Problem Set 11

Solve before the classes May 13-15.

Exercise 1

Exercise 4.C.11 in Mas-Colell, Whinston and Green. Observe in part (a) that the demands are non-negative if $\mathrm{w}>8$ and $p=(1,1)$. In parts (b) and (c), feel free to assume $\mathrm{w}>8$ and $p=(1,1)$. On pages 114-115, the book provides a related discussion of Slutsky matrices.

Exercise 2

Exercise 4.D. 6 in Mas-Colell, Whinston and Green.

Exercise 3

In chapter 17, unlike in chapter 4, the income of the consumer is an endogenous function of the price vector. Let us study this situation. Consider a production economy with I consumers and J firms. Consumer i is assumed to have a uniquely defined demand function $x_{i}\left(p, \mathrm{w}_{i}\right)$, satisfying homogeneity of degree zero, Walras' Law, and the weak axiom (as in chapter 3). Firm j is supposed to have a well-defined supply function $y_{j}(p)$ (as in chapter 5) and profit function $\pi_{j}(p)$. Consumer i has the endogenous income $\mathrm{w}_{i}=p \cdot \omega_{i}+\sum_{j=1}^{J} \theta_{i j} \pi_{j}(p)$. Following the book's equation (17.B.3), let us define the production inclusive excess demand function as

$$
z(p)=\sum_{i=1}^{I} x_{i}\left(p, p \cdot \omega_{i}+\sum_{j=1}^{J} \theta_{i j} \pi_{j}(p)\right)-\sum_{i=1}^{I} \omega_{i}-\sum_{j=1}^{J} y_{j}(p) .
$$

a) Prove that z is homogeneous of degree zero, and satisfies Walras' Law that $p \cdot z(p)=0$.
b) Express $D z(p)$ using the derivatives of the demand and supply functions. Using Hotelling's Lemma (Prop. 5.C.1 (vi)), and the definition of the Slutsky matrix $S_{i}\left(p, \mathrm{w}_{i}\right)$, you should arrive at

$$
D z(p)=\sum_{i=1}^{I}\left[S_{i}\left(p, \mathrm{w}_{i}\right)+D_{w} x_{i}\left(p, \mathrm{w}_{i}\right)\left(\omega_{i}^{T}+\sum_{j=1}^{J} \theta_{i j} y_{j}^{T}(p)-x_{i}^{T}\left(p, \mathrm{w}_{i}\right)\right)\right]-\sum_{j=1}^{J} D y_{j}(p)
$$

c) Assume that the consumers' preferences are on the Gorman form as in Proposition 4.B.1. We noticed in the proof of Prop. 4.B.1, that then $D_{w} x_{i}\left(p, \mathrm{w}_{i}\right)=-(1 / b(p)) D b(p)$, the same for all consumers. Use this to simplify the above expression as

$$
D z(p)=\sum_{i=1}^{I} S_{i}\left(p, \mathrm{w}_{i}\right)-(1 / b(p)) D b(p) \sum_{i=1}^{I}\left(\omega_{i}^{T}+\sum_{j=1}^{J} \theta_{i j} y_{j}^{T}(p)-x_{i}^{T}\left(p, \mathrm{w}_{i}\right)\right)-\sum_{j=1}^{J} D y_{j}(p)
$$

d) If p is an equilibrium price, $z(p)=0$. Use this fact, and $\sum_{i=1}^{I} \theta_{i j}=1$, to conclude that at equilibrium, $D z(p)=\sum_{i=1}^{I} S_{i}\left(p, \mathrm{w}_{i}\right)-\sum_{j=1}^{J} D y_{j}(p)$. Recall that $S_{i}\left(p, \mathrm{w}_{i}\right)$ and $-D y_{j}(p)$ are symmetric and negatively semi-definite, and conclude that $D z(p)$ is symmetric and negatively semi-definite.

