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Abstract

We describe conditions on signal distributions that are necessary and sufficient

for informational herding in a stylized model of sequential specialist security trading.

Curiously, there can be persistent herding even with signals that satisfy the Mono-

tone Likelihood Ratio Property. Price paths are strongly biased in the direction of

the herd but prices are also very sensitive to movements against the herd. Price

movements thus become more pronounced through herding. Numerical simulations

indicate that the probability of herding and the level of noise trading are inversely

related. Our results contrast the existing literature which found that herding with

monotonic signals is impossible, and that herding is rarely accompanied by price

movements. The paper thus allows a new perspective on herding in financial mar-

kets with efficient prices. We identify that the major ingredient needed for herding

is that some agents find their information confusing.
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1 Introduction

When markets crash in the absence of any significant shifts in economic fundamentals,

an explanation frequently heard is that investors behaved like a herd that stampeded

without cause. But mass-uniform behavior need not be triggered by ‘animal spirits’ — it

can be fully rational. Conventionally so called ‘rational herding’ occurs in situations with

information externalities, when agents’ private information is swamped by the information

derived from observing others’ actions. Such ‘herders’ deliberately act against their private

information (but technically they do not discard it) and follow the crowd.

At first sight, this concept provides a tailor-made explanation for financial market

frenzies, crashes and panics. In models of financial markets, however, prices are typi-

cally assumed to be informationally efficient, so that the current price reflects all public

information. Suppose a crowd of people sells frantically. An investor with favourable in-

formation will update his information, and, indeed many sales will lower his expectation.

At the same time, however, prices adjust downward too, so it is not clear that such an

investor will now sell – to him the security may still be cheap. So for herding private

expectations and prices must diverge substantially: Once favourable expectations must

drop faster or unfavourable expectations must rise faster than prices.

In an important paper, Avery and Zemsky (1998), henceforth called AZ, argue that

herd behavior with informationally efficient asset prices is not possible unless signals are

“non-monotonic” and risk is “multi-dimensional”.1 In particular, they employ a specialist

sequential security trading model à la Glosten and Milgrom (1985), and show the following:

• With two possible security-values and two signals there can be no herding.

• With three security-values, three signals and a special non-monotone information

structure (with two-dimensional risk) herding is possible; however, there is very little price

movement during the herd phase.

• If in addition to the above information structure, with three security-values and

three signals, traders have different abilities to interpret the signals and this is private

information then herding with extreme price movements (bubbles) is possible. (In their

model the likelihood of large price movements during a herd phase is extremely small; of

the order of 10−6×probability of a particular sequence of trades.)

The profession, for instance Brunnermeier (2001), Bikhchandani and Sunil (2000),

Chamley (2004) have derived three messages from this paper. First, with ‘monotonic’

signals, herding is impossible. Second, for herding one needs ‘multidimensionality’ of risk.

1Lee (1998) also uses a financial market model with moving prices. His herding, or rather ‘information
avalanches’ result is, however, based on frictions induced by transaction costs. For a recent, comprehensive
survey of the herding literature see Hirshleifer and Teoh (2003).
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Third, herding does not involve violent price movements except in the most unlikely envi-

ronments. Therefore, since in AZ the information structure is very special and in general

large price movements cannot be explained by herd-type behavior, one can conclude that

rational herding models are not so relevant to understanding the functioning of efficient

financial markets.

We do not contest Avery and Zemsky’s very insightful results, nor do we argue that

our information structures have more intuitive appeal. But in this paper we argue the

following two points.

• The profession’s perception needs being corrected as one needs neither non-monotonic

signals nor multidimensionality of risk. Even with “MLRP”-signals there may be a great

deal more rational informational herding than is currently expected in the literature.

• Extreme price movements with herding are possible under not so unlikely situations.

In particular, we provide a necessary and sufficient condition for informational herd-

ing in the same stylized specialist sequential security trading model with three possible

security-values, three signals,2 and a symmetric prior distribution (we employ symmetry

to reduce the number of potential sources for herding). We also assume that signals obey

the Monotone Likelihood Ratio Property (MLRP).3 Our signals do not resemble any form

of ‘multiple dimensions of uncertainty’, the model is straightforwardly one-dimensional.

We then argue that herding can occur if and only if for one signal the conditional signal

distribution is U-shaped in liquidation values and the proportion of informed agents is not

too large. Finding herding in this setup is, therefore, a strong result because our signals

still satisfy the MLRP, which is in itself a strong concept. This contrasts with Avery and

Zemsky, who employ a definition of signal-monotonicity that is non-standard. Indeed, if

signals satisfy their monotonicity-condition there can be no herding (their monotonicity

condition almost rules out herding by definition), but it is not clear though how their

monotonicity concept relates to those commonly used in the literature. Furthermore,

their monotonicity refers to the dynamic development of private and public expectations,

not to primitives of the signal distribution.

In contrast to AZ’s examples with little price movements during herding (except very

exceptionally), we show in our setting (with MLRP and a single dimension of uncertainty)

that prices can move substantially during herding: investors will continue to herd as long

2Our results in this paper are established with a discrete number of (three) signals, but the results
are robust if signals are continuous. Details are available from the authors.

3The Monotone Likelihood Ratio Property is the standard signal monotonicity requirement in the
literature, found for instance in rational expectations models or auctions. It is a convenient tool, as,
for instance, investors’ expectations are ordered so that higher signals imply higher expected liquidation
values.
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as trades are ‘in the direction of the crowd’. Graphically speaking, as long as no-one stops,

the lemmings keep walking off the cliff. Moreover, the range of herding-prices can comprise

almost the entire range of feasible prices and during buy-herding (sell-herding), prices

increase (decrease) stronger and decrease (increase) faster than if there was no herding

possibility (where agents are “näıve” and rely only on their own private information).4

Casual intuition suggests that in an informational-learning model the possibility of buy-

herding (analogous arguments hold for sell-herding) should (i) hamper learning from buys

so that the upward-trajectory of prices should become relatively flatter and (ii) carry a

strong negative message when sales (which signify bad states of the world) occurs. The

second assertion is true, but the first is incorrect: Despite herding ‘buys’ carry strongly

favorable information. Therefore, the possibility of buy-herding makes price movements

more volatile in the short-run compared with the case in which there is no herding.

There are some additional implications of herd behavior that we highlight in this paper.

Since some types of traders change their trading modes when herding, prices are strongly

history-dependent: More specifically, as the entry order of traders is pesrmutated, prices

with the same population of traders can be strikingly different. Also, herding results in

price paths that are very sensitive to changes in some key parameters. In particular, as we

noted before, a necessary condition for herding is that the proportion of informed agents

is below some critical level (enough noise traders). Comparing two situations, one with

the proportion of informed agents just below the critical level to trigger herding and one

with just above to prevent herding, prices deviate substantially in the two cases for an

identical group of traders.

The focus of this paper is on herding and its effects, but we can also describe conditions

for so-called “contrarian” behaviour: a trader acts as a contrarian if after observing a

trading history he changes his action and acts against the general movement. A necessary

and sufficient condition for such behaviour is that an agent has a “hill-shaped” conditional

signal distribution. This observation then closes the circle of understanding the different

kinds of behaviors triggered by conditional signal distributions. A U-shaped conditional

signal distribution in essence confuses the recipient, because in his posterior he will place

more weight on extreme values; this makes the signal recipient to go with the flow and

thus makes herding possible. A hill-shaped signal distribution achieves the opposite —

in his posterior the recipient will shift weight to the center. This makes the recipient of

a hill-shaped signal more stubborn so that he may act against the general movement of

4There is, however, no absolute increase in price-volatility associated with herding: As learning con-
tinues, in the long-run, volatility settles down and prices react less to individual trades. However, relative
to a hypothetical scenario with some intuitive form of näıve trading, the herd-prices are more extreme in
the short-term.
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prices. Recipients of a monotonic conditional signal distribution are convinced that either

extreme outcome has occurred, so no matter what happens they stay on one side of the

market.

In the next section we outline the basic setup, the trading equilibrium, the assumptions

on signal distributions, and the definition for herding. In Section 3 we revisit Avery and

Zemsky’s herding example. In Section 4 we discuss which assumptions on MLRP signal

structures ensure that herding occurs with positive probability. In Sections 5 and 6 we

then show that herding can persist and explain why herding-prices are more extreme. We

also briefly discuss Avery and Zemsky’s monotonicity concept and how it relates to the

MLRP. Most proofs are in the appendix.

2 The Basic Setup and the Trading Equilibrium

Security: There is a single risky asset with a liquidation value V from a set of three

potential values V = {V1, V2, V3} = {0,V , 2V}, V > 0. The prior distribution over V is

common knowledge and symmetric around V2; thus Pr(V1) = Pr(V3).
5

Traders: There is a pool of traders consisting of two kinds of agents: Noise Traders

and Informed Agents: At each discrete date t one trader arrives at the market in an

exogenous and random sequence. Each trader can only trade once at the point in time at

which he arrives. We assume that at each date the entering trader is an informed with

probability µ > 0 and a noise trader with probability 1 − µ.

The informed agents (also referred to by insiders) are risk neutral and rational. Each

receives a private, conditionally i.i.d. signal S ∈ {S1, S2, S3} about V. We assume that the

signals are ordered such that S1 < S2 < S3.

Noise traders have no information and trade randomly. These traders are not neces-

sarily irrational, but they trade for reasons not included in this model, such as liquidity.6

Market Maker: Trade in the market is organised by a market maker who has no

private information. He is subject to competition and thus makes zero-expected profits.7

In every period t, prior to the arrival of a trader, he posts a bid-price pB
t at which he is

willing to buy the security and an ask-price pA
t at which he is willing to sell the security.

Consequently he sets prices in the interval [V1, V3].

5The symmetry assumption reduce the degrees of freedom and thereby makes it more difficult to
establish the possibility of herding.

6The existence of noise traders are assumed (µ > 0) to prevent “no-trade” outcomes à la Milgrom-
Stokey (1982).

7Alternatively, we could also assume a model with many identical market makers setting prices as in
Bertrand competition.
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Traders’ Actions: Each traders can buy or sell one unit of the security at prices

proposed by the market maker, or he can be inactive. So the set of possible actions is

A := {buy, hold, sell}. We write at ∈ A for the action taken in period t by the trader that

arrives at that date.

We assume that noise traders trade with equal probability. Therefore, in any period,

a noise-trader buy, hold or sale occurs with probability γ = (1 − µ)/3 each.

