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Abstract

The paper studies the impact of ambiguity on history-dependant beahviour in the stan-

dard microstructure model of financial markets. We show that differences in ambiguity

attitudes between market makers and traders can generate contrarian and herding be-

haviour in stock markets where assets are traded sequentially and trading prices are

endogenously determined. We also show the mispricing can be only short-term, and

in the long-run market is efficient in the sense that the market price aggregates infor-

mation without distortions.
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1 Introduction: Ambiguity and Herd behaviour in

Financial Markets

Herding in financial markets has been explored extensively in the literature in recent

years1.Why does herding occur? It might be due to many factors: conformity, imita-

tion of investment strategies (of fund managers) being rewarded, informational exter-

nality (imperfect information).2 The majority of the existing literature has focused

on rational herding which can be catalogued as: informational herding, reputation-

based and compensation-based herding. In this paper we confine our attention to

informational herding in financial markets.

There are generally two types of models of informational herding with two con-

clusions. The first takes price (cost) as exogenous and fixed throughout from the

beginning of the period. So a subsequent decision, to buy or to sell, will not alter

the cost. In such conditions it has been demonstrated that a herd will occur even-

tually at some point in time with a high probability. The other model takes price

to be determined endogenously with traders disclosing their private information on

1Bikhchandani and Sharma (2001) provides an overview of the recent theoretical and empirical

research on this topic.
2There are also some studies on payoff externality as the reason for bank runs but not as an

important cause of other herds.
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fundamentals via their actions at each trading round. Eventually the price reflects

fundamentals and there is no mis-pricing. Markets present strong-form information

efficiency in the long run and herding will never occur. Both models are open to

criticism. In regard to the former, the exogenous price assumption seems so inappro-

priate for the modelling of financial markets, in which prices of securities can change

often and rapidly. For the latter model, numerous empirical and theoretical enquiries

have challenged its results. Herding behaviour is such a widespread phenomenon in

financial markets therefore asset prices often fail to disclose sufficient or any private

information on market fundamentals.

In recent years, there have been many attempts to explain herding in the second

framework with different rationales. Challenges remain, however, for example, in the

majority of these literatures, agents process information rationally and there is no

room to explain contagion of emotions such as panic or frenzy which are often the

hallmarks of herding behaviour. It thus seems worth considering a once-prominent

question in the herding literature: Are asset markets driven by "animal spirits", where

investors behave like imitative lemmings? We will provide one answer to that question

by analyzing a simple herding model where full rationality is relaxed somewhat by

considering agents’ attitudes to informational ambiguity.

In our paradigm, trades are assumed to occur sequentially and trading prices are

determined endogenously at each trade. Neither market makers nor traders know the

value of assets exactly. Market makers form their expected value of assets on the basis

of public observed information. Traders receive private information that enables them

to update public beliefs thereby enabling them to form their expected value of assets
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by using the most up-to-date information. At first we assume that it is only traders

who perceive ambiguity in either public or private information.3 That is, we assume

asymmetric ambiguity between market makers and traders. Thus we model market

makers and traders’ beliefs in different ways. We show that this simple difference

can change the conclusions about herding reached in previous literature; especially, it

can generate the other type of history-dependent behaviour, contrarian behaviour,

when traders trade against market trends. We subsequently relax this assumption to

investigate the case where both market makers and traders are ambiguous about the

information at their disposal. We then demonstrate that herding can occur in specific

situations. Thus ambiguity can cause herding in circumstances where it would not

be possible otherwise. Moreover, we generally show that such behaviour only leads

to short-run mis-pricing in financial markets: those markets exhibit informational

efficiency in the long-run.

We use ambiguity to denote types of uncertainty where the relevant probabilities

are imperfectly known or even unknown (See Knight (1921)). The presence of am-

biguity may be due to unfamiliarity with decision-problems or lack of confidence in

the likelihood of events. In particular, the assumption in this paper is that agents

are able to formulate probability estimates but are not completely confident about

them. We believe that such situations are not uncommon in financial markets. Ac-

3We do not find the "Harsanyi doctrine", that economic agents having the same information

neccessarily should have the same beliefs, too compelling in our model. We do, however think

that to hold this assumption makes the model more easily interpretable. The justification for our

assumptions is provided in later sections.
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cording to a now extensive body of experimental evidence, of which the Ellsberg

Paradox is probably the best-known, ambiguity can have a significant impact on de-

cisions. Unfortunately, the modelling of beliefs in terms of conventional probabilities

via subjective expected utility theory cannot predict correctly agents’ behaviour.

Knight (1921) maintained that agents differ in their attitudes to ambiguity. The

majority of people are ambiguity-averse, behaving more cautiously when probabilities

are undefined, while a significant minority of individuals appear to be the opposite, be-

ing ambiguity-loving (See the experimental evidence in Camerer and Weber (1992)).

Consequently, numerous alternative decision-making theories to expected utility the-

ory (henceforth EUT) have been proposed for modelling behaviour in situations of

ambiguity. One such, which has gained extensive popularity in the literature, is

Choquet expected utility (henceforth CEU), which was first axiomized by Schmeidler

(1989). In CEU, agents’ beliefs are represented as capacities (non-additive subjective

probabilities) and they make decisions by maximizing the expected value of a utility

with respect to their non-additive beliefs ( the expectation is expressed as a Choquet

integral, Choquet (1953-4)). In this theory, agents are ambiguity-averse if they put

more weight on bad outcomes than EU maximizers, while they are ambiguity-loving

if they put more weight on good outcomes.

In this paper, we restrict attention to a special case, namely, CEU with re-

spect to neo-additive capacities (Chateauneuf, Eichberger, and Grant (2002)), where

agents’expectation may be represented as a weighted average of the expected value

of utility, the maximum value of utility and the minimum value of utility. This is
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expressed as,

λM (w) + γm (w) + (1− γ − λ)Eπu (w) (1)

where M (w) (resp. m (w)) is maximum (resp. minimum)value of, say, trading an

asset, in our model, and Eπu (w) is expected value of trading an asset. We assume that

when they make their trading decisions traders perceive ambiguity, due to imperfect

knowledge of the true value of assets and their uncertainty about the information

at their disposal. Therefore, we model traders’ beliefs as CEU with respect to neo-

additive capacities and investigate the effects of their attitudes to ambiguity on their

trading behaviour. One point worthy of note, we define ambiguity-averse behaviour

as pessimism when traders put more weight on the possibly low value of an asset,

and ambiguity-loving behaviour as optimism where agents put more weight on the

possibly good value of an asset. The implications are consistent through the updating

beliefs from private signals.

