
t−1)Q∗ − 1]pr(kt < k∗ | Z =

1) + [Y0(h
t−1)Q(ht−1, k∗, q0, q1)− 1]pr(kt = k∗ | Z = 1) + · · ·+ [Y0(ht−1)Q(ht−1, k∗∗ −

1, q0, q1)−1]pr(kt = k∗∗−1 | Z = 1). For all kt < k∗∗, investment is unprofitable for a

type-0 firm with cost β0(h
t−1). From (2.6), it follows that Y0(ht−1)Q(ht−1, kt, q0, q1)−
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1 > 0 holds for kt = k∗, ..., k∗∗ − 1. Therefore, we haveµ
1− δ

δ

¶£
1− Y0(h

t−1)
¤
=

£
Y0(h

t−1)Q∗∗ − 1
¤
pr(kt < k∗∗ | Z = 1) (6.14)

> [Y0(h
t−1)Q∗ − 1]pr(kt < k∗ | Z = 1).

For k∗ ≤ kt < k∗∗, investment is profitable for a type-1 firm with cost β1(h
t−1). From

(2.7), it follows that Y1(ht−1)Q(ht−1, kt, q0, q1) − 1 < 0 holds for kt = k∗, ..., k∗∗ − 1,
and therefore, that Y0(ht−1) > Y1(h

t−1) holds. Therefore, we haveµ
1− δ

δ

¶£
1− Y1(h

t−1)
¤
=

£
Y1(h

t−1)Q∗ − 1
¤
pr(kt < k∗ | Z = 1) (6.15)

< [Y0(h
t−1)Q∗ − 1]pr(kt < k∗ | Z = 1).

Comparing (6.14) and (6.15), we concludeµ
1− δ

δ

¶£
1− Y0(h

t−1)
¤
>

µ
1− δ

δ

¶£
1− Y1(h

t−1)
¤
,

which implies Y1(ht−1) > Y0(h
t−1), a contradiction.

This establishes the fact that G1(h
t−1, q0, q1) = G0(h

t−1, q0, q1) = 0 implies that

k∗ = k∗∗, and therefore, Q∗ = Q∗∗, hold. From (6.12), (6.13), and the fact that Q∗ > 1

must hold, simple algebra establishes Y0(ht−1) = Y1(h
t−1) and therefore, (2.12).

Claim 2: G1(h
t−2, q0(h

t−2), q1(h
t−2)) = G0(h

t−2, q0(h
t−2), q1(h

t−2)) = 0 implies

G0(h
t−1, q0, q1) = 0 if and only if G1(h

t−1, q0, q1) = 0.

Proof of Claim 2: Suppose instead that we haveG0(h
t−1, q0, q1) = 0 andG1(h

t−1, q0, q1) <

0. This impliesµ
1− δ

δ

¶£
1− Y0(h

t−1)
¤
=

£
Y0(h

t−1)Q∗∗ − 1
¤
pr(kt < k∗∗ | Z = 1) and (6.16)µ

1− δ

δ

¶£
1− Y1(h

t−2)
¤

<
£
Y1(h

t−2)Q∗ − 1
¤
pr(kt < k∗ | Z = 1). (6.17)
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Suppose k∗ ≥ k∗∗ holds. Therefore, the right side of (6.17) equals

£
Y1(h

t−2)Q∗∗ − 1
¤
pr(kt < k∗∗ | Z = 1) + (6.18)

[Y1(h
t−2)Q(ht−1, k∗∗, q0, q1)− 1]pr(kt = k∗∗ | Z = 1) + · · ·

+[Y1(h
t−2)Q(ht−1, k∗ − 1, q0, q1)− 1]pr(kt = k∗ − 1 | Z = 1).

Since realizations of kt below k∗ are unprofitable for a type-1 firm with cost β1(h
t−2),

all terms in (6.18) are positive, from which we conclude

£
Y1(h

t−2)Q∗ − 1
¤
pr(kt < k∗ | Z = 1) >

£
Y1(h

t−2)Q∗∗ − 1
¤
pr(kt < k∗∗ | Z = 1).

(6.19)

By a similar argument, we can show that k∗ < k∗∗ also implies (6.19). From (6.16),

(6.19), and Q∗∗ > 1, we can show Y1(h
t−2) > Y0(h

t−1), which implies

β0(h
t−1)

1− β0(h
t−1)

<
β1(h

t−2)

1− β1(h
t−2)

(1− α)2

α2
.