Information: The structure of the model is common knowledge among all market

participants. The identity of a trader and his signal are private information, but everyone

can observe past trades and transaction prices. The history of trades, the sequence of

the traders’ actions at together with the realised transaction prices pt, is denoted by

Ht = ((a1, p1), . . . , (at−1, pt−1)) for t > 1 and H1 is the initial history before trade occurred.

2.1 The Trading Equilibrium

The Informed Trader’s Optimal Choice: An informed trader enters the market

in period t, receives his signal St and observes history Ht. We assume the tie-breaking

rule that, in the case of indifference, agents always prefer to trade. Therefore, an informed

trader’s optimal action is (i) to buy if he values the security no less than the ask-price:

E[V |Ht, St] ≥ pA
t , (ii) to sell if he thinks the security is worth no more than the bid price:

pB
t ≥ E[V |Ht, St], and (iii) to hold in all other cases.

The Market Maker’s Price-Setting: To ensure that the market maker receives

zero expected profit the bid and ask prices has be such that at any date t and any publicly

available information Ht,

pA
t = E[V |at = buy at pA

t , Ht], pB
t = E[V |at = sell at pB

t , Ht]

Insiders are better informed than the market maker. Consequently, if the market maker

always sets prices equal to public expectation he makes an expected loss on trades with

informed agents. However, if he sets a price above the public expectation he gains on

noise traders, as their trades has no information value. Thus, in equilibrium market

maker makes profit on trades with noise trader to compensate for losses against insiders.

This implies that at any date there is a spread between the bid and ask price; in particular

at any date t and for any public information Ht we have

pA
t > E[V |Ht] > pB

t .

Moreover, the spread pA
t −pB

t increases with µ, the probability of a trader being an insider.
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Equilibrium concept. Since the game played by the insiders is one of incomplete

information the appropriate equilibrium concept is Perfect Bayesian equilibrium. There-

fore, henceforth an equilibrium refers to a profile of actions for each type of insider that

constitutes a perfect Bayesian equilibrium of the game. Prices set by the market maker

given such action profiles for the insiders are referred to as equilibrium prices.

Price formation in our model is standard:

Remark 1 (Glosten and Milgrom (1985): Standard Results on Price Formation)

Transaction prices form a Martingale process and beliefs converge to the truth.

The above result describes long-run behaviour of the model. “Convergence results are

often overstated. It is certainly more relevant to study how people may be wrong over

an extended length of time and how a sudden price change may occur” (Chamley 2004).

This is what we study here.

2.2 Properties of the Signal Distribution

We assume that signals are strictly monotonic in the sense of the monotone likelihood ratio

property (MLRP) (see, for instance, Milgrom (1981)). This means that for any signals

Sl, Sh ∈ S and any values Vl, Vh ∈ V such that Sl < Sh and Vl < Vh we have

Pr(Sl|Vl)Pr(Sh|Vh) > Pr(Sl|Vh)Pr(Sh|Vl).

This assumption is standard to models that use informative signals.8 It is stronger than

assuming First Order Stochastic Dominance. We make this very strong (though standard)

restriction on the information structure because our objective is to show the possibility

of herding (and its consequences) even with a very restrictive condition on the signal

distribution.

Before describing some of the (standard) implications of the MLRP, for any signal

S we will henceforth employ the following terminology to describe six different types of

conditional signal distributions S may have:

increasing ⇔ Pr(S|V1) < Pr(S|V2) < Pr(S|V3)

decreasing ⇔ Pr(S|V1) > Pr(S|V2) > Pr(S|V3)

U-shape ⇔ Pr(S|Vi) > Pr(S|V2) for i = 1, 3

Hill-shape ⇔ Pr(S|Vi) < Pr(S|V2) for i = 1, 3

8It is trivially satisfied if there are only two signals, two values and signals are conditionally indepen-
dent.
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Negatively biased ⇔ Pr(S|V1) > Pr(S|V3)

Positively biased ⇔ Pr(S|V1) < Pr(S|V3)

We shall also call a signal monotonic if its conditional signal distribution is either

increasing or decreasing.

As described in the introduction, with a symmetric prior distribution, a recipient of

a hill-shaped signal will tentatively shift weight to the center of the distribution, the

recipient of a U-shaped signal will shift weight to the ends. The MLRP allows us to

establish the following set of results.

Proposition 1

(a) Conditional expectations are monotonic in signals: For any Sl, Sh ∈ S, if Sl < Sh then

E[V |Sl, Ht] < E[V |Sh, Ht] for any date t and any history Ht.

(b) The conditional signal distribution for S1 is decreasing and the conditional signal

distribution for S3 is increasing.

Proposition 2

In any equilibrium the following holds at any history:

(a) Informed traders with signal S1 (S3) always sell (buy).

(b) The probability of a buy (sale) increases (decreases) in V by a positive amount inde-

pendent of the past. Formally, there exists ǫ > 0 such that for every Ht, for V ′ > V ,

Pr(buy|V ′, Ht) − Pr(buy|V,Ht) > ǫ and Pr(sale|V,Ht) − Pr(sale|V ′, Ht) > ǫ.

The proofs of the above results are in the Appendix. Proposition 1 (a) implies that

investors’ conditional expectations are ordered after any history of trade. Since the MLRP

implies First Order Stochastic Dominance, it follows that conditional expectations are

ordered ex-ante before any trade (see, for instance Milgrom (1981)). This result is simply

an extension of this observation to expectations after any history.

Proposition 1 (b) implies that for the lowest (highest) signal, conditional probabilities

weakly decrease (increase) in the true liquidation value. However, for the middle signal, no

such general rule applies! Conditional probabilities’ values can be decreasing, increasing,

or they can be hill-shaped or U-shaped with a negative or a positive bias. To see this

consider Table 1 which contains six numerical examples of MLRP signal distributions

exhibiting all the six conditional signal distributions described above for the middle signal

S2. Each information structure is described by a 3× 3 matrices; for each such matrix the

MLRP is equivalent to all minors of order 2 being positive. This property holds for all

matrices.
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Pr(S|V ) V1 V2 V3

S1
5
9

1
3

2
9

S2
6
18

4
18

3
18

S3
1
9

4
9

11
18

Pr(S|V ) V1 V2 V3

S1
5
9

4
9

1
9

S2
5
27

6
27

9
27

S3
7
27

1
3

5
9

Pr(S|V ) V1 V2 V3

S1
5
8

1
4

1
8

S2
2
8

4
8

3
8

S3 0 1
3

5
6

decreasing for S2 increasing for S2
hill-shape and positive

bias for S2

Pr(S|V ) V1 V2 V3

S1
5
6

1
3

3
40

S2
20
120

40
120

11
120

S3 0 1
3

5
6

Pr(S|V ) V1 V2 V3

S1
31
100

1
5

1
100

S2
59
100

50
100

60
100

S3
1
10

3
10

39
100

Pr(S|V ) V1 V2 V3

S1
3
10

1
5

1
50

S2
60
100

50
100

59
100

S3
1
10

3
10

39
100

hill-shape and negative

bias for S2

U-shape and positive

bias for S2

U-shape and negative

bias for S2

Table 1: Six Examples of MLRP Signal distributions For very matrix each entry represents the
probability of the row-signal given the true liquidation value given by the column. Therefore, for each
matrix the sum of the entries in each column add up to 1. In all the above the signal distributions of S1

and S3 are monotonic whereas each matrix exhibits a different kind of signal distributions for S2.

Proposition 2 (a) establishes that the lowest and highest signal types always take the

same action. Therefore, the only agents that might change their behaviour depending on

the history of past actions are agents with signal S2.

Finally note that the conclusions of Proposition 2 (b) hold irrespective of whether

players herd.

2.3 Definition and Necessary Conditions for Herding

We adopt the same definition of herding as in AZ.

Definition 1 (Herding) A trader with signal S engages in herd-buying in period t after

history Ht if and only if (H1) E[V |S] < pB
1 , (H2) E[V |S,Ht] > pA

t , (H3) E[V |Ht] > E[V ].

Herd selling is defined analogously.

(H1) requires the agent to (strictly) prefer to sell ex-ante, before observing the action of

others; (H2) requires the agent to (strictly) prefer to buy, after observing the history; and

(H3) requires the public expectation to ‘move in the direction’ of the herd.
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Since pA
t > E[V |Ht] > pB

t , conditions (H1) and (H2) imply respectively the following

necessary conditions for buy-herding

E[V |S] < E[V ] (1)

E[V |S,Ht] > E[V |Ht]. (2)

Analogous necessary conditions hold for sell-herding.

Notice that here herding refers to an agent changing his behaviour as a result of ob-

serving the behaviour of others.9 Conditions (H1) and (H2) capture the sense of changing

from buy to sell after observing the actions of others. However, an agent may change,

for some trading history, from buying to selling (or vice versa) without engaging in herd-

behaviour. For example, it may be that he changes, for some trading history, from selling

to buying because the market price (public expectations) has fallen. It is important to

distinguish herding from such mere ‘change of opinion’. Condition (H3) does precisely

that by ensuring that the change of action from a buy to a sell is not due to a decline in

public expectations.

This change of opinion, in fact is the natural antidote to herd-behaviour. In the

literature it is typically referred to as contrarian behavior.10 To formalize that investors

change their opinion to act against the crowd we define contarian-behaviour as follows.

Definition 2 (Contrarian) A trader with signal S engages in contrarian-buying in pe-

riod t after history Ht if and only if (C1) E[V |S] < pB
1 , (C2) E[V |S,Ht] > pA

t , (C3) E[V |Ht]

< E[V ]. Contrarian selling is defined analogously.

The intuition is simple: (C1) requires the agent to (strictly) prefer to sell ex-ante, before

observing the action of others; (C2) requires the agent to (strictly) prefer to buy, after

observing the history; and (C3) requires the public expectation to have dropped so that

after this history a trader who buys acts against the general movement of prices.

9In the literature there is a debate as to what herding (and informational cascades) exactly entails.
For instance, Cipriani and Guarino (2003) and also Smith and Sørensen (2000) define herding as ‘action
convergence’ - agents of the same ‘type’ take the same action. An informational cascade they describe
as a situation where an agent takes the same decision irrespective of his private signal. The aim of AZ’s
definition is to capture the history-induced switch of opinion in the direction of the crowd. Herding here
refers to a particular signal-type, not to all informed agents collectively. In our model the market-maker’s
zero-profit condition alone precludes action-convergence of all informed traders — it is not possible that
all informed investors trade on the same side of the market (See Proposition 2 (1)). In Cipriani and
Guarino (2003) action convergence of types is possible because agents differ by type-characteristics other
than just signals.