In this environment, the challenge is to model how traders update their beliefs,

their neo-additive capacities, as new information is received. Formally, Bayes’ rule

is still well-defined even if beliefs are not additive. However Gilboa and Schmeidler

(1993) show that the application of Bayes’ rule to non-additive beliefs corresponds

to ‘optimistic updating’ in the sense that new information gained is always regarded

as good news. It seems, therefore, to conflict with the assumption that players are

ambiguity-averse. In fact, there have been a number of proposals for updating CEU

preferences (see, for instance, Gilboa and Schmeidler (1993), Kelsey (1995)4 and

4In this literature, the ‘Dempster-Shafer rule’ is discussed to update non-additive beliefs, which

is shown as a pessimistic updating rule.
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Eichberger, Grant, and Kelsey (2003)), but there is no consensus on the updating rule

for non-additive beliefs. Instead, it has been agreed that different updating rules are

appropriate for different circumstances.5 The rules, nevertheless, all coincide, as noted

above, with Bayesian updating when beliefs are additive. In line with our assumption

that traders can be either ambiguity-averse or ambiguity-loving, we use the updating

rule proposed in Eichberger, Grant, and Kelsey (2003), namely, Generalized Bayesian

Updating rule ( henceforth GBU ), which we will outline in section 2.

The remainder of the paper is organized as follows. In section 2, we review some

basic principles of ambiguity theory, In section 3 we introduce GBU for neo-additive

capacities. Section 4 describes the model and definitions of herding/contrarian be-

haviour. We solve our model in section 5, demonstrating the possibility of contrarian

and herd behaviour. Section 6 offers some concluding observations. The appendix

contains the (simple, but lengthy) proof of Proposition 5.1.

2 Modelling Ambiguity

We now outline the CEU model for single person decisions when there is ambiguity.

We begin with the general concepts of capacities and the Choquet Integral; then turn

our attention to CEU with respect to neo-additive capacities. Throughout the paper,

the following notation is adopted.

Notation. We consider a finite set of states of nature S. A subset E, of S will be

referred to as an event. The set of possible outcomes or consequences is denoted by

5Eichberger and Kelsey (1996) conclude that there is no ‘correct’ updating rule for non-additive

beliefs and argue that the updating rule should depend on the application.
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X. An act is a function from S to X. The set of all acts is denoted by A (S) .

(1) Capacities and Choquet Expected Utility (CEU)

A capacity generalizes the notion of probability and assigns non-additive weights

to subsets of S. Formally, we have:

Definition 2.1 A capacity on S is a real-valued function v : P(S)→ R where P(S)

is the set of all subsets of S, which satisfies the following properties:

1. E,F ⊂ S,E ⊆ F implies v (E) � v (F ) , monotonicity

2. v (∅) = 0 and v (S) = 1, normalization

The capacity is called convex if v (E)+v (F ) ≤ v (E ∪ F )+v (E ∩ F ) and concave

when ≤ is replaced by ≥. For CEU preferences, a convex (resp. concave) capacity

represents pessimistic (resp. optimistic) attitudes to ambiguity(for detailed discussion

see Wakker (2001)). The neo-additive capacity allows both optimistic and pessimistic

attitudes.6

Definition 2.2 An expectation of utility (u) with respect to a capacity (v) is defined

as the Choquet Expected Utility,
∫
udv =

r∑

k=1

u (sk) · [v (Sk)− v (Sk−1)] , where Sk =

{s1, s2, ...sk} and s0 = ∅.

The Choquet integral is like an expectation as it is a weighted sum of utilities.

The weight assigned to a state depends on how the outcome is ranked.7

6Note it is supported by experimental evidence, eg., Kilka and Weber (2001).
7Gilboa (1987), Schmeidler (1989) and Sarin and Wakker (1992) provide axiomatisations for

CEU preferences. Wakker (2001) characterise capacities representing ambiguity-averse or pessimistic

attitudes of a decision maker.
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Because it has too many free parameters, the general CEU model can be math-

ematically difficult to apply to economic problems. For example, with r states, a

general capacity is described by 2r parameters. Fortunately, CEU with respect to

the special case of neo-additive capacities, provides a solution that is more easily ap-

plied and intuitively explained. Unlike the general CEU model, CEU with respect to

neo-additive capacities only over-weights the best and worst outcomes. Its axiomatic

foundation can be found in Chateauneuf, Eichberger, and Grant (2002). We briefly

give the conceptual explanation here.

(2) Choquet integral with a neo-additive capacity

Definition 2.3 For a pair of real numbers λ, γ, such that λ � 0, γ � 0, and λ+γ � 1

and a given probability π (E) , a neo-additive capacity is defined as:

v (E) =





1 for E = S

λ+ (1− λ− γ) π (E) for ∅ � E � S

0 for E = ∅

It is readily seen that a neo-additive capacity is a convex combination of an ad-

ditive capacity and capacities on two extreme outcomes, one is complete ignorance

with objective probability of 1 and one is complete ambiguity with objective prob-

ability of 0. We have noted that pessimism refers to the beliefs which overweight

the bad outcomes and optimism refers to the beliefs which overweight the good out-

comes. Therefore, a neo-additive capacity represents pure optimism if γ = 0, and

pure pessimism if λ = 0.
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Definition 2.4 The Choquet expected value of a real valued function f : S → R with

respect to a neo-additive capacity v is defined as:

CEU(v) =

∫
fdv = γ · inf

s∈S
(f) + λ · sup

s∈S
(f) + (1− λ− γ)Eπ (f) . (2)

Thus, the payoff of any strategy is given by a weighted average of the expected pay-

off and maximal, minimal payoffs for given S. The proof can be found in Chateauneuf,

Eichberger, and Grant (2002).

Intuitively, CEU with respect to neo-additive capacities describes a situation in

which agents believe the events predicted by EU with the additive probabilities.

However, they lack confidence in this prediction. In part they react to this in an

optimistic way measured by λ and in part in a pessimistic fashion measured by γ. We

can, therefore, interpret the additive part of CEU, Eπ (f) , as the agent’s belief and

(1− γ − λ) as his(her) degree of confidence in that belief. We refer to the parameters

λ and γ, respectively, as degree of optimism and pessimism8.