From the hypothesis of the claim, we have

β0(h
t−2)

1− β0(h
t−2)

=
β1(h

t−2)

1− β1(h
t−2)

(1− α)2

α2
.

Therefore, β0(h
t−2) > β0(h

t−1), a contradiction. An identical argument holds if we

suppose that G0(h
t−1, q0, q1) < 0 and G1(h

t−1, q0, q1) = 0 holds. This establishes

Claim 2.

Claim 3: G1(h
t−2, q0(h

t−2), q1(h
t−2)) = 0 and G0(h

t−2, q0(h
t−2), q1(h

t−2)) < 0

implies G0(h
t−1, q0, q1) = 0 only if G1(h

t−1, q0, q1) = 0.

Proof of Claim 3: Suppose instead that we haveG0(h
t−1, q0, q1) = 0 andG1(h

t−1, q0, q1) <

0. By the same reasoning as that given in the proof of Claim 2, we reach a contradic-

tion.

Construct the equilibrium values of q0(ht−1) and q1(h
t−1) as follows. After any

history, ht−1, if we have bq0 = 0 and bq1 = 0, then investment ceases. If we have bq1 > bq0,
we find investment probabilities that either solve G0 = 0 and G1 = 0 (above the 45◦

line), or G0 < 0, q0 = 0, and G1 = 0 (above the 45◦ line). If we have bq1 ≤ bq0, we find
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investment probabilities that solve G0 = 0 and G1 = 0 below the 45◦ line or G0 = 0,

q1 = 0, and G1 < 0 (below the 45◦ line). However, in round 0, either investment is

unprofitable for all firms, or else we have bq1 > bq0, in which case G1 = 0 must hold.

If we have G1 = 0 and G0 = 0 in round t, then by Claim 2, either investment ceases

or both types invest in round t + 1 with positive probability. If we have G1 = 0

and G0 < 0 in round t, then by Claim 3, either investment ceases or type-1 firms

invest in round t+1 with positive probability. Thus, the only corner solutions involve

investment ceasing, or an initial phase of the game in which type-1 firms invest with

positive probability and type-0 firms strictly prefer to wait.

The above construction guarantees that no firm has a profitable deviation to invest

after a history in which it should remain uninvested. Also, no firm that is supposed

to invest after any history, ht−1, has a profitable deviation in which it never invests

after round t+1. If we can demonstrate that no other deviations are profitable, then

the one-step property holds, and we are done.

Claim 4: The one-step property holds.

Proof of Claim 4 (by induction): Suppose that there is a history, ht−1, with two

uninvested firms, where a type-1 firm has a profitable deviation not to invest, and let

ε denote the gain in profits. Then a type-1 firm with cost β1(h
t−1) has a profitable

deviation that involves not investing in round t+1, after some profitable realizations

of kt. Let us denote one such realization by k
t
. If k

t
> 0 holds, then all other firms

have invested, and there in nothing to be gained by waiting. However, investment

is profitable, a contradiction. Thus, k
t
= 0 holds. Consider the type-1 firm with

cost β1(h
t−1, 0), who is indifferent between investing in round t+ 1, and investing in

round t+2 following every profitable kt+1. Since this firm is indifferent, the firm with

the lower cost, β1(h
t−1), must strictly prefer to invest after (ht−1, 0) than after every

profitable kt+1. Thus, the type-1 firm with cost β1(h
t−1) has a profitable deviation

that involves not investing in round t+ 2, after some profitable realizations of kt+1.

Let us denote one such realization by k
t+1
. By the above argument, we have k

t+1
= 0.

Therefore, for any positive integer T , the deviation must involve not investing until

after round t+ T . Because δ < 1 holds, the gain in profits is below ε for sufficiently

large T , a contradiction.

Suppose the one-step property holds whenever the number of uninvested firms is
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j−1 or fewer, but there is a history, ht−1, with j uninvested firms, where a type-1 firm
has a profitable deviation not to invest, and let ε denote the gain in profits. Then a

type-1 firm with cost β1(h
t−1) has a profitable deviation that involves not investing in

round t+1, after some profitable realizations of kt. Let us denote one such realization

by k
t
. If k

t
> 0 holds, then consider the type-1 firm with cost β1(h

t−1, k
t
), who is

indifferent between investing in round t + 1, and investing in round t + 2 following

every profitable kt+1. Since this firm is indifferent, the firm with the lower cost,

β1(h
t−1), must strictly prefer to invest after (ht−1, k

t
) than after every profitable kt+1.