10Avery and Zemsky use this term too, but their definition of ‘contrarian’ includes a feature closely
related to their definition of monotonicity; see Section 9.
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3 Avery and Zemsky’s Event Uncertainty Herding

AZ demonstrate the possibility of herding by employing a special form of asymmetric

information labelled Event Uncertainty, a concept first developed by Easley and O’Hara

(1987). The idea of Event Uncertainty is that ex ante, it is possible that the asset’s

value has not moved at all. AZ find with Event Uncertainty herding can occur if the

information structure of the informed has the following specific form.11 First, investors

know if something has happened, i.e. if there was an event which moved the fundamental

value of the asset. Second, they receive noisy information about how this event has

influenced the liquidation value. Formally,

Pr(S1|V1) = Pr(S3|V3) = q > .5, Pr(S3|V1) = Pr(S1|V3) = 1 − q, (3)

Pr(S2|V3) = Pr(S2|V1) = 0, Pr(S2|V2) = 1.

There are two points to note concerning AZ’s Event Uncertainty structure. First, it

clearly is not MLRP-monotonic: consider signals S3, S2 and V1, V2; then

Pr(S3|V2)Pr(S2|V1) = 0 · 0 = 0 < 1 − q = 1 · (1 − q) = Pr(S2|V2)Pr(S3|V1),

violates the MLRP. Second the insiders’ information is always better than the market

maker’s in the sense that signals are informative (but not fully revealing). Knowing

that some liquidation value has not occurred is an additional piece of information that

causes investors’ partitions of the set of liquidation values to be finer than the market

maker’s. Avery and Zemsky interpret this as a different ‘dimension’ of uncertainty and

attribute their herding result to this property. Our analysis in the next subsection, in

fact, suggests that it is not the ‘dimension’ but rather the general shape of the conditional

signal distribution that determines if herding is possible. Even if the insider believes that

with small probability the “no-information” event V2 has happened he may still herd.

We now state the herding result of AZ with Event Uncertainty.

Proposition 3 (Avery and Zemsky (1998), Proposition 5)

Suppose that the information structure satisfies (3). Then herding occurs with a positive

probability at some finite history.

The proof of this result with Event Uncertainty is particularly simple and compelling.

It suffices to find a finite history that satisfies the following: first, there is a series of holds

for the first n periods, which leaves the insider’s beliefs unchanged, but which causes the

11In what follows we will use the Event Uncertainty to indicate this information structure.
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marketmaker’s conditional distribution to place a larger weight on the middle value V2.

Then there is m periods of buys which increases the insiders’ expected value. Now if both

n and n/m are sufficiently large then the market maker’s conditional distribution after

this history places a large weight on the middle value V2 (this follows from n/m being

large) whereas the insider’s conditional distribution after this history place a large weight

on V3 (this follows from n being large). Thus after such a history S1 traders’ expectation

rises above the ask-price. Since S1 types initially sell it then follows that they will change

their action in the direction of the crowd and herd after this history. (See AZ for details

of the proof).

4 Herding with MLRP Signal Structures

AZ’s Event Uncertainty information structure allows herding. So is there a more general

lesson to learn from the underlying signal distribution? In their proof the buy-herding

investor had the lowest signal S1. An interesting feature of this agent’s signal distribution

is that it is U-shaped: Pr(S1|Vi) > Pr(S1|V2) for i = 1, 3.

As we noted before, AZ’s Event Uncertainty information structure is not consistent

with MLRP. On the other hand, by Proposition 2 (a) and Proposition 1 (b), for any

information structure that satisfies MLRP we have respectively

• the only possible herding candidate is an investor with middle signal S2 (S1 traders

always sell and S3 traders always buy);

• the only type of investors that could have a non-monotonic (and in particular U-shaped)

conditional signal distribution has signal S2 (S1 and S3 must have a monotonic conditional

signal distributions). See Table 1 for examples.

The above two observations allows us to establish that herding is possible for insiders

with signal S2. More specifically, we show below that, with MLRP signals, the following

two conditions are necessary and sufficient conditions for herding (by S2 types):

• U-shaped signal distribution for signal S2;

• ‘enough’ noise.

In addition, we show that, depending on the relative values of Pr(S2|V1) and Pr(S2|V3),

either buy-herding is possible or sell-herding but not both. This is because for the informed

investor with signal S2 to buy-herd he must have a negative opinion prior to the beginning

of trading - condition (1). Since the prior is symmetric this is equivalent to S2’s conditional

signal distribution being negatively biased:

Pr(S2|V1) > Pr(S2|V3) (4)
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Analogously, for the case of S2 to sell-herd we need the additional condition that E[V |S2] >

E[V ]; this is equivalent to S2’s conditional signal distribution being positively biased:

Pr(S2|V1) < Pr(S2|V3) (5)

Next we present our characterisation results for herding formally and then explain

these conditions in greater detail.

Existence of Herding

First define

κb :=
Pr(S2|V3) − Pr(S2|V2)

ρ23
23

, κs :=
Pr(S2|V1) − Pr(S2|V2)

ρ12
12

θb :=
Pr(S2|V1) − Pr(S2|V3)

Pr(V2)(ρ12
12 + ρ23

12) + (1 − Pr(V2))ρ13
12

, θs :=
Pr(S2|V3) − Pr(S2|V2)

Pr(V2)(ρ12
23 + ρ23

23) + (1 − Pr(V2))ρ13
23

where

ρkl
ij = Pr(Si|Vk)Pr(Sj|Vl) − Pr(Sj|Vk)Pr(Si|Vl).

Proposition 4 (Herding with MLRP Signals)

(a) The investor with signal S2 buy-herds with positive probability if and only if 0 < µ < µb

where

µb = min{µin
b , µch

b }, µin
b = θb/(θb + 3), µch

b = κb/(κb + 3).

(b) The investor with signal S2 buy-herds with positive probability if and only if 0 < µ < µs

where

µs = min{µin
s , µch

s }; µin
s = θs/(θs + 3), µch

s = κs/(κs + 3).

We show the result directly, by exploiting properties of the MLRP. As part of the

proof we show that after any history of length t, E[V |Si, Ht] − pA
t has the same sign as

[βt
2Pr(Si|V3)−βt

3Pr(Si|V2)]+
qt
1

qt
3

[βt
1Pr(Si|V2)−βt

2Pr(Si|V1)]+
2qt

1

qt
2

[βt
1Pr(Si|V3)−βt

3Pr(Si|V1)] (6)

and E[V |Si, Ht] − pB
t has the same sign as

qt
3

qt
1

[σt
2Pr(Si|V3)−σt

3Pr(Si|V2)]+[σt
1Pr(Si|V2)−σt

2Pr(Si|V1)]+
2qt

3

qt
2

[σt
1Pr(Si|V3)−σt

3Pr(Si|V1)] (7)

where βt
i = Pr(buy|Ht), σt

i = Pr(sale|Ht) and qt
i = Pr(Vi|Ht) denote respectively the

conditional probability of a buy, the conditional probability of a sale and the conditional

12



probability of state Vi at date t. Since S1-types always sell and S3-types always buy it

follows that for S1-types (6 and (7) are always negative, and for S3-types they are always

positive, irrespective of the trading histories.

This leaves the S2-types as herding candidates. To have buy-herding, we must first

ensure that (7) is negative at the initial history (and therefore, S2-types sell at the initial

history). This is true if and only if 0 < µ < µin
b . The intuition here is that we need a

sufficient amount of noise traders (more than 1−µin
b ) to ensure that an S2-signal investor

is initially on the sale-side of the market because the more noise there is, the smaller

the difference between the bid-price and the ask-price. For µ < µin
b the bid-ask spread is

sufficiently small so that it is worth for S2-types to sell at the initial history; when µ > µin
b

the spread is too large and therefore there is not enough inducement for S2-types to sell

at the initial history.

Next to have herding after a finite history, it must be true that some terms in (6)

are positive and some negative. Requiring 0 < µ < µch
b is necessary and sufficient for

the first term in (6) to be positive. Moreover, if there is sufficient evidence in favour of

high values (i.e. sufficiently many more ‘buys’ than ‘sales’) then the last two terms in (6)

vanish. This is because, by part (b) of Proposition 2, the posterior probability qt
1 will be

sufficiently small relative to qt
2 and qt

3. Hence the expression in (6) is indeed positive and

S2 types change their behaviour at such a history if 0 < µ < µch
b . The reverse direction

works analogously.

Therefore the two conditions 0 < µ < µin
b and 0 < µ < µch

b (initially (in) buy and

later change (ch) together are necessary and sufficient conditions for buy-herding.

Clearly, to ensure that the above characterisation result is not vacuous µb and µs have

to be positive. However, notice that by the MLRP we have

κb > 0 ⇔ Pr(S2|V3) − Pr(S2|V2) > 0

κs > 0 ⇔ Pr(S2|V1) − Pr(S2|V2) > 0

θb > 0 ⇔ Pr(S2|V1) − Pr(S2|V3) > 0

θs > 0 ⇔ Pr(S2|V3) − Pr(S2|V1) > 0

Therefore, µb > 0 (µs > 0) if and only if Pr(S2|V1) > Pr(S2|V3) > Pr(S2|V2). Also µs > 0

if and only if Pr(S2|V3) > Pr(S2|V1) > Pr(S2|V2). Thus we have the following corollary to

the above result.

Corollary (Necessary and Sufficient Conditions Revisited)

(a) There exists µ̄ > 0 such that for any 0 < µ ≤ µ̄ there is a positive probability of

13
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Figure 1: Illustrations of the Sensitivity in Prices Paths with and without Herding.

buy-herding if and only if S2’s signal distribution is negatively biased and U-shaped:

Pr(S2|V1) > Pr(S2|V3) > Pr(S2|V2).

(b) There exists µ̄ > 0 such that for any 0 < µ ≤ µ̄ there is a positive probability of

sell-herding if and only if S2’s signal distribution is positively biased and U-shaped

Pr(S2|V3) > Pr(S2|V1) > Pr(S2|V2).

Importantly, ‘hill-shape’ or ‘monotonicity’ of one signal’s distribution cannot be inter-

preted as (global) ‘signal-monotonicity’ — these properties say nothing about the rela-

tion between signals. When considering the impact that the U-shaped signal has on the

recipient’s posterior (he shifts weight to the extreme values), our result is very intuitive:

it is the group of somewhat confused traders, those who received ‘mixed’-information who

are prone to run with the herd.

Coming back once more to Avery and Zemsky’s herding, one should note that their

Event Uncertainty signal structure has two signals with a U-shaped distribution: signals

S1 and S3. Since this structure is not MLRP, one can no longer argue that for sufficiently

many more buys than sales the expression in (6) is positive. However, the intuition

is similar: first, sufficiently many holds can make the third term in (6) arbitrarily small.