3 Generalised Bayesian Update (GBU)

To apply CEU with neo-additive beliefs to a dynamic process, it is necessary to model

how agents update their beliefs upon the arrival of new information. We adopt GBU

proposed in Eichberger, Grant, and Kelsey (2003). The change to GBU guarantees

8The following examples relate CEU to some more familiar decision rules:

1. if λ = 0, preferences have the maximin form and are extremely pessimistic;

2. if γ = 0, preferences exhibit the maximal degree of optimism;

3. if γ + λ = 1, preferences coincide with the Hurwicz criterion (see Hurwicz (1951))
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that the updated preferences can be represented again by a Choquet integral. Also

we will show that the updated neo-additive belief is itself still a neo-additive capacity.

The neo-additive belief updating rule is defined as follows.

Definition 3.1 For any event F ⊆ S, define capacities v0F , v
1
F as follows:

v0F (E) =





0, if E ∩ F �= F

1, if E ∩ F = F

, v1F (E) =





0, if E ∩ F = ∅

1, if E ∩ F �= ∅
.

Definition 3.2 If F is observed, the updated neo-additive capacity of E is,

vF (E|π, λ, γ) = [1− δ (F ) · (λ+ γ)] πF (E) + δ (F ) (λv1F (E) + γv0F (E))

where,

δ (F ) =
1

(1− λ− γ)π(F ) + (λ+ γ)
.

Definition 3.3 The Choquet expected utility with respect to a conditional neo-additive

capacity is defined as,

CEU (f |vF (E|π, δ)) = [1− δ (F ) (γ + λ)]Eπ|F (f) + δ (F ) (λ sup f + γ inf f) .

Note, the Choquet expected value of a random variable with respect to any con-

ditional neo-additive capacity is well defined even if the conditioning event is an

ex ante zero probability event, provided λ > 0 or γ > 0. Especially, the CEU of

a random variable conditional on a zero probability event is simply the weighted

average of the best and worst elements that can obtain on that event. i.e., when

π (F ) = 0, δ (F ) = 1
(λ+γ)

, the degree of confidence 1 − δ (F ) · (λ+ γ) is zero on a

zero probability event, so no weight is given to the additive probability part of the
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neo-additive capacity. The updated conditional belief CEU becomes,

CEU (f |vF (E|π, δ)) =
λ

λ+ γ
sup f +

γ

λ+ γ
inf f. (3)

It is also observed δ (F ) is in general greater than 1. We say that, with all 0 <

π (F ) < 1, the gaining of signal will increase the ambiguity level. If and only if event

F happens with certainty, receiving of the signal will not increase the ambiguity

perceived. When π(F ) = 1, δ (F ) · (λ+ γ) = λ+γ, the conditional CEU becomes the

same as unconditional CEU .

More generally, the more unlikely ( in terms of the additive ‘prior’ π) is the event,

the less confidence ( the lower is 1−δ (F ) · (λ+ γ)) the individual has in the ‘additive

part of the theory’ and the more weight ( the greater δ (F ) is ) he places on ‘extreme’

outcomes ( in proportion to his relative degree of optimism, λ, versus his relative

degree of pessimism, γ ). Relatively a consistent signal (F = E) reduces confidence

less than an inconsistent signal (F �= E) does.

To intuitively explain, although the arrival of enough public information will im-

prove informational efficiency in decisions, the arrival of a signal on public disclosure

may, paradoxically, make decisions worse. As argued in Bikhchandani, Hirshleifer,

and Welch (1992), aggregating the information of fewer individuals, additional in-

formation can encourage individuals to fall into a cascade sooner, so there is no

presumption that the signal will improve decisions. For a similar reason, the ability

of individuals to observe past actions with noise, or the ability to observe payoff out-

comes in addition to past actions, can make decisions worse on average. As Hirshleifer
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and Teoh (2001) stated:“a little knowledge is a dangerous thing.”9

The updating rule is not linear, which complicates its application considerably.

Therefore we apply it here to the simplest version of a trading model in order to

obtain insights into its implications.

4 The Model

4.1 Description

We consider a trading model which retains the basic features of the model considered

by Bikhchandani, Hirshleifer, and Welch (1992) (hereafter BHW as often referred in

herding literatures). Briefly, the model is as follows.

Market Mechanism. The market is for a risky asset exchanged for money among

market makers (MM henceforth) and traders. The liquidation value of the asset

is denoted by w = W + ε and W is the true value and is restricted to be {0, 1} .

Information about the true value W arrives slowly in the market. Trading occurs

sequentially and one trader is randomly selected in each period. There is an infinite

sequence of traders indexed by t = 0, 1, 2, .... MMs set the trading price at the

beginning of each trading period then interact with the selected trader. At any given

period t, the selected trader can buy or sell a unit of an asset at the market price,

then leave the market after trading.

9The ability to learn by observing predecessors can make the decisions of followers noisier by

reducing their incentives to collect (perhaps more accurate) information themselves (Cao and Hir-

shleifer, 1997).
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Market Makers. Consider now MMs. As argued in Chari and Kehoe (2003),

including market makers is a convenient way of modelling trade between informed

and uninformed traders. In the model, all trades occur between traders and market

makers. There is an infinite number of risk-neutral market makers, who set prices in a

competitive fashion. Market makers make money from the uninformed (idiosyncratic)

traders but lose money to the informed traders, thereby making zero expected profits.

MMs (who do not receive private signals about the value of the asset ) set the market

price equal to their expected value of the asset according to the past trading history.

For the sake of simplicity, we assume that MMs do not try to distinguish between

types of traders. For instance, when a trader buys from the MM, MM does not know

(or try to infer) whether the buyer is well-informed (with a "Bullish" signal, defined

later) and is following the signal, or is herd buying, or is an idiosyncratic trader (see

explanation later). Accordingly, we ignore the bid-ask spread and consider the same

trading price for either purchase or sale. To abstract from the existence of the bid-ask

spread helps us to interpret our results. In equilibrium, it is claimed that competition

among MMs ensures prices yield zero expected profits.

Traders. In the model, traders must choose whether to buy or to sell the specific

asset, and their actions depend on their expected value of the asset. There are two

broad types of traders, idiosyncratic and standard. Idiosyncratic traders trade for

different reasons, regardless of the price and any other information, which guarantees

that the equilibrium of our model always has trade. Their decisions or payoffs are

not our concerns here. Informed traders receive private information and are assumed

to maximize expected profit at the market maker’s expense. In the following, we use
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traders as a shorthand for informed traders and focus on their behaviours.