Since there are j − 1 or fewer uninvested firms, the firm with cost, β1(h
t−1), must

strictly prefer to invest after (ht−1, k
t
) than follow any other continuation strategy, a

contradiction. Thus, k
t
= 0 holds, and the deviation involves not investing in round

t+2, after some profitable realizations of kt+1. Let us denote one such realization by

k
t+1
. By the above argument, we must have k

t+1
= 0. Therefore, for any T , a type-1

firm with cost β1(h
t−1) has a deviation following ht−1 whose gain is bounded below the

profit from not investing for T consecutive rounds, then investing if profitable. Because

δ < 1 holds, the gain in profits is below ε for sufficiently large T , a contradiction. ¥

Proof of Proposition 3. Consider parameters in region 1. Even a type-1 firm

with cost c would receive negative expected profits by investing, so no firm invests in

round 0. Therefore, nothing is learned from past behavior, so there is no investment

in subsequent rounds.

Consider parameters in region 2. Suppose we have β∗1 > β∗0 ≥ c. For sufficiently

large n, the law of large numbers implies the following. If we have Z = 1, with

probability arbitrarily close to one, the fraction of firms investing in round 0 is ar-

bitrarily close to αF (β∗1) + (1 − α)F (β∗0). If we have Z = 0, with probability ar-

bitrarily close to one, the fraction of firms investing in round 0 is arbitrarily close

to αF (β∗0) + (1− α)F (β∗1). Because these fractions are different, firms can infer the

true state from round 0 activity, with probability arbitrarily close to one. A type-1

firm with cost c receives expected profits of α− c by investing in round 0, but would

receive arbitrarily close to δα(1 − c) by waiting until round 1. Because α(1−δ)
1−αδ < c

holds, it follows that all type-1 firms should wait until round 1, contradicting β∗1 > c.

If we have β∗0 > β∗1 ≥ c, once again firms can infer the state from round 0 activity,

and we reach the same contradiction.
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Suppose we have β∗0 = β∗1 > c. For all ε > 0, there exists N such that n > N

implies βn1 < β∗1+ε and β
n
0 > β∗0−ε. Therefore, if firm i is type-1 with cost ci = β∗1+ε,

it prefers not to invest in round 0, choosing instead some other strategy, sni . Thus,

we have

α− β∗1 − ε < απ(sni , β
∗
1 + ε | Z = 1) + (1− α)π(sni , β

∗
1 + ε | Z = 0),

which implies

α− β∗1 − ε < απ(sni , β
∗
1 | Z = 1) + (1− α)π(sni , β

∗
1 | Z = 0) + ε, (6.20)

where π(s, c | Z = z) denotes the discounted expected profits for a firm with invest-

ment cost c, playing the strategy s, given that the state is z.21 If firm i is type-0 with

cost ci = β∗0− ε, it prefers to invest in round 0, rather than choosing the strategy, sni .

Thus, we have

1− α− β∗0 + ε > (1− α)π(sni , β
∗
0 − ε | Z = 1) + απ(sni , β

∗
0 − ε | Z = 0),

which implies

1− α− β∗0 + ε > (1− α)π(sni , β
∗
0 | Z = 1) + απ(sni , β

∗
0 | Z = 0)− ε. (6.21)

From (6.20), (6.21), and β∗0 = β∗1, we have

0 < (2α− 1) [π(sni , β∗1 | Z = 1)− π(sni , β
∗
1 | Z = 0)− 1] + 4ε. (6.22)

Because π(sni , β
∗
1 | Z = 1) < δ(1 − β∗1) and π(sni , β

∗
1 | Z = 0) > −δβ∗1 must hold,

it follows that the term in brackets in (6.22) is negative. Therefore, for sufficiently

small ε, we have a contradiction. The remaining cases are: (i) ci = β∗1 + ε (which is

impossible), β∗1 = c (which is also impossible), or β∗0 = β∗1 = c.