Sufficiently many buys do the rest by making the second term arbitrarily small, eventually

triggering herding. It is immediately clear that our reasoning can also be applied to small

perturbations of Avery and Zemsky’s Event Uncertainty signal structure (with non-zero

conditional signal distribution). Since such a perturbed information structure would no

longer be multidimensional it follows that multidimensionality is not the issue in inducing

herd behaviour.

14



5 Persistence of Herding

In Avery and Zemsky price movements during herding under Event Uncertainty are

strictly limited: For informed investors, trades do not convey information, thus their

expectation does not move. To break buy-herding (sell-herding), it suffices that prices

rise above (fall below) the (constant) expectation of S1 (S3) types, and this is generally

a very small movement. In fact, in AZ the required price movement during any herding

vanishes in the limit as µ → 0 and q → 1/2 (as the informativeness of the signals of the

informed agents disappears); see Proposition 8 in AZ.

In our setting, prices may move significantly during herding. In fact, if buying persists

and there are no sales, buy-herding will not stop (because of noise trading this is, of course,

a zero probability event). Under buy-herding, further buys will increase the herders’

expectation stronger than the marker maker’s and thus the herd is not broken. The same

reasoning holds for sell-herding. Once herding starts, buying will also get more likely as

now S3- and S2-types buy. Likewise, the herd is quite robust – breaking it gets more

difficult the more herd-buys there are.12

The intuition for the result is as follows: By part (b) of Proposition 2 the probability

of a buy is strictly increasing for higher liquidation values, thus both market maker and

insider consider higher values more likely during buy-herding. However, once the con-

ditions for herding hold, the S2-investors are on the favourable side of the market, and

thus update higher values faster than the market maker. If buy-herding starts then the

second and the third terms in (6) are small relative to the first term. By Proposition 2 (b),

for Vi < Vj, Pr(Vi|Ht)/Pr(Vj|Ht) declines in buys. Therefore, more buys simply make the

second and the third terms in (6) more insignificant and thus they will remain ‘sufficiently

small’ relative to the first term. This causes herding to persist. Further, buy-herding is

persistent as long as there are not ‘too many’ sales. Indeed, once herding starts, sales

work in the same way as buys did prior to herding — if there are sufficiently many sales so

that the second and third terms in (6) get large, then the S2-insider’s expectation drops

below the ask-price.

Moreover, herding can start when prices are close to the middle value, V2. As the

prior probability for an extreme value goes to zero, Pr(V2) → 1, the price movement

needed to trigger herding becomes small. Moreover, as Pr(V2) → 1, the minimum number

of necessary same-direction trades becomes independent of the prior on V . As a result,

buy-herding (sell-herding) can start at a price close to V2. Figure 2 plots simulated

12This is also in contrast to standard herding model as in Bikchandani et al (1992). In the latter
herding is ever fragile: since all players ignore their information a single contrarian action against the
herd results in a collapse of the herd. Not so here, as all actions are informative.
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the näıve price

rational price
drops below
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Figure 2: Simulated Transaction Prices. The left panel displays a simulation of transaction prices
when traders behave rationally (and thus herd). As can be seen, herding starts for low prices, and prices
during herding can move up substantially (V3 = 20, V2 = 10). The middle panel plots transaction prices
for the same sequence of traders, but for “näıve” investors, i.e. the S2 investors merely follow their prior
expectation and ignore all information in the trading history. The right panel combines both scenarios
and highlights the point where the näıve prices exceed the rational price (note: S2-types are still herding
at this point). Details of the data are available from the authors upon request. The underlying signal
distribution is listed in Appendix B.

transaction prices that illustrate this point: Herding starts for prices near V2, and during

herding prices rise substantially.

Proposition 5 (Persistence of Herding and the Range of Herd-Prices)

(a) Suppose that the signal distribution for signal S2 is negatively biased and U-shaped and

that after history Ht there is buy-herding. Then for any ǫ > 0, there exists history Ht+τ

so that there is buy-herding at every t̃ ∈ [t, t+ τ ] and transaction price pt+τ exceeds V3− ǫ.

(b) Suppose that the signal distribution for signal S2 is positively biased and U-shaped and

that after history Ht there is sell-herding. Then for any ǫ > 0, there exists history Ht+τ so

that there is sell-herding at every t̃ ∈ [t, t + τ ] and transaction-price pt+τ is below V1 + ǫ.

(c) Assume Pr(V2) = 1 − 1
n
. Then for every ǫ > 0 there exists an n < ∞ so that the

smallest price with herd-buying p∗ is in (V2, V2 + ǫ).

6 Price Movements during Herding

Two questions arise naturally when buy-herding starts: First, will buys move prices less

with herding than when herding/social learning is not allowed? And second, will sales

move prices more with herding than when no herding/social learning is allowed? In what

follows we focus on price-impacts for buy-herding; sale-herding effects are analogous.

To answer this question we compare bid- and ask-prices in a buy-herding situation (we

refer to this as the rational case) (sell-herding is analogous) with prices in a hypothetical

16



economy (called näıve) in which

• at each date t, S2-agents are näıve and unable (unwilling) to interpret the public in-

formation; they therefore buy (sell) if their expected value conditional on their private

information E[V |S2] exceeds the ask price (is less than the bid price) and hold otherwise;

• the market maker sets prices as before taking into account that the S2-types’ strategies

are indeed näıve.

Casual intuition suggests that once buy-herding is possible, buys in a rational world

should move prices less and sales more than in the näıve world. This is because, loosely,

• a ‘buy’ carries less information when agents are rational and may buy-herd (both S2

and S3 buy) than when they do not (only S3 buys),

• a ‘sale’ is a stronger negative signal in the rational buy-herd case (only S1 sells) than

in the näıve (S1 and may be S2 sell) case.

While the intuition for sales is accurate, the intuition for buys is misleading: when

buy-herding starts prices move stronger in both directions. Again, the reason lies in the

U-shape of the S2-signal distribution. At any history Ht at which buy-herding starts a

buy in the näıve world reveals that the buyer is either an S3-type or a noise trader whereas

in the rational world a buy reveals that the buyer is an S2, S3 or a noise trader. Prices

set by the market maker differ because of the information inferred from signal S2: when

there is herding, signal S2 alone suggests a large weight on V3 and little on other values

because

• S2 has a U-shaped signal distribution and therefore given S2 the weight on V2 is small

whereas weight on V1 and V3 is large;

• there has been a sufficiently large number of no-herd buys (buy-herding has started);

this indicates a large number of S3 signals and thus a low weight on V1 at Ht.

To compare the näıve and the rational case, we introduce the following notation for the

näıve case: let En[V |Ht], p
A
t,n, pB

t,n, βi,n, σi,n be respectively the public (market) expectation,

the ask-price, the bid-price, the probability of a buy in state i and the probability of a

sale in state i. From now on, assume that 0 < µ < µb so that buy-herding is possible.

Next there is a history Ht = (a1 . . . , ar+b+s), where

(I1) for any truncation Hτ = (a1, . . . , aτ ) a buy-herd is possible if and only if τ ≥ r,

(I2) the path (ar+1, . . . , ar+b+s) consists of b buys and s sells,

(I3) posteriors qr
i are identical for the rational and the näıve case.

For the following proposition we further restrict the amount of noise. Define

κhb =
Pr(S2|V1) − Pr(S2|V3)

ρ13
12

, (8)
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κp =
Pr(S3|V2) − Pr(S3|V1) + Pr(S2|V3) − Pr(S3|V1)

Pr(S3|V3)(Pr(S3|V2) − Pr(S3|V1)) + Pr(S2|V3)Pr(S3|V2) − Pr(S2|V1)Pr(S3|V3)
. (9)

Proposition 6 (The Impact of Herding on Prices)

Consider any history Ht = (a1, . . . , ar+b+s) that satisfies (I1)–I3

(a) If s = 0 then for all b E[V |Ht] − En[V |Ht] > 0.

(b) Assume µ > κhb/(3 + κhb) and let b = 0. If after s sales, E[V |S2, Ht] > pB
t , then

E[V |Ht] − En[V |Ht] < 0.

(c) If either

(i) Pr(S3|V2) − Pr(S3|V1) + Pr(S2|V3) − Pr(S3|V1) < 0 or

(ii) µ < κp/(κp + 3),

then for any s there exists b such that for all b > b E[V |Ht] − En[V |Ht] < 0.

(d) The ex ante probability of a buy is higher during buy-herding than outside herding.

Part (a) shows that the rational ask-price is and remains above the näıve ask price

as long as buying persists. Part (b) shows that as long as the rational S2-type remains

in herding-mode, the rational bid-price is and remains below the näıve bid-price when

people keep selling.

Part (c) is easiest to understand when reading it backwards: After many herd-buys,

both the näıve and the herding price converge to the highest value and thus they are close.

Then after a number of sales, the rational ask-price can drop below the näıve ask-price.
13 Part (c) thus shows that for herd-prices are more sensitive than näıve prices if they

are sufficiently close. Conditions (i) and (ii) ensure that in the rational case, sales have

a sufficiently strong effect on the posterior of V1; (i) is sufficient for (ii).

Figure 2 illustrates the proposition: The left panel displays rational prices, the middle

panel displays näıve prices, and the right panel plots both simultaneously.

7 Contrarians

Contrarian behaviour is a simple side-product of our herding analysis. As with herding, to

identify such trading behavior, we need to ensure a minimum level of noise. The relevant

13Exactly when herding starts, the rational ask-price is above the näıve ask price, and the rational
bid-price is below the näıve bid price. But after, say, some buys, it is difficult to determine whether
the rational bid is still below näıve bid — simply because the posterior expectations change differently.
But once expectations are sufficiently close, which is ensured after many herd-buys, the “more extreme”
movements statement holds again.
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threshold values here are given by

κcon
b :=

Pr(S2|V2) − Pr(S2|V1)

ρ12
23

, κcon
s :=

Pr(S2|V2) − Pr(S2|V3)

ρ23
12

.

Corollary (Necessary and Sufficient Conditions for Contrarian Behaviour)

(a) The investor with signal S2 is a buy-contrarian with positive probability if and only if

(i) 0 < µ ≤ µc
b where

µc
b = min{µcon

b , µin
b }, with µcon

b = κcon

b /(κcon

b + 3),

and (ii) the S2-signal distribution is negatively biased and hill-shaped

Pr(S2|V2) > Pr(S2|V1) > Pr(S2|V3)

(b) The investor with signal S2 is a sell-contrarian with positive probability if and only if

(i) 0 < µ ≤ µc
s where

µc
s = min{µcon

s , θs/(θs + 3)}, with µcon

s = κcon

s /(κcon

s + 3),

and (ii) the S2-signal distribution is positively biased and hill-shaped

Pr(S2|V2) > Pr(S2|V3) > Pr(S2|V1).