In the game, traders get information from two sources: they receive private sig-

nals and they observe the price of the asset which reflects others’ previous investment

decisions. Events in each period t are such that a trader first receives a signal then

investment decisions are made. Note that not trading is never optimal unless we

introduce transaction costs because traders always have an informational advantage

over the market maker. The private signals x concern the value of the risky as-

set w and are independent, imperfect and randomly distributed to one. There are

two possible values for x, x ∈ {h, l} , which implies that the value of the asset is

high(h) or low(l). The signals are informative and symmetric in the sense that where

P (x �= w) = p < 1
2
, i.e., (p(x = l|w = 1) = p(x = h|w = 0) = p < 1/2). Intu-

itively, signal l is more likely when w = 0 and it can be interpreted as a "Bearish"

signal. Similarly, x = h can be interpreted as a "Bullish" signal. Moreover, we have

E [w|x = l] < E [w] < E [w|x = h] .

Public belief. Traders act sequentially and observe Ht, the history of actions up

until time t. We define πt1 = P (w = 1|Ht) as the public belief at time t, that is,

the probability that the value is high, conditional on the public history Ht. For any

given trader’s action f ∈ F = {s, b} , where s represents selling and b as buying, the

public beliefs update according to the Bayes’ rule. We say that a trader’s action f is

informative when it affects the public belief: P (w = 1|Ht, f) �= πt1. Finally we define

Ht as a positive history (resp. a negative history) if πt > π0 (resp. πt < π0).

We denote ĉ as the cost of a unit of the asset, which is also its market price.

The cost of the asset, set by the Market Maker (MM), reflects all publicly available
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information: ĉ = E [w|Ht] = P (w = 1|Ht) = πt1. Initially, we assume that MM

only observes the public information and sets the price based on Bayes’ updated

public belief. Later in the paper, we change this assumption by incorporating MM’s

ambiguity attitudes as well.

Private belief. An informed trader receives a private signal in addition to the

public information πt1, therefore (s)he forms his(her) private belief by updating the

public information using the private signal. The difference between our model and

previous models arises from our assumption here that, unlike MM, the trader has

beliefs represented as neo-additive capacities and updates his(her) beliefs using the

GBU rather than Bayes’ rule. We suppose traders only know the cost to be πt1 but

are not completely confident about the prices, because they do not observe all trades

in the market as perfectly as MMs.10 They are also not completely confident about

its correctness. Therefore individual traders process all such information within their

ambiguity attitudes. Their beliefs capture the extent to which they trust information

revealed either through markets or by their private information.

Decision rule. We assume that there is always a minimal amount of "useful" in-

formation in the market. As long as past trading does not identify the value perfectly,

then there is strictly positive probability that some trader has an assessed value that

differs from a MM’s by a nontrivial amount. The choice made by a trader depends

on whether the expected value of buying or selling a unit of the asset is greater than

10Tallon (May, 1998) argued that agents do not fully trust the information revealed by the price

system with “noise traders”. Their beliefs are non-additive and they behave as if they are maximizing

a non-additive expected utility.
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ĉ, the expected value of the asset held by the MM.

4.2 The Definition of Herd and Contrarian behaviour

We adopt the same definition of herding and contrarian behaviour as Avery and

Zemsky (1998) ( Henceforth AZ). In AZ, an informed trader who buys in period t

engages in herd behaviour if three conditions are met. First, this trader receives a

"Bearish" signal. Second, there is a positive history of trades Ht, πt > π0, that is, the

pattern of trading causes an increase in the price set by MM. Third, knowing both

conditions above, the trader buys.

Formally, we define herd behaviour as:

Definition 4.1 A trader with private information x engages in herd behaviour at

time t if he buys when E0
x(w) < E0(w) < Et(w) or if he sells when E0

x(w) > E0(w) >

Et(w); and buying (or selling) is strictly preferred to other actions.

Thus, a trader engages in a buy (resp. sell) herd if (s)he is initially inclined to

sell (resp. buy) on the basis of his(her) private information E0
x(w) < E0(w) (resp.

E0
x(w) > E0(w)), but actually reverses his(her) inclination to follow the observed

positive (resp. negative) trading history E0(w) < Et(w) (resp. E0(w) > Et(w)).

This buying behaviour happens if and only if traders have Et
x(w) > Et(w) = ĉ in-

stead of Et
x(w) < Et(w) = ĉ. In other words, the trader’s signal constitutes "Bearish"

information, causing him(her) to reduce his(her) assessment of the asset’s value. Yet,

with an observed positive trading history, (s)he must adjusts his(her) expectation in

a way to agree more with the market trend on the good value of the asset, therefore
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buying in spite of the "Bearish" signal. Such behaviour has been modelled in AZ

model, but criticized and labelled by Chari and Kehoe (2003) as one of "waves of op-

timism and pessimism" rather than of herd behaviour. We, however, maintain that

such a label is suitable to explain a herd, and suggest our model possibly justifies

that contention more explicitly than does the AZ model. AZ suggests the occurrence

of history-dependent behaviour when there is multiple dimensions of uncertainty and

sufficiently poor private information11 Here, with more generalized ambiguity12 and

types of private signal, we also suggest the presence of such history-dependent be-

haviour. Such behaviour arises when traders assess information available in a way to

incorporate their ambiguity attitudes towards the value of the asset. For instance,

when traders are sufficiently optimistic in their valuation of the asset, they will buy

even when their private signal is negative.

There are, of course, many other ways to define a herd for different purposes. As

mentioned in AZ, Vives (1996) defines herding as a socially inefficient reliance on

public information and mainly concern informational efficiency. We will comment

later on the extent to which herd behaviour defined here can lead to distortions and

inefficiencies.

As the other form of history-dependent behaviour, contrarian behaviour is the

11AZ shows that traders change the value of Etx(w) by weighting more public information rather

than private information with the presence of multiple dimensions of uncertianty and poor private

information. Also, markets respond slower than traders. Therefore the buying behaviour occurs

with the condition Etx(w) > E
t−1(w) = ĉ satisfied.

12We understand the first-dimension of uncertainty (value uncertainty) in AZ as risk, the second

and third dimensions (event and composition uncertainty) as ambiguity.
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converse of herding. With contrarian behaviour traders ignore their private informa-

tion about value of the asset and trade against the trading trend. Such behaviour is

also commonly observed in markets.

By analogy with herding behaviour, we provide a formal definition of contrarian

behaviour.

Definition 4.2 A trader with private information x engages in contrarian behaviour

at time t if either he buys when E0
x(w) < E0(w) and E0(w) > Et(w), or he sells when

E0
x(w) > E0(w) and E0(w) < Et(w).

