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Abstract

The utility maximizing consumer�s demand function may simultaneously possess
the Gi¤en property for any number of goods strictly less than all. By way of a simple
example it is possible to illuminate the preference characteristics conducive to such
a result.
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1 Introduction

Recent examples of simple, standard utility functions can be used to obtain a fuller un-

derstanding of the Gi¤en e¤ect in standard demand theory.1 The Gi¤en e¤ect arises when

a consumer�s demand for a good is locally increasing in the good�s own price. Micro-

economics textbooks often mention that the demand function for one good may possess

the Gi¤en property; that Gi¤en goods must be inferior; and that not all goods can be

simultaneously inferior. By implication, not all goods can be simultaneously Gi¤en.2

Here, the converse statement is explored. Any number but one of the goods can

simultaneously have the Gi¤en property. A particular price-income pair is held �xed, and

the demand for each good in question is locally a strictly increasing function of its own

price.3

Generalizing the main idea from Sørensen�s (2007) two-good analysis, the present ar-

ticle considers a consumer with utility function u(x) = minfu1(x); : : : ; uL(x)g, where

u1; : : : ; uL are themselves standard utility functions over L-good consumption bundles

x = (x1; : : : ; xL). The utility function u represents preferences for perfect complements in

the intermediate utility indices u1; : : : ; uL. Bearing in mind that the most popular exam-

ples of utility functions (perfect substitutes, perfect complements, Cobb-Douglas, constant

elasticity of substitution) derive the utility index as some weighted average of the consumed

amounts x1; : : : ; xL, it is natural to compound the average of such averages.4

Along the lines of Sørensen (2007), the focus is on the budget situations where the

consumer optimally demands a bundle x̂ at an intersection of the L indi¤erence surfaces,

u1 (x̂) = � � � = uL (x̂) = û. At such a corner of the indi¤erence surface u(x) = û, there

is no substitution e¤ect as the price changes. The consumer�s reaction to a small price

increase is then equivalent to the reaction to a small income reduction.5 A good now has

1Heijman and von Mouche (2009) survey the literature.
2For completeness, a new version of this result is spelled out towards the end of this article.
3Holding �xed only the price vector, but allowing the income to change, di¤erent goods can have the

Gi¤en property at di¤erent income levels. In this weaker sense it is possible for all goods to exhibit the
Gi¤en property at some price vector. An explicit example appears in Example 5 of Sørensen (2004).

4This construction of utility functions has been suggested before, see e.g. exercise 8.13 of Varian (1992)
and exercises 1.12(b) and 1.27 of Jehle and Reny (2001).

5Figure 17.E.1 of Mas-Colell et al. (1995) illustrates preferences of a very similar nature. The expansion
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the local Gi¤en property if and only if it is locally inferior. The only remaining problem is

then to place a backward-bending income expansion path, which is analytically simple.6

2 Utility

Let J; L 2 N. Consider a consumer with consumption set RL+ whose utility function

satis�es u(x) = minfu1(x); : : : ; uJ(x)g, where each uj is a function from RL+ to R. The

utility function u from RL+ to R satis�es many usual properties if each of the component

utility functions uj does so. Here is a list of such properties (see also Section 3.B of Mas-

Colell et al., 1995). Property (vi) is also known as convexity of the underlying preference

relation.

(i) Continuity: u is a continuous function.

(ii) Monotonicity: if y � x, then u (y) > u (x).

(iii) Strong Monotonicity: if y � x and y 6= x then u (y) > u (x).

(iv) Weak Monotonicity: if y � x then u (y) � u (x).

(v) Concavity: u is a concave function.

(vi) Quasi-Concavity: for any �u 2 R, the upper contour set
�
x 2 RL+ : u (x) � �u

	
is

convex.

(vii) Strict Quasi-Concavity: for any �u 2 R, any x; y 2 RL+ with x 6= y, and any � 2 (0; 1),

if u (x) � �u and u (y) � �u, then u (�x+ (1� �) y) > �u.

(viii) Homogeneity of Degree 1: u maps RL+ into R+, and u (�x) = �u (x) for all � 2 R+.

It is easy to verify that each of those 8 properties, one by one, is inherited by u from

u1; : : : ; uJ :

curves are parallel to the axes, providing a Gi¤en neutrality e¤ect, where the demand for a good does not
respond to a marginal change in its own price.

6constructing a utility function with Gi¤en demand, Mo¤att (2002) proceeds in the reverse direction.
He �rst takes the backward-bending income expansion path, and then attaches a string of nearly-kinked
indi¤erence curves to it.
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Lemma 1 Let n 2 fi; : : : ; viiig. Suppose that u1; : : : ; uJ all satisfy property (n). Then u

satis�es (n).

Proof. (i) min is a continuous function, and continuity is preserved by the composition

of functions. (ii) and (iii) Suppose y and x are as assumed in the property. By de�nition

of u there exists some j such that u (y) = uj (y). Given that uj satis�es the property, then

u (x) � uj (x) < uj (y) = u (y). (iv) Similar to (ii) and (iii), except that the assumption

is uj (x) � uj (y), which su¢ ces for the conclusion. (v) Let x; y 2 RL+ and � 2 [0; 1],

and verify Jensen�s inequality: u (�x+ (1� �) y) = minfu1(�x+ (1� �) y); : : : ; uJ(�x+

(1� �) y)g � minf�u1 (x)+(1� �)u1 (y) ; : : : ; �uJ (x)+(1� �)uJ (y)g � �u (x)+(1� �)u (y),

where the �rst inequality uses the concavity of the uj functions with min being increas-

ing in its arguments, and the second uses concavity of min. (vi) Suppose that x 2 RL+
and �u 2 R. From the de�nition of u, u (x) � �u if and only if for every j, uj (x) � �u.