The result can be straightforwardly obtained when rescaling (6) with qt
3/q

t
1

qt
3

qt
1

[βt
2Pr(Si|V3) − βt

3Pr(Si|V2)] + [βt
1Pr(Si|V2) − βt

2Pr(Si|V1)] +
2qt

3

qt
2

[βt
1Pr(Si|V3) − βt

3Pr(Si|V1)](10)

And for sales we can rescale (7) with qt
1/q

t
3

[σt
2Pr(Si|V3) − σt

3Pr(Si|V2)] +
qt
1

qt
3

[σt
1Pr(Si|V2) − σt

2Pr(Si|V1)] +
2qt

1

qt
2

[σt
1Pr(Si|V3) − σt

3Pr(Si|V1)](11)

For sufficiently many more sales than buys, the first and last terms in (10) will vanish.

The condition on µ stated in (a) ensures that the second term is positive. On a broader

scale, an investor with a hill-shaped S2 signal increases his posterior on V2 — he is more

certain that the true value is V2. Thus if prices fall he would buy as the asset seems

relatively undervalued to him, making this investor a contrarian.
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8 History Dependence and the Probability of Herding

Simple History Dependence. In the long run, prices will converge to the true value.14

If model primitives do not allow herding or contrarian behavior, then the order of trades

and traders is irrelevant.

This is not true if there can be herding. Consider the following numerical example of

a herding-MLRP signal structure15

Pr(S|V ) V1 V2 V3

S1
40
49

4
49

0

S2
9
49

9
490

243
12250

S3 0 9
10

12007
12250

µ = 1209
1600

,

V = (0, 10, 20), and

Pr(V ) = (1/6, 2/3, 1/6).

For illustrative purposes, assume that the first fifteen traders are all informed, and let

each signal be held by five investors.

Series 1: S1–S2–S3 or S1–S3–S2. The S1 traders move first; all sell and thus the

price drops. Irrespective of the S3-types’ buys, the S2-types still sell. So after these 15

trades the public expectation will drop from 10 to .15.

Series 2: S3–S2–S1. The S3 traders move first and buy. Then the S2 types will be

subject to herding and buy, too. The public expectation now rises to about 13.5. The

five S1-type sell, and then the public expectation drops to 10.31.

These two series illustrate how the arrival order of traders matters: since there are

S2-types who trade, this type’s change in trading-mode (from selling to buying) directly

affects prices. In the next two series, the same number and type of trades occurs, but in

different orders.

Series 3: 20 buys – 20 sales. After 20 buys, the public expectation is 15.36, after

20 subsequent sales it is 3.12.

Series 4: 20 sales – 20 buys. After 20 sales, the public expectation is 1.16×10−13,

after 20 subsequent buys it is 10.0064.

In summary, the order of trades influences the frequency of future trades because the

type S2 changes modes, and it influences prices because the S2-type’s different trading-

mode has to be accounted for. Although in the long run there is convergence, in the short

run such fluctuations matter.

14This is a fairly general result and can be shown in many different ways, for instance by employing
O’Hara (1997)’s[p. 84-86] textbook-tools such as the log-likelihoodratio method. We omit a proof.

15We chose the numbers so that there can be herding after a small number of trades.
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Price Sensitivity. To further elaborate on the price sensitivity induced by herding,

consider the price paths described in Figure 1: In the left panel, we plot the price path

with µ = µb ± ǫ for rational players and also for the näıve investors,16 where parameters

are chosen so that µb ≡ µch
b — this ensures that a small reduction in µ from µb+ǫ to µb−ǫ

can trigger herding. For µ = µb + ǫ, there is no herding, thus if S2-type traders enter,

they either sell or hold. If, however, µ = µb − ǫ, S2-type traders buy, and price paths are

stronger upward-biased. In the middle panel we plot a price-series for both rational and

näıve traders with µb + ǫ, and, for the same history of trader-identities, the rational prices

for µb − ǫ (so that herding is possible). In the right panel we plot the difference of the

two rational price-series. Since there is more noise in the herding prone series, initially,

the no-herd-series’ price is above the rational herd series’ price (the right panel in Figure

1 shows this). Once herding starts, however (here after 8 trades), and once an S2 type

enters, this relation flips.

The Probability of Herding. The shortest sequence of trades that leads to buy-

herding is one with only buys. To assess the probability of herding, we simulate for given

set of parameters (i) how many same direction trades are needed for herding, and (ii) how

likely this sequence is. As the amount of informed trading increases from 0 to µb, there

are two opposing effects: First, as noise decreases, the positive term in (6) (the first term)

becomes smaller, so it gets more difficult to obtain herding. Second, the second and third

terms in (6), the negative terms, decline faster in µ for every buy: observe that

β1

β3

=
µPr(S3|V1) + γ

µPr(S3|V3) + γ
, and thus

∂

∂µ

β1

β3

= (Pr(S3|V1) − Pr(S3|V3))/β3
2 < 0,

where the inequality is strict due to the strict MLRP. Similarly, ∂/∂µ(β1/β2) < 0. As

noise decreases, each trade gets more informative.

While an analytical result seems out of reach as there are too many parameters that

determine the result, the second effect dominates in all numerical examples that we com-

puted. Thus as noise trading declines (µ increases to µb) it takes less same-direction trades

to trigger herding. Figure 3 plots the minimum number of such consecutive time-zero buys

needed to trigger herding.

Moreover, as the amount of noise decreases, ex ante it gets more likely that these

consecutive buy-trades occur. Figure 3’s right panel illustrates these probabilities.

16For näıve the differences in prices for the two levels of µ are negligible.
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Figure 3: Trades needed for Herding and Herding Probabilities. The left panel plots equation
(6) for a given signal distribution as a function of µ, where µ ranges from (almost) 0 to the maximally
possible µb, and of no-herd buys. Whenever the bend curve lies above the 0-surface, there is herding.
The middle panel computes the minimum integer number of no-herd buys that would trigger herding.
The right panel computes from the middle panel the probability of having exactly the threshold number
of buys at the beginning of trade, depending on the underlying µ. As can be seen, conditional on the
true value being V3, the probability of this herding history increases in µ, and it is larger than the
unconditional probability of such histories. The underlying signal distribution is listed in Appendix B.

9 Avery and Zemsky’s Signal Monotonicity and the MLRP

Avery and Zemsky argue that it is the Event Uncertainty information structure’s inher-

ent non-monotonicity that triggers herding. They use the following definition of signal

monotonicity,

Definition 3 (Monotonicity)

A signal S is monotonic if there exists a function w(S) such that for all histories Ht,

E[V |S,Ht] is always weakly between E[V |Ht] and w(S).

Avery and Zemsky show that this signal monotonicity precludes herding. This is not

surprising, however, as this definition is written in such a way that it almost immediately

rules out herding by definition. The definition does not establish conditions on the primi-

tives of the signal distribution, but rather employs a requirement on all trading histories.

The following proposition clarifies how that AZ’s monotonicity definition is implied by a

conditional signal distribution that is monotonic in values.

Proposition 7 (Equivalence of the Monotonicity Concepts)

Assume that the signal distribution satisfies the MLRP. If Pr(S|V ) is monotonic in V

then signal S satisfies Definition 3.
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Monotonicity of Pr(S|V ) in V immediately implies that (6) and (7) always have a constant

sign. One can straightforwardly construct examples with non-MLRP distributions that

do not satisfy the MLRP.

10 Conclusion

We provide a necessary and sufficient condition for positive probability herding in a world

with three liquidation values and monotonic (MLRP) signal distributions. For herding

to occur trades must be sufficiently uninformative, but also, the middle types’ condi-

tional signal distribution must be ‘U-shaped’ in liquidation values. The intriguing part

about the distribution requirement is the effect that such a signal distribution has on the

agent’s posterior: While their information is valuable and informative, in their posteriors

these agents shift weight from the middle to the extreme values. Thus one can say that

herding-prone investors have been confused by their signal. By the same token, contrarian

investors are highly convinced of their information.

Notably, while the required signal distribution properties are special, they are still

admissible under the MLRP. The MLRP itself, however, is a tight corset on signal dis-

tributions, and there is no reason to believe that MLRP-signals are prevalent in the real

world — researchers often use them for their convenience when solving models analyti-

cally. The amount of herding in our model is restricted by the likelihood of middle-signal

types, and the MLRP places tight bounds on this likelihood. But in reality, when there are

no MLPR signals, it seems even more likely that there is is a large fraction of somewhat

informed yet “confused” investors who fit exactly into the herding-prone signal-category!

Herding in our model by its definition does not imply that all traders act alike, and thus

does not match the intuition suggested in flashy newspaper headlines. Rather, it signifies

a substantial shift in “sentiment”, which involves an accelerating rate of same-direction

trades (e.g. ‘buys beget more buys’).

For there to be a flush of buys, someone has to sell. In sequential trading models,

all trades go through the market maker who is compelled to trade. This merely is by

design — and the same design also forbids that all traders act alike (even in AZ this is

true). Realistically, even when markets crash, market makers do not pick up all sales

immediately, there will be others who trade against the stream. And it is not conclusive

to assume that these are all noise traders. In other words, while our herding does not

yield uniform behavior, it does capture short-term swings in sentiment.

To summarize, our model clarifies that rational herding requires confusion, while con-

trarian behavior needs conviction.
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A Omitted Proofs

Proof of Proposition 1

(a) By standard results on MLRP and stochastic dominance (see, for instance, Hirshleifer

and Riley (1992), [p. 106]) it must be that E[V |Sl] < E[V |SH ]. Next consider any history

Ht. First, note that

Pr(V |Ht, S) = Pr(V |S)Pr(Ht|V )/
∑

V ′∈V

Pr(V ′|S)Pr(Ht|V
′).

