Problem Set 4

Solve before the classes 4-6/3.

Exercise 1

The book introduces quasilinear preferences in its Definition 3.B.7, page 45. If the preferences are continuous and quasilinear with respect to commodity 1 , it can be proved that the preferences can be represented by a utility function written as $u(x)=x_{1}+\phi\left(x_{2}, \ldots, x_{L}\right)$, where $\phi: \mathbb{R}_{+}^{L-1} \rightarrow \mathbb{R}$ is a continuous function. We will not prove this result here.
a) Conversely, assume that a consumer, Kirsten, has consumption set $\mathbb{R} \times \mathbb{R}_{+}^{L-1}$ and preferences represented by a utility function $u(x)=x_{1}+\phi\left(x_{2}, \ldots, x_{L}\right)$. Prove that Kirsten's preferences are quasilinear with respect to commodity 1 .
b) Next, we wish to argue that Kirsten's demand for commodities $2, \ldots, L$ is independent of w. Assume thus that Kirsten takes as given a price vector $p \gg 0$ normalized with $p_{1}=1$. Assume that Kirsten finds the bundle x optimal when her wealth is w. Show, that the bundle $x^{\prime}=\left(x_{1}+\mathrm{w}^{\prime}-\mathrm{w}, x_{2}, \ldots, x_{L}\right)$ solves Kirsten's utility maximization problem at wealth w^{\prime}. Give this interpretation: a wealth change only affects commodity 1.
c) Argue that Kirsten's indirect utility function can be written as $v(p, \mathrm{w})=\mathrm{w}+\eta\left(p_{2}, \ldots, p_{L}\right)$ where $\eta: \mathbb{R}_{+}^{L-1} \rightarrow \mathbb{R}$ (we still confine attention to price vectors with $p_{1}=1$).
d) Assume further, that Kirsten's preferences are monotone and strictly convex, and that the function ϕ is differentiable. Continue to consider only price vectors with $p_{1}=1$. Argue that the first order conditions to Kirsten's utility maximization problem can be summarized as $\forall \ell=2, \ldots, L$:

$$
\frac{\partial \phi\left(x_{2}, \ldots, x_{L}\right)}{\partial x_{\ell}}=p_{\ell} \text { and } x_{\ell}>0 \quad \text { or } \quad \frac{\partial \phi\left(x_{2}, \ldots, x_{L}\right)}{\partial x_{\ell}} \leq p_{\ell} \text { and } x_{\ell}=0 .
$$

Exercise 2

Problems 3.E. 3 and 3.E. 4 of the book.

Exercise 3

Karl's consumption set is \mathbb{R}_{+}^{L}. His Cobb-Douglas preferences are representes by the utility function $u\left(x_{1}, \ldots, x_{L}\right)=\prod_{\ell=1}^{L} x_{\ell}^{a_{\ell}}$ with every $a_{\ell}>0$, and $\sum_{\ell=1}^{L} a_{\ell}=1$. In Exercise 4 of Problem Set 3 you found Karl's demand for $\operatorname{good} \ell$ as $x_{\ell}(p, \mathrm{w})=a_{\ell} \mathrm{w} / p_{\ell}$.
a) Write down Karl's indirect utility function $v(p, \mathrm{w})$.
b) Apply duality $u=v(p, e(p, u))$ to find Karl's expenditure function $e(p, u)$.
c) Find Karl's Hicksian demand function $h(p, u)$ from $e(p, u)$.
d) Show that h satisfies $\partial h_{\ell}(p, u) / \partial p_{k}=\partial h_{k}(p, u) / \partial p_{\ell}$. It this a general property?