Consider parameters in region 3. Suppose we have β∗1 6= β∗0. By the law-of-

large-numbers argument given above for region 2, for sufficiently large n, a firm not

21Since there are no histories to observe and we are conditioning on the true state, firm i’s
common value signal, Xi, provides no additional information about expected revenues. Therefore,
π(s, c | Z = z) is independent of a firm’s common value signal.
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investing in round 0 will be able to infer the true state arbitrarily precisely. Based

on the parameter range for region 3, all type-0 firms would rather learn the state in

round 1 than invest in round 0. A type-1 firm with cost ci would rather invest in

round 0 than learn the state in round 1 if and only if we have ci <
α(1−δ)
1−αδ . Therefore,

we must have β∗0 = c and β∗1 =
α(1−δ)
1−αδ .

Suppose we have β∗0 = β∗1 = c. For a type-1 firm with cost, ci <
α(1−δ)
1−αδ , investing

in round 0 strictly dominates any other strategy, so we cannot have β∗1 = c.

Suppose we have c > β∗0 = β∗1 > c. By the identical argument given above for

region 2, we reach a contradiction. The remaining possibility for region 3 is β∗0 = β∗1 =

c, which is impossible.

Consider parameters in region 4. Suppose we have β∗1 6= β∗0. By the law-of-

large-numbers argument given above for region 2, for sufficiently large n, a firm not

investing in round 0 will be able to infer the true state arbitrarily precisely. Based

on the parameter range for region 4, a type-0 firm with cost ci would rather invest

in round 0 than learn the state in round 1 if and only if we have ci <
(1−α)(1−δ)
1−(1−α)δ . A

type-1 firm with cost ci would rather invest in round 0 than learn the state in round

1 if and only if we have ci <
α(1−δ)
1−αδ . Therefore, we must have β

∗
0 =

(1−α)(1−δ)
1−(1−α)δ and

β∗1 =
α(1−δ)
1−αδ .

Suppose we have β∗0 = β∗1 = c. For a type-1 firm with cost, ci <
α(1−δ)
1−αδ , investing

in round 0 strictly dominates any other strategy, so we cannot have β∗1 = c.

Suppose we have c > β∗0 = β∗1 > c. By the identical argument given above for

region 2, we reach a contradiction. The remaining possibility for region 4 is β∗0 = β∗1 =

c, which is impossible. ¥

Proof of Proposition 4. Part (1) is obvious. Suppose the parameters are in region

3, and consider a type-1 firm with investment cost below β∗1. Then Proposition 3

implies that for sufficiently large n, this firm will invest in round 0, in which case

W ∗(1, ci) = α − ci holds. All other firms will not invest in round 0, for sufficiently

large n, due to the assumption, c ≥ 1. If other firms invest in round 1 if and only if we
have k0/n ≥ F (β∗1)/2, then by the law of large numbers, the probability of investing

in the low state converges to zero, and the probability of investing in the high state

converges to one. Since the probability of the high state is α for a type-1 firm and

1−α for a type-0 firm, part (3) of Proposition 8 follows. The same argument applies
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to region 4, except that the firms that do not invest in round 0 should invest in round

1 if and only if we have k0/n ≥ [F (β∗0) + (F (β∗1)]/2.
Suppose the parameters are in region 2. For the equilibrium of the economy

with n firms, let Et,ε be the event that a type-1 firm with investment cost c + ε

invests in round t, and define T n
1 (1, ε) =

P∞
t=1 δ

tpr(Z = 1 and Et,ε | Xi = 1), define

Tn
1 (0, ε) =

P∞
t=1 δ

tpr(Z = 0 and Et,ε | Xi = 1), define Tn
0 (1, ε) =

P∞
t=1 δ

tpr(Z = 1

and Et,ε | Xi = 0), and define T n
0 (0, ε) =

P∞
t=1 δ

tpr(Z = 0 and Et,ε | Xi = 0).