Then for Vh > Vl and Sh > Sl the MLRP condition after history Ht,

Pr(Sl|Ht, Vl)Pr(Sh|Ht, Vh) > Pr(Sh|Ht, Vl)Pr(Sl|Ht, Vh),

still holds by the following manipulations

Pr(Vl|Ht, Sl)Pr(Vh|Ht, Sh) > Pr(Vh|Ht, Sl)Pr(Vl|Ht, Sh)

⇔
Pr(Vl|Sl)Pr(Ht|Vl)
∑

V

Pr(V |Sl)Pr(Ht|V )

Pr(Vh|Sh)Pr(Ht|Vh)
∑

V

Pr(V |Sh)Pr(Ht|V )
>

Pr(Vh|Sl)Pr(Ht|Vh)
∑

V

Pr(V |Sl)Pr(Ht|V )

Pr(Vl|Sh)Pr(Ht|Vl)
∑

V

Pr(V |Sh)Pr(Ht|V )

⇔ Pr(Vl|Sl)Pr(Vh|Sh) > Pr(Vh|Sl)Pr(Vl|Sh)

⇔ Pr(Sl|Vl)Pr(Sh|Vh) > Pr(Sl|Vh)Pr(Sh|Vl)

The MLRP is thus dynamically maintained, implying the order of expectation.

(b) First we show that Pr(S1|V1) > Pr(S1|V3). Suppose otherwise; thus Pr(S1|V1) ≤

Pr(S1|V3). Then the MLRP conditions Pr(S1|V1)Pr(S2|V3) > Pr(S2|V1)Pr(S1|V3) and

Pr(S1|V1)Pr(S3|V3) > Pr(S3|V1)Pr(S1|V3) imply respectively the following two conditions

Pr(S2|V1) < Pr(S2|V3); (12)

Pr(S3|V1) < Pr(S3|V3).

These two conditions, together with Pr(S1|V1) ≤ Pr(S1|V3), imply that
∑3

i=1 Pr(Si|V3) >
∑3

i=1 Pr(Si|V1). But this contradicts
∑3

i=1 Pr(Si|Vj) = 1 for every j.

The same argument can be applied to show that Pr(S1|V1) > Pr(S1|V2) and Pr(S1|V2) >

Pr(S1|V3), and also in the reverse direction for Pr(S3|V1) < Pr(S3|V2) < Pr(S3|V3).

Proof of Proposition 2

1. Suppose contrary to the claim, an informed trader with signal S1 buys at some history

Ht. Then by Proposition 1 (a) every informed trader buys at Ht. But this implies that
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at history Ht

pA
t = pB

t = E[V |Ht]

But since, by Proposition 1 (a), E[V |Ht] > E[V |S1, Ht] we have that an informed trader

with signal S1 always sells. This is a contradiction.

The proof of the claim that informed traders with signal S3 always buy is analogous.

(b) We shall prove the result in the case of buys. The same reasoning applies to sales.

Consider any arbitrary history Ht. Then by the previous step there are two possibilities

at Ht.

Case 1: Only S3 types buy. Then for any V ′ > V

Pr(buy|Ht, V
′) − Pr(buy|Ht, V ) = µ (Pr(S3|V

′) − Pr(S3|V )) > 0.

The inequality in the above follows from Proposition 1 (b).

Case 2: Only S2 and S3 types buy. Then

Pr(buy|Ht, V
′) − Pr(buy|Ht, V ) = µ (Pr(S3|V

′) + Pr(S2|V
′) − Pr(S3|V ) − Pr(S2|V ))

= µ (1 − Pr(S1|V
′) − (1 − Pr(S1|V )))

= µ (Pr(S1|V ) − Pr(S1|V
′)) > 0,

Again, the inequality in the above follows from Proposition 1 (2). The result follows by

setting ǫ to equal

min {µ (Pr(S3|V
′) − Pr(S3|V )) , µ (Pr(S1|V ) − Pr(S1|V

′))} .

Proof of Proposition 4

Denote the public belief at t that the true liquidation value is Vi by

qt
i ≡ Pr(Vi|Ht)

Also denote respectively the probability of a buy and the probability of a sale at t by

βt
i ≡ Pr(buy|Vi, Ht) and σt

i ≡ Pr(sale|Vi, Ht).

For the ease of exposition, when the meaning is clear we shall at times denote qt
i , β

t
i and

σt
i by qi, βi and σi.
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We also use ∝ to denote that two expressions have the same sign; thus for any real

numbers x and y the expression x ∝ y stands for x and y having the same sign.

Step 1: For any Ht, we have

E[V |Si, Ht] − pA
t ∝















[βt
2Pr(Si|V3) − βt

3Pr(Si|V2)]

+
qt
1

qt
3

[βt
1Pr(Si|V2) − βt

2Pr(Si|V1)]

+
2qt

1

qt
2

[βt
1Pr(Si|V3) − βt

3Pr(Si|V1)]

(13)

Note that

E[V |Si, Ht] − pA
t = Vq2

(

Pr(Si|V2)

Pr(Si)
−

β2

Pr(buy|Ht)

)

+ 2Vq3

(

Pr(Si|V3)

Pr(Si)
−

β3

Pr(buy|Ht)

)

But the RHS of the above has the same sign as

Pr(Si|V2)
∑

j

βjqj − β2

∑

j

Pr(Si|Vj)qj + 2
q3

q2

(

Pr(Si|V3)
∑

j

βjqj − β3

∑

j

Pr(Si|Vj)qj

)

= q1 (β1Pr(Si|V2) − β2Pr(Si|V1)) + q3 (β3Pr(Si|V2) − β2Pr(Si|V3))

+2
q3

q2

(q1 (β1Pr(Si|V3) − β3Pr(Si|V1)) + q2 (β2Pr(Si|V3) − β3Pr(Si|V2)))

But this implies that

E[V |Si] − pA ∝











[β2Pr(Si|V3) − β3Pr(Si|V2)]

+ q1

q3

[β1Pr(Si|V2) − β2Pr(Si|V1)]

+2 q1

q2

[β1Pr(Si|V3) − β3Pr(Si|V1)].

Step 2: For any Ht, we have

E[V |Si, Ht] − pB
t ∝















[σt
2Pr(Si|V3) − σt

3Pr(Si|V2)]

+
qt
1

qt
3

[σt
1Pr(Si|V2) − σt

2Pr(Si|V1)]

+2
qt
1

qt
2

[σt
1Pr(Si|V3) − σt

3Pr(Si|V1)].

This follows by analogous arguments as in Step 1.
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Step 3: E[V |S2] − pB
1 < 0 if and only if µ < µin

b .

Then since Pr(V1) = Pr(V3) it follows from Step 2 that E[V |Si] − pB
1 < 0 is equivalent to

⇔
[σ1

2Pr(Si|V3) − σ1
3Pr(Si|V2)] + [σ1

1Pr(Si|V2) − σ1
2Pr(Si|V1)]

+2 Pr(V1)
Pr(V2)

[σ1
1Pr(Si|V3) − σ1

3Pr(Si|V1)] < 0
(14)

Since S3-types always buy we have that

σ1
i =

{

γ + µPr(S1|Vi) if S2-types does not sell at pB
1

γ + µ(Pr(S1|Vi) + Pr(S2|Vi)) if S2-types sells at pB
t .

Substituting for σ1
i , i = 1, 2, 3 in (14) and simplifying we have

E[V |S2] − pB
1 < 0 ⇔

µ

γ
< θb.

(the last expression holds irrespective of whether S2-types sells or not at pB
t ). But this

implies that E[V |Si] − pB
1 < 0 if and only if µ < θb

3+θb
= µin

b .

Step 4: For any η > 0 there exists a history Ht consisting of only buys such that
qt
1

qt
2

< η

and
qt
1

qt
3

< η.

Since by Proposition 2 (b) there exists ǫ > 0 such that Pr(buy|Vj, Ht) > Pr(buy|Vi, Ht) + ǫ

for any history Ht and any i, j = 1, 2, 3 and j > i, it follows that for sufficiently large t

any history Ht consisting only of buys is such that
qt
1

qt
2

< η and
qt
1

qt
3

< η.

Step 5: For any date t we have βt
2Pr(Si|V3) − βt

3Pr(Si|V2) = ρ23
23

(

kb(1−µ)
3

− µ
)

.

Since S1-types always sell we have that

βt
i =

{

γ + µPr(S3|Vi) if S2-types does not buyat pA
1

γ + µ (Pr(S3|Vi) + Pr(S2|Vi)) if S2-types buys at pA
1 .

This implies, irrespective of whether S2-types buy or not at pA
1 , that

{βt
2Pr(S2|V3) − βt

3Pr(S2|V2)}

= γ (Pr(S2|V3) − Pr(S2|V2)) + µ (Pr(S3|V2)Pr(S2|V3) − Pr(S3|V3)Pr(S2|V2))

=
(1 − µ) (Pr(S2|V3) − Pr(S2|V2))

3
− µρ23

23 = ρ23
23

(

kb(1 − µ)

3
− µ

)

.
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Step 6: E[V |S2, Ht] − pA
t > 0 and E[V |Ht] > E[V ] for some history Ht if µ < µsw

b .

Suppose that µ + η < kb

3+kb
for some η > 0. By Step 4, there exist a history Ht of only

buys such that the sum of the second and the third term on the RHS of (6) is less than

ηρ23
23(1 + kb

3
) :

qt
1

qt
3

[βt
1Pr(Si|V2) − βt

2Pr(Si|V1)] +
2qt

1

qt
2

[βt
1Pr(Si|V3) − βt

3Pr(Si|V1)] < ηρ23
23(1 +

kb

3
). (15)

Since µ + η < kb

3+kb
it follows that η(1 + kb

3
) < kb(1−µ)

3
− µ. But then, by from Step 5, the

first term on the RHS of (6), [βt
2Pr(Si|V3)− βt

3Pr(Si|V2)], exceeds ηρ23
23(1 + kb

3
) . But this,

together with (15), establish that E[V |S2, Ht] − pA
t > 0.

To show that E[V |Ht] > E[V ], note that

E[V |Ht] − E[V ] = V{(1 − qt
1 − qt

3) + 2qt
3} − V (16)

= V(qt
3 − qt

1)

This, together with
qt
1

qt
3

< η < 1, imply that E[V |Ht] > E[V ].

Step 7: If E[V |S2]−pB
1 < 0, E[V |S2, Ht]−pA

t > 0 and E[V |Ht] > E[V ] for some history

Ht then µ < kb

3+kb
.