Compared to AZ’s definition, we describe the same behaviour without requiring

an additional condition13. In AZ, contrarian behaviour only occurs if signals are

sufficiently imprecise. Here we show that contrarian behaviour can arise in the same

context as herd behaviour.

5 CEU Updating and Trading Analysis

5.1 Results on Herding and Contrarian Behaviour

Now, we study how differences in the reactions of the MM and traders to information

can generate different trading behaviour. First, we assume that the MM and the

trader have different forms of beliefs, their expected values of the risky asset differ

too. The MM’s beliefs are represented traditionally by probabilities and (s)he is

13This is because we always hold that, Etx (w) < Et (w) for contrarian buying behavior and

Etx (w) > E
t (w) for contrarian selling behavior.
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an expected-utility maximizer. However, a trader’s beliefs are represented as neo-

additive capacities and (s)he maximizes Choquet expected utilities conditional on

his(her) private signal as well as the information revealed by the price market system.

Generally speaking, we work thereafter under the assumption that the MM is risk

and ambiguity neutral whereas traders are risk-neutral and may be ambiguity-loving

or ambiguity-averse14.

As explained before, the MM’s belief is the same as the public belief and his(her)

expected value of the asset is the market price, ĉ = EM [w|Ht] = P (w = 1|Ht) = πt1.

The subscript M represents the MM.

Now we model the trader’s belief and behaviour.

It follows from Bayes’ rule that the updated belief after the signal15 is:

π(w|x) = πx (w) =





π (w = 1|x = 1) =
(1−p)πt

1

(1−p)πt
1
+p(1−πt1)

= πx1 (w)

π (w = 1|x = 0) =
pπt

1

pπt
1
+(1−p)(1−πt1)

= πx0 (w)

π (w = 0|x = 1)

π (w = 0|x = 0) .

By allowing for the ambiguity attitudes, we represent the trader’s updated belief

after the signal as a neo-additive capacity. Denote by vx (w) the conditional neo-

additive belief of w given x, then:

14Decamps and LOVO (2002) has relaxed the assumption of risk-neutrality and suggested the

presence of history-dependent behaviors and long-run informational inefficiency in financial markets.

The other assumption, a fixed limit size of trade per period is introduced. However we suspect the

behaviour descriped in the paper is "spurious herding", bacause it only happens when trading for

maintaining components of traders’ inventory coincides with the market trends. .
15With w = 0, there is no need to figure out π1 (0) and π0 (0) .
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Definition 5.1 The conditional belief of w given x is the function, vx (w|π, λ, γ) =

(1− δ (x) · (λ+ γ)) πx (w) + δ (x) (λµ1x (w) + γµ0x (w))

where

δ (x) =
1

(1− λ− γ)π(x) + (λ+ γ)
.

Without the signal x, the trader’s (T ) CEU of the asset’s value would be,

CEUT (f |v(w|π, λ, γ)) = (1− λ− γ)Eπ (f) + λ sup f + γ inf f ; (4)

CEUT (f |v(w|π, λ, γ)) = (1− λ− γ) πt1 + λ. (5)

Correspondingly, the CEU with respect to the conditional neo-additive capacity

vx (w|π, λ, γ) is given as,

CEUT (f |vx (w|π, λ, γ)) = (1− δ (x) (γ + λ))Eπ|x (f) + δ (x) (λ sup f + γ inf f) . (6)

Now we show that this diversity can generate different trading behaviours in the

market in different situations.

(1) No signal and no ambiguity.

Suppose there is no private information and no ambiguity in the market, then

γ = λ = 0, equation (6) becomes CEUT (f |v(w|π, λ, γ)) = EUT (f |w.π) = πt1 =

EUM (w, π) . In this case, illustrated in Figure 1, there is no trade on the information.

Given our assumptions, this case is excluded from further consideration.

(2) With signal but no ambiguity.

In this case, the trader’s expected value of the asset is respectively as E [w|x = l]

when (s)he receives a "Bearish" signal and E [w|x = h] when a "Bullish" signal is

received. Given our assumptions E [w|x = l] < E [w] < E [w|x = h] , we conclude
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Figure 1: No signal and no ambiguity

that there is no herding or contrarian behaviour, and traders always trade following

their private signals. In effect, a trader buys (sells) if (s)he receives a "Bullish"

("Bearish") signal. This is illustrated in Figure2. The concavity of CEUT,h(w) and

the convexity of CEUT,l(w) are demonstrated in the proof of Proposition 5.1 below.

Additionally, we observe that both of those equations have identical magnitudes at,

respectively, πt1 = 0 and πt1 = 1

(3) With signal and asymmetric ambiguity.

This is the complete version of the model which we described above. In this case,

expected values of the asset, respectively, for the MM, the trader with a "Bearish"

signal and the trader with a "Bullish" signal are:

EUM [w|Ht] = ĉ = P (w = 1|Ht) = πt1, (7)

CEUT,xl (w) = [1− δ (x) (λ+ γ)] · Eπ|xl + δ (x)λ, (8)
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Figure 2: With Signal and no ambiguity

CEUT,xh (w) = [1− δ (x) (λ+ γ)] · Eπ|xh + δ (x)λ. (9)

"Bearish" signal is represented as xl, which indicates selling as the optimal action

(the signal implies that assets have low value thus are overpriced in the market); the

"Bullish" signal is represented as xh, which indicates buying as the optimal action.

In equation (8) and equation (9),

Eπ|xl =
p · πt1

p · πt1 + (1− p) · (1− πt1)
, (10)

Eπ|xh =
(1− p) · πt1

(1− p) · πt1 + p · (1− πt1)
, (11)

δ (x) =
1

(1− λ− γ) · π (x) + (λ+ γ)
. (12)

Given these valuations of the asset’s price, what types of behaviour can be evidenced

in the market? For given amount of ambiguity, δ (x) (λ+ γ) , and particular levels
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of pessimism γ and optimism λ, we can illustrate the possibilities in Figure 3 (since

the CEU equations for the trader must start at identical, non-zero, intercepts on the

vertical axis). Consider then CEUTl(≡ CEUT,xl(w)) taken in conjuction with EUM .

In the interval [0, π∗], we see that contrarian buy behaviour will arise, if we explain

that over the interval the market history is one where prices have been relatively low

or have been falling in recent times. Likewise, when the "Bullish" signal is received

the trader will engage in contrarian selling in the interval [π∗∗, 1]; taking the market

history as one where prices have been in this relatively high range or rising over it.

