Problem Set 9

Solve before the classes April 29 and May 2.

Exercise 1

Exercise 17.B. 1 in Mas-Colell, Whinston and Green.

Exercise 2

On page 588, the book defines $f(p)=\frac{1}{\alpha(p)}\left(p+z^{+}(p)\right)$ for all $p \in \Delta$. By definition, $\Delta=$ $\left\{p \in \mathbb{R}_{+}^{L} \mid p_{1}+\ldots+p_{L}=1\right\}$, and $z_{\ell}^{+}(p)=\max \left\{z_{\ell}(p), 0\right\}$, and $\alpha(p)=\sum_{\ell=1}^{L}\left[p_{\ell}+z_{\ell}^{+}(p)\right]$.
(i) Graph the function $\max \{y, 0\}$ with y a real variable, and observe that this is a continuous function of y with non-negative values. Now explain, that $z(p)$ continuous in p implies $z^{+}(p)$ continuous in p (do not forget that L coordinates are involved).
(ii) Prove that $p \in \Delta$ implies $\alpha(p) \geq 1$. Explain, that continuity of $z(p)$ implies continuity of $\alpha(p)$.
(iii) Explain that for any $p \in \Delta, z^{+}(p)$ is an L-dimensional vector while $\alpha(p)$ is a real number. Explain then, that $f(p)$ is an L-dimensional vector.
(iv) Finally verify, that $f(p) \in \Delta$ for any $p \in \Delta$. I.e., $f_{\ell}(p) \geq 0$ and $\sum_{\ell=1}^{L} f_{\ell}(p)=1$.

Exercise 3

(i) A consumer has CES utility on two goods, $u\left(x_{1}, x_{2}\right)=\left(x_{1}^{-2}+K x_{2}^{-2}\right)^{-1 / 2}$, where $K>0$ is a fixed constant. Solve this consumer's problem at prices $p=\left(p_{1}, p_{2}\right)$ and income w.
(ii) Let the consumer have initial endowments $\omega=(1,0)$, and find the demand function $x(p)$.
(iii) A similar consumer has utility $u\left(x_{1}, x_{2}\right)=\left(K x_{1}^{-2}+x_{2}^{-2}\right)^{-1 / 2}$ with the same constant K, and initial endowments $\omega=(0,1)$. Find this consumer's $x(p)$ (use your result from (ii)).
(iv) Now we aim to find all equilibria in an exchange economy consisting of those two consumers, where $K=(12 / 37)^{3}$. Let $p_{2}=1$, and use the variable $q=p_{1}^{1 / 3}$. Show that there is market clearing exactly when $0=12 q^{3}-37 q^{2}+37 q-12$. Show that $q=1$ solves this equation, and find the two remaining solutions.