By Step 1 and E[V |S2, Ht] − pA
t > 0 we have

[β2Pr(S2|V3) − β3Pr(S2|V2)] + q1

q3

[β1Pr(S2|V2) − β2Pr(S2|V1)]

+2q1

q2

[β1Pr(S2|V3) − β3Pr(S2|V1)].
> 0 (17)

Now since E[V |S2] − pB
1 < 0 by Step 3 we have 0 < µ < θb

3+θb
. Therefore, θb > 0 and

hence

Pr(S2|V3) − Pr(S2|V1) < 0 (18)

But then, by condition (17), we have

β2Pr(S2|V3) − β3Pr(S2|V2) +
qt
1

qt
3

[β1Pr(S2|V2) − β2Pr(S2|V1)] > 0 (19)

This together with (18) and 0 < β1 < β2 < β3 (Proposition 2 (b)) imply that

β2Pr(S2|V1) − β1Pr(S2|V2) +
qt
1

qt
3

[β1Pr(S2|V2) − β2Pr(S2|V1)] > 0

⇒ (β2Pr(S2|V1) − β1Pr(S2|V2))

(

1 −
qt
1

qt
3

)

> 0 (20)
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Also, since E[V |Ht] > E[V ] it follows from (16) that

qt
3 − qt

1 > 0

This together with (20) imply that

β2Pr(S2|V1) − β1Pr(S2|V2) > 0.

Hence, by (19), we have

β2Pr(S2|V3) − β3Pr(S2|V2) > 0. (21)

But then by Step 5 we have kb(1−µ)− 3µ > 0; hence µ < kb

3+kb
. This completes the proof

of this step.

Claims (a) and (b) in the Proposition follow immediately from Steps 3, 6 and 7.

Proof of Proposition 5

We shall prove the result for the case of buy-herding (S2 being negatively biased) with

market expectation approaching V3; the proof for the other case is analogous.

By Proposition 4 with a positive probability there exists a history Hτ at which buy-

herding occurs. By Step 1 in the proof of Proposition 4

βt
2Pr(S2|V3) − βt

3Pr(S2|V2) +
qt
1

qt
3

[βt
1Pr(S2|V2) − βt

2Pr(S2|V1)]

+
2qt

1

qt
2

[βt
1Pr(S2|V3) − βt

3Pr(S2|V1)]
> 0. (22)

for t = τ . Moreover, buy-herding persists if (22) holds for any t > τ . Since buy-herding

occurs at Hτ we know that the first term in the above expression is positive while the

second and the third terms are negative. This implies that after date τ (22) will continue

to hold, as long as
qt
1

qt
3

and
qt
1

qt
2

are non-increasing. This is indeed the case if the unfolding

history involves only buys because, by Proposition 2 (b), βt
j > βt

i at any history and for

any i, j = 1, 2, 3 and j > i. This directly implies that buys decrease coefficients
qt
1

qt
3

and
qt
1

qt
2

,

and in the limit we have
qt
1

qt
3

→ 0 and
qt
1

qt
2

→ 0.

Thus for continuing buys, herding persists beyond period τ .

We now show that for continuing buys, beyond period τ , the prices (during this buy-

herding phase) will approach V3 . To see this first note that the S2−insider’s expectation

is above the market maker’s. Thus if the upper bound for the public expectation during
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herding is V3, so it is for the S2-insider’s expectation. To see observe that

E[V |Ht] =
∑

i

Viqi =
1

qt
3

(

V2
qt
2

qt
3

+ V3

)

.

But since by Proposition 2 (b), there exists ǫ > 0 such that βt
3 > βt

2 + ǫ for every history

H t (irrespective of whether there is herding or not) it follows that
qt
2

qt
3

→ 0 for any history

H t involving only buys after Hτ as t goes to infinity. Consequently, for every ǫ > 0, exists

a finite (but “long”) history consisting of Hτ followed by sufficiently many (herd-)buys

such that

E[V |Ht] > V3 − ǫ.

To prove (c), observe that as q0
2 → 1, µb may change (if µb = µin

b it remains constant),

but it is always bounded away from zero (θb 6= 0). So let µ∗ be the limit of µb as q0
2 → 1

and consider any µ < µ∗. As q0
2 → 1, (6) goes to

[βt
2Pr(Si|V3) − βt

3Pr(Si|V2)] +
qt
1

qt
3

[βt
1Pr(Si|V2) − βt

2Pr(Si|V1)].

Let λ∗ solve

[βt
2Pr(Si|V3) − βt

3Pr(Si|V2)] + λ∗[βt
1Pr(Si|V2) − βt

2Pr(Si|V1)] = 0.

Then in the limit case, buy-herding starts once
qt
1

qt
3

< λ∗. Consider a history that consists

only of b no-herd buys. Then

qt
1

qt
3

=

(

µPr(S3|V1) + γ

µPr(S3|V3) + γ

)b

⇔ ∃b∗ ∈ R such that

(

µPr(S3|V1) + γ

µPr(S3|V3) + γ

)b∗

= λ∗.

Define ⌈b∗⌉ to be the smallest integer larger than b∗, so that after ⌈b∗⌉ buys, herding

starts. When q0
2 < 1, the third term in (6) is non-zero, but as q0

2 → 1, the term gets

arbitrarily small. Thus there exists a threshold q̄0
2 so that for all q0

2 > q̄0
2, after exactly

⌈b∗⌉ no-herd buys, (6) is indeed positive. In other words, as the probabilities of V1 and V3

are sufficiently small, the number of trades necessary for herding is ⌈b∗⌉. Finally, using

that q0
2 = 1 − 1

n
, the public expectation after b̄ buys

E[V |Ht = {b̄ no-herd buys}] →n→∞ V2.

Then for any ǫ, exists n so that E[V |Ht = {b̄ no-herd buys}] ∈ (V2, V2 + ǫ).
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Proof of Proposition 6

The fourth part of Proposition 6, (d), is trivially true. To prove (a) − (c), we first show

that for any Ht = (a1, . . . , ar+b+s) satisfying the above we have that E[V |Ht] − En[V |Ht]

has the same sign as

[(β3β2,n)b(σ3σ2,n)s − (β3,nβ2)
b(σ3,nσ2)

s] +
qr
1

qr
3

[(β2β1,n)b(σ2σ1,n)s − (β2,nβ1)
b(σ2,nσ1)

s](23)

+2
qr
1

qr
2

[(β3β1,n)b(σ3σ1,n)s − (β3,nβ1)
b(σ3,nσ1)

s].

To see that (23) holds, observe

E[V |Ht] − En[V |Ht] = V{(qt
2 − qt

2,n) + 2(qt
3 − qt

3,n)}

= V

{

qr
2

(

βb
2σ

s
2

∑

i q
r
i β

b
i σ

s
i

−
βb

2,nσs
2,n

∑

i q
r
i β

b
i,nσs

i,n

)

+ 2qr
3

(

βb
3σ

s
3

∑

i q
r
i β

b
i σ

s
i

−
βb

3,nσs
3,n

∑

i q
r
i β

b
i,nσs

i,n

)}

Therefore,

E[V |Ht] − En[V |Ht] ∝ qr
2q

r
1[(β2β1,n)b(σ2σ1,n)s − (β2,nβ1)

b(σ2,nσ1)
s]

+2qr
3q

r
1[(β3β1,n)b(σ3σ1,n)s − (β3,nβ1)

b(σ3,nσ1)
s]

+qr
3q

r
2[(β3β2,n)b(σ3σ2,n)s − (β3,nβ2)

b(σ3,nσ2)
s]

Dividing the RHS of the above and rearranging we have

E[V |Ht] − En[V |Ht] ∝ [(β3β2,n)b(σ3σ2n)s − (β3,nβ2)
b(σ3,nσ2)

s] (24)

+
qr
1

qr
3

[(β2β1,n)b(σ2σ1,n)s − (β2,nβ1)
b(σ2,nσ1)

s]

+
2qr

1

qr
2

[(β3β1,n)b(σ3σ1,n)s − (β3,nβ1)
b(σ3,nσ1)

s]

We can now manipulate (23) and write that E[V |Ht] − En[V |Ht] has the same sign as

[(β3β2,n)b − (β3,nβ2)
b](σ3σ2,n)s + [(σ3σ2,n)s − (σ3,nσ2)

s](β3,nβ2)
b

+
qr
1

qr
3

{

[(β2β1,n)b − (β2,nβ1)
b](σ2σ1,n)s + [(σ2σ1,n)s − (σ2,nσ1)

s](β2,nβ1)
b
}

+
2qr

1

qr
2

{

[(β3β1,n)b − (β3,nβ1)
b](σ3σ1,n)s + [(σ3σ1,n)s − (σ3,nσ1)

s](β3,nβ1)
b
}
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Next we expand the above to obtain that E[V |Ht] − En[V |Ht] has the same sign as

{

(σ3σ2,n)s[β3β2,n − β3,nβ2]
∑b−1

τ=0(β3β2,n)b−1−τ (β3,nβ2)
τ

+(β3,nβ2)
b[σ3σ2,n − σ3,nσ2]

∑s−1
τ=0(σ3σ2,n)s−1−τ (σ3,nσ2)

τ

}

+
qr
1

qr
3

{

(σ2σ1,n)s[β2β1,n − β2,nβ1]
∑b−1

τ=0(β2β1,n)b−1−τ (β2,nβ1)
τ

+(β2,nβ1)
b[σ2σ1,n − σ2,nσ1]

∑s−1
τ=0(σ2σ1,n)s−1−τ (σ2,nσ1)

τ

}

+2
qr
1

qr
2

{

(σ3σ1,n)s[β3β1,n − β3,nβ1]
∑b−1

τ=0(β3β1,n)b−1−τ (β3β1)
τ

+(β3,nβ1)
b[σ3σ1,n − σ3,nσ1]

∑s−1
τ=0(σ3σ1,n)s−1−τ (σ3,nσ1)

τ

}

(25)

To prove (a), we show that E[V |Ht] − En[V |Ht] > 0 if s = 0.

Since β3 > β2 > β1 and β3,n > β2,n > β1,n it follows that

b−1
∑

τ=0

(β3β2,n)b−1−τ (β3,nβ2)
τ >

b−1
∑

τ=0

(β2β1,n)b−1−τ (β2,nβ1)
τ

b−1
∑

τ=0

(β3β2,n)b−1−τ (β3,nβ2)
τ >

b−1
∑

τ=0

(β3β1,n)b−1−τ (β3β1)
τ

Since there is herding at r, by Step 1 of the proof of Proposition 4 we have

[β2Pr(Si|V3) − β3Pr(Si|V2)] +
qr
1

qt
3

[β1Pr(Si|V2) − β2Pr(Si|V1)]

+2
qr
1

qr
2

[β1Pr(Si|V3) − β3Pr(Si|V1)]
> 0 (26)

Also, note that

β3β2,n − β3,nβ2 = µ[β2Pr(S2|V3) − β3Pr(S2|V2)] > 0

β3β1,n − β3,nβ1 = µ[β1Pr(S2|V3) − β3Pr(S2|V1)] < 0

β2β1,n − β2,nβ1 = µ[β1Pr(S2|V2) − β2Pr(S2|V1)] < 0

(27)

(The inequalities follow from 0 < µ < µb.) Therefore, using (26) we have

[β3β2,n − β3,nβ2] +
qr
1

qt
3

[β2β1,n − β2,nβ1] +
2qr

1

qr
2

[β3β1,n − β3,nβ1] > 0 (28)
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By (27) and (6), this implies that for s = 0, (25) is positive, because (25) is just

[(β3β2,n) − (β3,nβ2)]
b−1
∑

τ=0

(β3β2,n)b−1−τ (β3,nβ2)
τ

+
qr
1

qr
3

{

(β2β1,n − β2,nβ1)
b−1
∑

τ=0

(β2β1,n)b−1−τ (β2,nβ1)
τ

}

+2
qr
1

qr
2

{

(β3β1,n − β3,nβ1)
b−1
∑

τ=0

(β3β1,n)b−1−τ (β3β1)
τ

}

> 0

But this implies that E[V |Ht] − En[V |Ht] > 0 for s = 0.