Clearly, Wn(1, ci) must be continuous and decreasing in ci, because otherwise

some type-1 firm would have a profitable deviation to imitate the strategy chosen by

a type-1 firm with nearby investment cost. For all ε1 > 0, there exists ε2 > 0, such

that ε < ε2 implies

Wn(1, c)−Wn(1, c+ ε) < ε1. (6.23)

We have Wn(1, c) = α − c (they invest in round 0) and W n(1, c + ε) = T n
1 (1, ε)(1−

c− ε)− T n
1 (0, ε)(c+ ε). Imposing ε < min[ε1, ε2], it follows from (6.23) that we have

α− c− T n
1 (1, ε)(1− c) + Tn

1 (0, ε)(c) < 2ε1. (6.24)

Claim: For all ci and all ε > 0, there exists N such that n > N implies

Wn(1, ci) ≥ δTn
1 (1, ε)(1− ci)− ε1. (6.25)

Proof of Claim: Consider a type-1 firm with investment cost ci, which waits until

the round after a type-1 firm with cost c+ε would invest. That is, we are considering

histories such that βn1(h
t−1) ≥ c+ε. By the law of large numbers, for sufficiently large

n, with probability arbitrarily close to one, the cumulated investment in state 1 is

arbitrarily close to αF (βn1(h
t−1))+(1−α)F (βn0(ht−1)), and the cumulated investment

in state 0 is arbitrarily close to (1 − α)F (βn1(h
t−1)) + αF (βn0(h

t−1)). A type-1 firm

with cost βn1(h
t−1) is indifferent between investing in round t and some continuation

strategy, s, in which the probability of eventual investment is less than one. (This

fact follows from δ < 1 and our assumption, c ≥ 1, which guarantees that there
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are type-1 firms with costs above βn1(h
t−1) that do not invest.) However, a type-0

firm with the same cost, βn1(h
t−1), must strictly prefer the continuation strategy, s,

because P1(ht−1) > P0(h
t−1). Thus, we conclude that βn0(h

t−1) < βn1(h
t−1) must hold.

By investing in round t+ 1 if and only if we have βn1(h
t−1) ≥ c+ ε andPt

τ=1 k
τ

n
≥ F (βn0(h

t−1)) + F (βn1(h
t−1))

2
,

the probability of investing in the high state (when we have βn1(h
t−1) ≥ c + ε) is

arbitrarily close to one, and the probability of investing in the low state (when we

have βn1(h
t−1) ≥ c+ ε) is arbitrarily close to zero. Thus, adopting this strategy yields

expected profit arbitrarily close to δT n
1 (1, ε)(1− ci), thereby establishing the Claim.

From (6.24), and the fact that Tn
1 (0, ε) ≥ 0, we have

Tn
1 (1, ε) ≥

α− c

1− c
− 2ε1
1− c

. (6.26)

From (6.25) and (6.26), we have

Wn(1, ci) ≥ δ

∙
α− c

1− c

¸
(1− ci)− δ

∙
2ε1
1− c

¸
(1− ci)− ε1. (6.27)

Letting ci = c hold in (6.25), we have δTn
1 (1, ε)(1− c)− ε1 ≤ α− c, and using (6.24),

this becomes δT n
1 (1, ε)(1− c)− ε1 < T n

1 (1, ε)(1− c)− T n
1 (0, ε)(c) + 2ε1, implying

Tn
1 (0, ε)(c) < T n

1 (1, ε)(1− c)(1− δ) + 3ε1. (6.28)

A type-1 firm with cost ci cannot possibly do better than to decide whether or not

to invest during the same round that firm (1, c+ ε) invests, but with full knowledge

of the state. Therefore, we have

Wn(1, ci) ≤ Tn
1 (1, ε)(1− ci). (6.29)

Since firm (1, c) weakly prefers to invest in round 0, rather than mimic the strategy
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of firm (1, c+ ε), we have α− c ≥ Tn
1 (1, ε)(1− c)− T n

1 (0, ε)(c). Thus, we have

Tn
1 (1, ε)(1− c) ≤ α− c+ Tn

1 (0, ε)(c). (6.30)

Using (6.28) and (6.30), we have Tn
1 (1, ε)(1− c) ≤ α− c+T n

1 (1, ε)(1− c)(1− δ)+3ε1,

from which we have

Tn
1 (1, ε) ≤

α− c

δ(1− c)
+

3ε1
δ(1− c)

. (6.31)

From (6.29) and (6.31), we conclude

Wn(1, ci) ≤
∙

α− c

δ(1− c)

¸
(1− ci) +

3ε1(1− ci)

δ(1− c)
. (6.32)

For type-0 firms, a simple calculation yields

Tn
0 (1, ε) =

1− α

α
T n
1 (1, ε) and

Tn
0 (0, ε) =

α

1− α
T n
1 (0, ε).

