Problem Set 5

Solve before the classes March 12-14.

Exercise 1

Consider this constant elasticity of substitution (CES) utility function over L commodities, where $\sigma>0$ and $a_{\ell}>0$ are given constants, with $\sigma \neq 1$:

$$
u\left(x_{1}, \ldots, x_{L}\right)=\left(\sum_{\ell=1}^{L} a_{\ell}^{\frac{1}{\sigma}} x_{\ell}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}
$$

a) For any $p \gg 0$ and $u>0$, solve the expenditure minimization problem, using Lagrange's method as follows. Show that the first order condition for x_{k} can be written as

$$
p_{k}=\lambda u^{\frac{1}{\sigma}} a_{k}^{\frac{1}{\sigma}} x_{k}^{\frac{-1}{\sigma}}
$$

where λ is the Lagrange multiplier. Isolate here x_{k} to find $x_{k}=a_{k} p_{k}^{-\sigma} \lambda^{\sigma} u$ for every $k=$ $1, \ldots, L$. Plug this into the constraint $u(x)=u$ and isolate λ to get

$$
\lambda^{\sigma}=\left(\sum_{\ell=1}^{L} a_{\ell} p_{\ell}^{1-\sigma}\right)^{\frac{\sigma}{1-\sigma}}
$$

Now plug this λ back into your expression for x_{k} to arrive at the following:

$$
h_{k}(p, u)=a_{k} p_{k}^{-\sigma}\left(\sum_{\ell=1}^{L} a_{\ell} p_{\ell}^{1-\sigma}\right)^{\frac{\sigma}{1-\sigma}} u
$$

b) Using the result in a), show that the expenditure function is

$$
e(p, u)=\left(\sum_{\ell=1}^{L} a_{\ell} p_{\ell}^{1-\sigma}\right)^{\frac{1}{1-\sigma}} u
$$

Exercise 2

An indirect utility function $v: \mathbb{R}_{++}^{L} \times \mathbb{R}_{+} \rightarrow \mathbb{R}$ is said to be of the Gorman form if it can be written as $v(p, w)=a(p)+b(p) w$.
a) Assume that a preference relation \succsim can be represented by a utility function that is homogeneous of degree 1 (i.e. satisfies $u(\alpha x)=\alpha u(x))$. Prove that the corresponding indirect utility function is of the Gorman form.
b) Assume that a preference relation \succsim can be represented by the quasilinear utility function $u: \mathbb{R} \times \mathbb{R}_{+}^{L-1} \rightarrow \mathbb{R}$ where $u\left(x_{1}, \cdots, x_{L}\right)=x_{1}+\phi\left(x_{2}, \cdots, x_{L}\right)$. Prove that the corresponding indirect utility function is of the Gorman form.

Exercise 3

Exercise 3.G. 11 in Mas-Colell, Whinston, and Green. Hint: Apply Roy's identity. By a wealth expansion curve we mean the same as the wealth expansion path (see pages 24-25).