A trader with good signal will ignore both his own signal and the positive market

trend to sell the asset instead. The fact that contrarian trading behaviours occur in

different scenarios has supports from a popular traders’ aphorism in the real world:

" Buy on the rumor and sell on the news ". We draw these last observations together

and prove them formally in the following Proposition.

Proposition 5.1 For given γ, λ for traders, and market makers with no ambiguity,

there exist π∗, π∗∗ such that:

(a). If π ∈ [π∗, π∗∗] , then trades are informative.

(b). If π ∈ [0, π∗] , then contrarian buying behaviour occurs with positive probabil-

ity.

(c). If π ∈ [π∗∗, 1] , then contrarian selling behaviour occurs with positive proba-

bility.

Proof: See Appendix.

We note that this is straightforward. All that is required is to: (a) prove the
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concavity of the trader’s CEU equation for the receipt of the high signal and the

convexity of that for the receipt of the low signal; (b) show that both slopes lie between

0 and 1; and, (c) note that the trader’s CEUs have identical values, at πt1 = 0, which

exceed the intercept of EUM ; and that the trader’s CEUs have identical magnitudes

at πt1 = 1, which can be less than the concomitant level of EUM , depending upon the

ambiguity parameters, λ and γ. Consequently, the CEU equations for the trader can

intersect EUM , as illustrated on Figure 3.

Why does contrarian behaviour emerge as soon as there is ambiguity in the mind

of the trader? When the trader has an unambiguous view of the true value of the asset

and, hence has perfect belief/confidence in the his(her) up-dated market expectation

of that value (as in Figure 2), when, for example, (s)he receives a high signal, his(her)

expected value (namely, CEUT,xh(w) ) must exceed πt1= EUM within the unit interval;

since in those conditions, CEUT,xh(w)= Eπ|xh> πt1 . Consequently, the trader will

always buy upon receiving a high private signal. Mutatis mutandis, (s)he will always

sell upon receiving a low private signal.

Once the trader holds ambiguous opinions about his(her) up-date of the market’s

expectations upon receiving either signal, however, (s)he will have less than complete

confidence or belief in that up-dated value. Her(his) assessment of the value of the

asset will then be based (as it were, truly) on its CEU and, for example, given at

least some degree of optimism, will exceed the market valuation of the asset (πt1 ) at

zero and near zero values of that valuation (as in Figure 3). As the market value (πt1 )

rises, CEUT,xh(w) will fall below πt1= CEUM , as πt1 approaches unity, irrespective of

the absolute/relative values of the two degrees of ambiguity. That divergence between
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CEUT,xh(w) and πt1= CEUM must increase proportionally as πt1 approaches unity.

Consequently, despite having received a signal such that his(her) expected valuation of

the asset exceeds πt1, the concomitant doubt about the consequent up-dated valuation,

causes the individual to adjust the value (CEUT,xh(w) , here) downwards increasingly

on a rising market, such that it implies that the best strategy is to sell the asset against

the market trend. The trader engages in contrarian selling, doubting the wisdom of

the market; or strictly, doubting the wisdom of slavishly following market sentiment.

Following on from Proposition 5.1, we can state this further proposition:

Proposition 5.2 Optimism increases the price range over which contrarian buying

behaviour occurs; pessimism increases the price range over which contrarian selling

behaviour occurs.

Proof: First, we note that z decreases and λδ (x) increases with an increase in

λ, where z = [1− δ (x) (λ + γ)]; since from the definitions of z and δ (x) it follows

immediately that:

∂z

∂λ
= −π (x) δ2 < 0;

∂ (λδ)

∂λ
= δ (1− λδ) > 0.

Now we focus on the impact of an increase in λ on the low-signal CEU , since the

following can be adopted mutatis mutandis for the impact of an increase in γ on the

high signal CEU.

When the CEUT,xl (w) equation intersects the 450 line (the equation for the EU

of the MM), CEUT,xl (w) = πt1 ≡ π∗. Hence,

π∗21 (2p− 1) + [(1− p)− z1p+ λ1δ1 (1− 2p)]π
∗
1 − λ1δ1 (1− p) = 0, (13)
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π∗22 (2p− 1) + [(1− p)− z2p+ λ2δ2 (1− 2p)]π
∗
2 − λ2δ2 (1− p) = 0. (14)

In equations (13) and (14) πt1 ≡ π∗, with the subscripts 1 and 2 denoting its magnitude

for two values of λ and the concomitant values of z and δ. Suppose that λ1 < λ2.

Given the partial derivatives of z and λδ with respect to λ, we find that the coefficient

on π∗2 exceeds that on π∗1 and the absolute value of the intercept term in equation

(14) also exceeds its counterpart in equation (13). It then follows that π∗2 itself must

exceed π∗1. We further note that given that p < 1/2, and 0 < z < 1 by construction,

the two values of π∗ generated by each of the equations (13) and (14) will be positive;

with the lower one being the relevant one since the CEU equations intersect the

450 line at only one point in the [0, 1] interval.�

This has a simple intuitive explanation: no matter what incentive traders have

to engage in contrarian behaviour, sufficient optimism about the value of the asset

will encourage more contrarian buying and discourage contrarian selling. Sufficient

pessimism has just the opposite effects. In Figure 3, with a higher value of λ, both

curves CEUT,xh (w) and CEUT,xl (w) will shift upwards, have a reduced slope and

generally result in higher values of π∗, π∗∗. Conversely, a higher γ will shift both

curves CEUT,xh (w) and CEUT,xl (w) downwards and produce lower values of π∗, π∗∗.

In other words, as γ increases the interval [0, π∗] become narrower, implying that

contrarian buying occurs less and, the interval [π∗∗, 1] increases, so that the price

range over which contrarian selling occurs also increases.

Contrarian behaviour alone is feasible under the current assumptions: herding

cannot occur. The reason is simple, no matter how traders update their belief and

how ambiguous they are, the CEU-expected value of the asset is never below zero
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or above 1. Therefore, to understand herding in the market, we need to modify our

assumptions. What we do here is to introduce symmetric ambiguity between market

makers and traders. That is, like the traders, market makers are ambiguous to the

publicly available information so that their beliefs are non-additive as well.

(4) With signal and symmetric ambiguity

At the beginning of the trade at t = 0, there is no history, therefore, we assume

no ambiguity, it is easy to see we have E0
xl
(w) < E0(w). Suppose now at time t we

have a positive history, E0(w) < Et(w), and the trader receives a private signal. If

markets are informationally efficient in the sense that there is no ambiguity, as shown

in case (2), we will always hold the inequality Eπ|xl < πt1 < Eπ|xh. This implies that

herd behaviour will never appear in such markets16. However, we show here that the

conclusion can be overturned if we allow both market makers and traders to perceive

ambiguity about information available in the market. Market makers still only receive

public information but they set the price based on that information as well taking

ambiguity attitudes into account, which we assume to be the same for all the MMs.