The law-of-large-numbers argument given in the Claim also establishes

Wn(0, ci) ≥ δTn
0 (1, ε)(1− ci)− ε1, implying

Wn(0, ci) ≥ δ
1− α

α
Tn
1 (1, ε)(1− ci)− ε1. (6.33)

From (6.26) and (6.33), it follows that

Wn(0, ci) ≥ δ

∙
1− α

α

¸ ∙
α− c

1− c

¸
(1− ci)− δ

∙
1− α

α

¸ ∙
2ε1
1− c

¸
(1− ci) (6.34)

holds. A type-0 firm with cost ci cannot possibly do better than to decide whether

or not to invest during the same round that firm (1, c + ε) invests, but with full

knowledge of the state. Therefore, we have

Wn(0, ci) ≤ Tn
0 (1, ε)(1− ci) = .

1− α

α
T n
1 (1, ε)(1− ci). (6.35)
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Combining (6.31) and (6.35), we have

Wn(0, ci) ≤
∙
1− α

α

¸ ∙
α− c

δ(1− c)

¸
(1− ci) +

∙
1− α

α

¸
3ε1(1− ci)

δ(1− c)
. (6.36)

Because inequalities (6.29), (6.32), (6.34), and (6.36) hold for all ε1, the results for

region 2 follow. ¥

Proof of Proposition 5. To verify (4.1), notice that the subsidy lowers a firm’s

effective cost from ci to ci−s. The equilibrium for the subsidized economy is identical
to the equilibrium of a translated economy, with no subsidy and costs given by the

effective costs. First consider an economy in which the initial parameters lie in region

1 or region 2 of Figure 1. By choosing s∗ = c − α(1−δ)
1−αδ , the translated economy is

on the boundary between region 2 and region 3. The fraction of firms that invest in

round 0 is zero, but the amount of investment in round 0 reveals the aggregate state

(in the limit). From Proposition 4, a type-1 firm with investment cost ci generates

welfare of δα(1−ci). For any subsidy, s < s∗, the fraction of firms investing in round 0

is zero, but the amount of investment in round 0 is not fully revealing. Therefore, the

welfare generated by a type-1 firm with investment cost ci is lower with s than with

s∗. For any subsidy, s > s∗, the fraction of firms that invest in round 0 is positive,

and the amount of investment in round 0 reveals the aggregate state. A type-1 firm

with ci < s− s∗+ c generates welfare of α− ci, and a type-1 firm with ci ≥ s− s∗+ c

generates welfare of δα(1− ci). Since the initial parameters are in region 1 or region

2, we have δα(1− ci) > α− ci for all ci, so conditional on being a type-1 firm, welfare

is higher with the subsidy s∗ than with the subsidy s. A similar argument applies to

type-0 firms.

Next consider an economy in which the initial parameters lie in region 3 or region

4. By choosing s∗ = 0, a type-1 firm with ci <
α(1−δ)
1−αδ generates welfare of α − ci,

and a type-1 firm with ci ≥ α(1−δ)
1−αδ generates welfare of δα(1 − ci). Now consider a

subsidy, s 6= 0, such that the translated economy remains in region 3 or region 4. A
type-1 firm with ci < s + α(1−δ)

1−αδ generates welfare of α − ci, and a type-1 firm with

ci ≥ s+ α(1−δ)
1−αδ generates welfare of δα(1− ci). Thus, if s is positive, the net welfare

effect of the subsidy is to cause type-1 firms with ci ∈ (α(1−δ)1−αδ ,
α(1−δ)
1−αδ + s) to invest

in round 0; because they were not investing in round 0 without the subsidy, we have
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δα(1 − ci) > α − ci for all ci in this interval, so conditional on being a type-1 firm,

welfare is higher with the subsidy s∗ = 0 than with the subsidy s. If s is negative, the

net welfare effect of the subsidy is to cause type-1 firms with ci ∈ (α(1−δ)1−αδ + s, α(1−δ)
1−αδ )

not to invest in round 0; because they were investing in round 0 without the subsidy,

we have δα(1− ci) < α− ci for all ci in this interval, so conditional on being a type-1

firm, welfare is higher with the subsidy s∗ = 0 than with the subsidy s. Finally, if s is

such that the translated economy is in region 1 or region 2, then there is a welfare loss

from causing some type-1 firms not to invest in round 0, and there is an additional

welfare loss from the fact that the amount of investment in round 0 does not reveal

the aggregate state. A similar argument applies to type-0 firms. ¤
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