We now show (b), i.e. that if b = 0 and E[V |S2, Ht] > pB
t then E[V |Ht]−En[V |Ht] < 0.

First, since σ1 > σ2 > σ3 and σ1,n > σ2,n > σ3,n it follows that

s−1
∑

τ=0

(σ3σ2,n)s−1−τ (σ3,nσ2)
τ <

s−1
∑

τ=0

(σ2σ1,n)s−1−τ (σ2,nσ1)
τ (29)

s−1
∑

τ=0

(σ3σ2,n)s−1−τ (σ3,nσ2)
τ <

s−1
∑

τ=0

(σ3σ1,n)s−1−τ (σ3,nσ1)
τ (30)

Next, since there is herding at r it must be that E[V |S2, Hr] > pB
r . By Step 2 in the proof

of Proposition 4 this implies

[σ2Pr(S2|V3) − σ3Pr(S2|V2)] +
qr
1

qr
3

[σ1Pr(S2|V2) − σ2Pr(S2|V1)]

+2
qr
1

qr
2

[σ1Pr(S2|V3) − σ3Pr(S2|V1)]
> 0 (31)

Simple computation shows that

σ3σ2,n − σ3,nσ2 = −µ[σ2Pr(S2|V3) − σ3Pr(S2|V2)]

= −µ2ρ23
12 + µγ(Pr(S2|V2) − Pr(S2|V3)) < 0

σ3σ1,n − σ3,nσ1 = −µ[σ1Pr(S2|V3) − σ3Pr(S2|V1)]

< −µ[σ1Pr(S2|V2) − σ2Pr(S2|V1)]

= σ2σ1,n − σ2,nσ1

(32)

Therefore, (31) is equivalent to

[σ3σ2,n − σ3,nσ2] +
qr
1

qr
3

[σ2σ1,n − σ2,nσ1] +
2qr

1

qr
2

[σ3σ1,n − σ3,nσ1] < 0, (33)

where the LHS is merely (24) with b = 0. The first term on LHS is negative, whereas at
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first blush, the signs of the second and third term seem indeterminate.

However, at time 0, we require (31) to be negative as the S2-type’s expectation must

be below the bid-price. Then (33) must be positive, and thus at least one term on the

LHS must be positive. Moreover, by (32) at least the second term must be positive,

σ2σ1,n − σ2,nσ1 > 0. So far the sign of the third term is indeterminate, but requiring

µ > µhb, ensures it is negative. In summary,

[σ2σ1,n − σ2,nσ1] > 0 > [σ3σ1,n − σ3,nσ1] (34)

Consider now the situation after s sales. If s = 1, the claim is obviously true since (33)

and (31) have the same sign. Suppose now, that s > 1 and that herding prevails. Then

(31) can be written as

[σ3σ2,n − σ3,nσ2] +
qr
1

qr
3

(

σ1

σ3

)s

[σ2σ1,n − σ2,nσ1] +
2qr

1

qr
2

(

σ1

σ2

)s

[σ3σ1,n − σ3,nσ1] (35)

Likewise, since b = 0, we can write (25) as

[(σ3σ2,n) − (σ3,nσ2)]
∑s

τ=0(σ3σ2,n)s−τ (σ3,nσ2)
τ

+
qr
1

qr
3

{(σ2σ1,n − σ2,nσ1)
∑s

τ=0(σ2σ1,n)s−τ (σ2,nσ1)
τ}

+2
qr
1

qr
2

{(σ3σ1,n − σ3,nσ1)
∑s

τ=0(σ3σ1,n)s−τ (σ3σ1)
τ} .

This expression can be rearranged to be

[σ3σ2,n − σ3,nσ2] +
qr
1

qr
3

Ps
τ=0

(σ2σ1,n)s−τ (σ2,nσ1)τPs
τ=0

(σ3σ2,n)s−τ (σ3,nσ2)τ [σ2σ1,n − σ2,nσ1]

+
2qr

1

qr
2

Ps
τ=0

(σ3σ1,n)s−τ (σ3σ1)τPs
τ=0

(σ3σ2,n)s−τ (σ3,nσ2)τ [σ3σ1,n − σ3,nσ1]
(36)

Since (35) is a rewriting of pB
t − E[V |S2, Hr+b+s], and (36) is a rewriting of E[V |Ht] −

En[V |Ht]. Our aim is to learn the sign of (36) from the sign of (35), which we know to be

negative by assumption.

The first terms in both (35) and (36) are identical, the second terms are positive, the

third terms are negative. Sales will increase the weights on both the second term, and

third terms. Of course, the effect on the second terms will always be stronger as otherwise

the herd would never be broken. Thus sales put “strain” on the inequality being negative.

We now argue that the effect of the sales on the negative second term in (35) is stronger

than in (36) and the effect on the positive third term is smaller in (35) than in (36). Both
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together ensure that if the LHS in (35) is negative, so is the LHS in (36). Formally,

(

σ1

σ3

)s

>

∑s

τ=0(σ2σ1,n)s−τ (σ2,nσ1)
τ

∑s

τ=0(σ3σ2,n)s−τ (σ3,nσ2)τ
,

(

σ1

σ2

)s

<

∑s

τ=0(σ3σ1,n)s−τ (σ3σ1)
τ

∑s

τ=0(σ3σ2,n)s−τ (σ3,nσ2)τ
. (37)

Simple manipulations of the first expression show that

(

σ1

σ3

)s

>

∑s
τ=0(σ2σ1,n)s−τ (σ2,nσ1)

τ

∑s
τ=0(σ3σ2,n)s−τ (σ3,nσ2)τ

⇔

s
∑

τ=0

σ2
s−τσ2,n

τ (σ1σ3)
τ
(

(σ1σ3,n)s−τ − (σ3σ1,n)s−τ
)

> 0,

and the last inequality is satisfied since σ1σ3,n > σ3σ1,n. Likewise, the second inequality

in (37) simplifies to

(

σ1

σ2

)s

<

∑s
τ=0(σ3σ1,n)s−τ (σ3σ1)

τ

∑s
τ=0(σ3σ2,n)s−τ (σ3,nσ2)τ

⇔
s
∑

τ=0

σ3
s−τσ3,n

τ (σ1σ2)
τ
(

(σ2σ1,n)s−τ − (σ1σ2,n)s−τ
)

> 0,

and the last inequality holds because of (34). Consequently, sales have a stronger effect

on the difference between bid-price and S2-expectation than on the difference between

the sale transaction prices (the public expectations). For further sales, the result holds

recursively: increasing s by single integers, in (36) we can substitute the coefficients before

the second and third terms with the more extreme coefficients from (35).

In summary, bid-prices in the rational case stay below prices in the näıve case.

For (c) we reformulate (24) as

(β3β2,n)b

(β3,nβ1)b

[

(σ3σ2n)s −
(β3,nβ2)

b

(β3β2,n)b
(σ3,nσ2)

s

]

+
qr
1

qr
3

(β2,nβ1)
b

(β3,nβ1)b

[

(β2β1,n)b

(β2,nβ1)b
(σ2σ1,n)s − (σ2,nσ1)

s

]

+
2qr

1

qr
2

[

(β3β1,n)b

(β3,nβ1)b
(σ3σ1,n)s − (σ3,nσ1)

s

]

. (38)

For each term in (24) we factored out the parts that relate to buys. By (27), these were

the largest parts. We then divided the entire expression by (β3,nβ1)
b.

Again by (27), for b → ∞, the first term is positive whereas the second and third

terms are negative. Since β2,nβ1 < β3,nβ1, the second term vanishes as b → ∞.

To render the entire equation (38) negative, we need that the first term also vanishes,

β3β2,n < β3,nβ1: this be the case, all terms but −(σ3,nσ1)
s vanish. Simple manipulation

of β3β2,n − β3,nβ1 shows that the conditions stated in the proposition straightforwardly

ensure this difference to be negative.
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Proof of Proposition 7

For monotonicity in the sense of Definition 3, we need to understand E[V |S2, Ht]−E[V |Ht].

This relation can be derived similarly to equation (6) and it is

E[V |Si, Ht] − E[V |Ht] ∝
Pr(Si|V3) − Pr(Si|V2) +

qt
1

qt
3

[Pr(Si|V2) − Pr(Si|V1)]

+
2qt

1

qt
2

[Pr(Si|V3) − Pr(Si|V1)].
(39)

If S2’s distribution is monotonic in V , then it is immediately obvious that

Pr(S2|V3) − Pr(S2|V2), Pr(S2|V2) − Pr(S2|V1), and Pr(S2|V3) − Pr(S2|V1)

have the same sign. Consequently, examining the RHS of (39) with Si = S2, for any

trading history, E[V |S2, Ht] − E[V |Ht] will be either always positive (if S2’s distribution

is monotonically increasing in V ) or always negative (if S2’s distribution is monotonically

decreasing in V ).

B Distributions Used for Numerical Computations

For Figure 1 we use

κb/(3 + κb) = 0.7656

θb/(3 + θb) = 0.9215

V = (0, 10, 20),

Pr(V ) = (1/10, 4/5, 1/10), and

Pr(S|V ) V1 V2 V3

S1
40049
49000

4
49

0

S2
8951
49000

9
490

243
12250

S3 0 9
10

12007
12250

(40)

For Figures 2 and 3 we use

κb/(3 + κb) = 0.9496

θb/(3 + θb) = 0.4294

V = (0, 10, 20),

Pr(V ) = (1/100, 98/100, 1/100), and

Pr(S|V ) V1 V2 V3

S1
601
1000

27
100

0

S2
399
1000

18
100

245
1000

S3 0 55
100

755
1000

(41)
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