Therefore, an MM’s expected value of the asset is:

CEUM (w) = (1− γM − λM) · π
t
1 + λM . (15)

As previously, the trader has a private signal x, this expected value of the asset:

CEUT,x (w) = [1− δ (x) (λT + γT )] · Eπ|x + δ (x)λT . (16)

Considering these two expected values of the asset, we have two following propositions

formally.

16That is also a result derived in AZ paper.
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Proposition 5.3 When both Market Makers and traders perceive ambiguity, for

given γM , λM and γT , λT , there exist π∗, π∗∗ such that:

(a). If π ∈ [π∗, π∗∗] , then trades are informative.

(b). If π ∈ [0, π∗] , then herd selling behaviour occurs with positive probability.

(c). If π ∈ [π∗∗, 1] , then herd buying behaviour occurs with positive probability.

Proof: Given that our objective is simply to demonstrate that herd behaviour

is possible, we assume that δ(x)λT < λM . Given equations (15) and (16) the result

is a situation illustrated in Figure 49. We concentrate on the CEUT,l(x)(w) function.

What has to be established is the possibility that the function can intersect that of

CEUM(w) as some value such as π∗∗ on Figure 4 in the interval [0, 1]. To do so it is

only necessary to show that there will be particular ambiguity parameters for which

the maximum value of CEUM (w) will be lower than that of CEUT,l(x)(w). At πt1 = 1,

the maximum value of the former is 1−γM and of the latter it is 1−δ(x)λT . It is then

apparent that it is possible for both (1− δ(x)λT ) > 1− γM and δ(x)λT < λM to hold

simultaneously; CEUT,l(x)(w) and CEUM (w) must then intersect at some π∗∗. It

follows immediately, given the relative properties of the functions CEUT,l(x)(w) and

CEUT,h(x)(w), already established, that a point such as π∗ must also exist.10�

9In deriving the equations for Figure 4 we used: λM = 0.25; γM = 0.2;λT = 0.1; γT =

0.04185;and, π(x) = 0.35.
10At the general level, of course, the exact magnitude, and existence, of π∗∗, for given ambiguity

parameters will depend upon π(x) in δ(x). In the extreme case, when π(x) approaches zero it is the

maximum minimorum of CEUT,x(w) at πt1 = 1 that will arise, since δ(x) approaches its maximum:

CEUT,l(x)(w) will then equal (λT )/(λT + γT ). In that situation, the initial values of the ambiguity

parameters can still result in that magnitude’s exceeding 1− γM ; but it can be demonstrated that

30



Proposition 5.4 When, for given ambiguity on behalf of market makers, traders

become more optimistic or less pessimistic about the market trend when there is a

history of rising (falling) prices, the price range over which herd buying (selling) will

occur will increase (decrease).

Proof: Consider a given situation such as that illustrated in Figure 4. Let there be

a ceteris paribus increase in the degree of optimism of the trader (an increase in λT ),

such that δ(x)λT < λM still holds. From the proof of Proposition 5.2, the intercept

and slope of CEUT,l(x)(w) will increase and fall, respectively; and its maximum value

will remain unaltered. The consequence will be a lower value of π∗∗; that is, the

range of prices over which buy herding will occur will increase. Simultaneously, the

intercept, slope and maximum value of CEUT,h(x)(w) will change in the same manner

as they do for CEUT,l(x)(w); consequently, π∗ will also fall, implying that the price

range over which herd selling will occur will be reduced. Now, consider the case

of a ceteris paribus reduction in the trader’s pessimism (γT ): this will increase the

intercept, the slope and maximum value of both CEUT,l(x)(w) and CEUT,h(x)(w),

leading again to a reduction in both π∗and π∗∗. Accordingly, there will again be an

increase (a reduction) in the price range over which the trader will engage in herd

buying (selling) behaviour. �

We normally assume that traders with low signals usually have lower valuation of

the asset and engage in selling. Traders with high signals usually value the asset higher

than the market and engage in buying. However, through comparing the CEUs

the intercept of CEUM (w) would have to be lower than that of CEUT,l(x)(w), when the former

could lie below the latter.
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Figure 4: With signal and symmetric ambiguity
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of market makers and traders, we see that traders may abandon their own signals

and follow others even when they are doubtful that the others are definitely right,

but in comparison they are more doubtful about their own information. Specifically,

sufficiently optimistic traders with a low signal will engage in herd buying after market

prices reach a certain level, i.e., πt1 > π∗∗. Conversely, sufficiently pessimistic traders

with high signals will engage in herd selling when market prices are relatively low,

i.e., πt1 < π∗. (note: π∗ < π∗∗ ). This is consistent with real observation. The more

optimistic or the less pessimistic traders become, compared with the market makers,

and the higher is the price of the asset, the more likely are traders to engage in herd

buying. Conversely, the more pessimistic are traders than the market, or the more

pessimistic they are than market makers, and the lower is the asset’s market price,

the more likely are traders to engage in herd selling.

5.2 Herd behaviour and Price Bubbles

The possible consequences of herd behaviour are, of course, excess volatility and,

especially, price bubbles. Recent literatures on the latter has concentrated on the

classic, fully rational models of securities market price formation therefore have dif-

ficulties to explain. Further regarding market information efficiency, conclusions are

mixed17. In our framework we can see that herd buying (resp. selling) caused by

sufficient optimism (resp. pessimism) can lead to extreme price effects, but only in

17For example, Vives (1996) and Decamps and LOVO (2002) suggested informational inefficiency

and implied price distortions in the long-run. However AZ paper suggested the short-run mispricing

assets but long-run efficient markets, which our results agree with.
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the short-run and not in the long-run.

Consider herd buying as an example. From the last section, we know traders

make their investment decision according to the sign of :CEUT,xl (w) − CEUM (w),

namely:

(
Eπ|xl − πt1

)
+ λM

(
πt1 − 1

)
+ γM · π

t
1 + δ (x)λT

(
1−Eπ|xl

)
− δ (x) · γT · Eπ|xl. (17)

Remember we have been assuming that above π∗∗ for any value of the MM’s (current)

price, πt1, the market has experienced rising prices in the immediate past. Now,

suppose that it is impossible for the MM to distinguish whether traders are herding

or are trading in response to their own information: the MM will increase the price

further to capitalize on the buying trend. This implies that we will have increased

πt1, as well as Eπ|xl in equation (17). However, because of the receipt by the trader of

the “low signal”, xl, Eπ|xl increases at slower speed than πt1, and the absolute value

of Eπ|xl − πt1 is an increasing function of πt1. Intuitively, traders are slow to respond

because they have more information. Now, for a given pair of γM and λM , eventually

herd buying will be impeded by a sufficiently high price and a sufficiently large spread

of Eπ|xl−πt1 which, even with λT equal to 1 and γT equal to zero, exceeds the trader’s

expectation. Therefore, the herd is halted, the price naturally has to drop, and so

the market crashes.

The longevity of any bubble and the speed at which the market subsequently

crashes, will depend upon whether or not the market trader adjusts his ambiguity

parameters as the boom progresses. The intensity and time-span of, say, rising asset

prices, could themselves prompt adjustments to the degree of ambiguity felt by the
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market trader about the future price. For example, the trader’s optimism (pessimism)

parameter might eventually decline (rise); whether this will be gradually or otherwise

will, clearly, depend on a number of factors including the level of the asset’s latest

price and the time-span over which it has risen. The trader will come to doubt

eventually whether the rising market price is sustainable, and so his(her) high private

signal will be discounted, and his(her) low private signal will now be accepted. At

some point sooner than when the traders’ optimism and pessimism parameters are

constant, the trader’s CEU of the asset will fall below the market’s and the market

maker’s expectation; assuming, as previously, that the market maker continues to

increase the asset’s price to capitalize on what (s)he imagines is a continual buying

trend. The trader then does not continue to herd, (s)he sells the asset rather than

buys it, and so the price falls, as will.

In sum, herd buying can produce an unsustainable run-up in price that eventually

results in a crash. Accordingly assets can be mispriced in the short-run but the

subsequent correction in the market can produce information efficiency in the long-

run.

6 Concluding remarks

We have re-examined herding behaviour in a financial market where trade is sequen-

tial and prices of assets are endogenously determined. To investigate the effects of

ambiguity in financial markets, we modelled agents’ beliefs as neo-additive capaci-

ties and their preference as CEU. We have demonstrated that different patterns of
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behaviour can be generated by introducing ambiguity and ambiguity attitudes. In

particular, we first assumed asymmetric ambiguity between the MM and traders and

proved that contrarian behaviours will appear in the markets. That is, if MMs do

not perceive ambiguity to information available in the market but traders do, then

it is optimal for traders to trade against the market trend in certain circumstances.

In general, optimism helps contrarian buying and pessimism helps contrarian selling.

We then investigated the case where both the MM and traders are ambiguous to

information and show that herd buying (resp. selling) can arise and their extent will

be caused by the degree of optimism (resp. pessimism) of the traders. Moreover, we

suggested that herding only appears in the short-run and price bubbles become possi-

ble due to the market impetus engendered by the ambiguity attitudes of traders and

the MM. However, it can be contended that the price mechanism assures that choices

are efficient and herd behaviour is impeded in the long-run. We also suggested that

market efficiency does not mean perfect foresight, so we expect an analyst’s forecasts

and market prices to be “wrong” ex post in the presence of ambiguity.

Appendix

Proof of Proposition 5.1:

We first prove that the CEUT,xl (w) is a concave function with slope less than 1

for the interval πt1 ∈ [0, 1] , CEUT,xh (w) is a convex function with slope less than 1

for the interval πt1 ∈ [0, 1] .

Suppose there is negative history observed in the market and the trader receives
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a negative signal xl, so π (xl) = 1− p > 1/2.

CEUT,xl (w) = [1− δ (x) (λ+ γ)] · Eπ|xl + δ (x)λ, (18)

CEUT,xl (w) = z ·
p · πt1

p · πt1 + (1− p) · (1− πt1)
+ δ (x)λ, (19)

where z = [1− δ (x) (λ+ γ)] . (20)

Taking the partial derivative of equation (18) with respect to πt1 we have:

∂CEUT,xl (w)

∂πt1
= z ·

p (1− p)

[p · πt1 + (1− p) (1− πt1)]
2 . (21)

Since 0 < z = (1−λ−γ)π(x)
(1−λ−γ)π(x)+λ+γ

< 1,and given the assumption that p < 1/2, it follows

that equation (21) is positive; and it is straightforward to see that besides having z <

1, we also have the term p(1−p)

[p·πt1+(1−p)(1−πt1)]
2 < 1 too. Thus we have that

dCEUT,xl(w)

dπt
1

< 1.

From equation (18), we get,

∂2CEUT,xl (w)

∂πt21
=
2p (p− 1) (2p− 1) [p · πt1 + (1− p) (1− πt1)]

[p · πt1 + (1− p) (1− πt1)]
4 . (22)

Accordingly, under the assumption that p < 1/2, the sign of the equation above is

the sign of :

[
p · πt1 + (1− p)

(
1− πt1

)]
> 0. (23)

Therefore the function CEUT,xl (w) is convex.

Similarly, it is easy to see that we have,
∂CEUT,xh(w)

∂πt
1

< 1, and
∂2CEUT,xh(w)

∂πt2
1

< 0, so

that CEUT,xh (w) is a concave function.

CEUT,xh (w) = [1− δ (x) (λ+ γ)] · Eπ|xh + δ (x)λ, (24)

CEUT,xh (w) = [1− δ (x) (λ+ γ)] ·
(1− p) · πt1

(1− p) · πt1 + p · (1− πt1)
+ δ (x)λ.
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Clearly, for given values of γ and λ, CEUT,xh (w) is always greater than CEUT,xl (w)

for all intermediate values of πt1 ∈ (0, 1) ,and identical at the boundaries with πt1 =

[0, 1] .

Further, it shows that, at πt1 = 1,

CEUT,xl (w) = [1− δ (x) γ] · z + δ (x)λ · (1− z) < z + (1− z) = 1, (25)

and at πt1 = 1,

CEUT,xh (w) = (1− p) + δ (x) γ · (p− 1) + p · δ (x)λ < (1− p) + p = 1. (26)

These conditions imply that CEUT,xl (w) intersects the 450 degree line once at lower

πt1, say π∗, than CEUT,xh (w) which intersects the 450 degree line at higher πt1, say,

π∗∗. Therefore below π∗ “contrarian buying” behaviour occurs with a negative history

and a negative signal; “contrarian selling” behaviour occurs above a market price of

π∗∗ with a positive history and a positive signal.�
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