Thus the upper contour set for u is the intersection of the J sets for u1; : : : ; uJ . Since

the intersection of convex sets is convex, (vi) follows. (vii) Suppose that �u; x; y; � are

given as stated, and that u (x) ; u (y) � �u. By the de�nition of u, there exists some j

such that u (�x+ (1� �) y) = uj (�x+ (1� �) y). As noticed in the proof of (vi), we

must have uj (x) ; uj (y) � �u. Since uj satis�es (vii), it follows that u (�x+ (1� �) y) =

uj (�x+ (1� �) y) > �u as desired. (viii) We obtain u(�x) = minfu1(�x); : : : ; uJ(�x)g =

minf�u1(x); : : : ; �uJ(x)g = �minfu1(x); : : : ; uJ(x)g = �u (x).

If the consumption set allows good 1 to vary throughout all of R, a straightforward

exercise proves that Lemma 1 also applies to this property of quasi-linearity with respect

to good 1: u (x+ �e1) = u (x) + � for all � 2 R, where e1 = (1; 0; : : : ; 0).

Lemma 1 can be generalized to handle the minimum of an in�nite family of utility

functions. Suppose thus that U (x) = minj2I u (x; j) where I is a compact set and u is

continuous. These assumptions guarantee that the minimum is achieved, but also imply

that U is continuous by the Theorem of the Maximum. It is a straightforward exercise

to see that the proof of Lemma 1 can be modi�ed to show that the other 7 properties

(ii),. . . ,(viii) of u (�; j) are again inherited by U .

The following standard result will be useful in the remainder.
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Lemma 2 Suppose that u is a function from RL+ to R satisfying (i) continuity, (ii)

monotonicity and (vi) quasi-concavity. For any x 2 RL+, there exists p 2 RL+ such that

u (y) > u (x) implies p � y > p � x. If u is di¤erentiable at x with ru (x) 6= 0, then p must

be proportional to ru (x).

Proof. First, let A =
�
y 2 RL+ju (y) > u (x)

	
. Properties (i) and (vi) imply that A is

open and convex, and x =2 A by construction. A standard separation theorem for convex

sets, such as 11.2 in Rockafellar (1970), yields the existence of p 2 RL with p � y > p � x

for all y 2 A. Also, p � 0 is necessary since (ii) implies that fxg + RL++ � A. Second,

suppose that u is di¤erentiable at x with ru (x) 6= 0. If p is not proportional to ru (x),

then there exists z 2 RL with p � z < 0 < ru (x) � z. By di¤erentiability, there exists

" > 0 with u (x+ "z) > u (x), so that x + "z 2 A. The separation result then implies

p � (x+ "z) > p � x, in contradiction to p � z < 0.

3 Demand

Suppose L � 2. Given income m > 0 and price vector p = (p1; : : : ; pL) 2 RL++, the con-

sumer chooses x = (x1; : : : ; xL) to maximize utility u (x) subject to the budget constraint

p � x = p1x1 + � � �+ pLxL � m. The maximand is the Marshallian demand x (p;m).

The Marshallian demand for good ` possesses the Gi¤en property at price-income pair

(p;m) if there is a strictly positive marginal response in x` (p;m) to a partial change in p`.

In the following, we will suppose that J = L and that the consumer�s utility function

satis�es u(x) = minfu1(x); : : : ; uL(x)g. We wish to study the consumer�s demand function

near a situation where the demanded bundle x sits at a kink of the indi¤erence surface for

u. Naturally, such a kink arises at x where u1 (x) = � � � = uJ (x) and the gradient vectors

ru1 (x) ; : : : ;ruJ (x) are linearly independent. Note that such a point x would not de�ne

a kink of the indi¤erence surface if J < L, and that J � L of the functions uj would be

redundant in the de�nition of the utility function u near x if J > L. Hence, the remainder

of the text assumes J = L.

Proposition 3 Suppose that u1; : : : uL all satisfy (i) continuity, (ii) monotonicity and (vi)
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quasi-concavity. Assume that x̂ 2 RL++ solves u1 (x̂) = � � � = uL (x̂), that u1; : : : ; uL are C1

at x̂, and that the gradient vectors ru1 (x̂) ; : : : ;ruL (x̂) are linearly independent. Take

as given any price vector p̂ = �1ru1 (x̂) + � � �+ �LruL (x̂) with (�1; : : : ; �L)� 0, and let

m̂ = p̂ � x̂. De�ne d̂ 2 RL n f0g by

d̂ =
�
1 � � � 1

� �
ru1 (x̂) j � � � j ruL (x̂)

��1
: (1)

If d̂` < 0, then good ` is a Gi¤en good near (p̂; m̂) for the consumer with utility function

u.

Proof. First, observe that x̂ is a solution to the utility maximization problem given

(p̂; m̂). De�ne û 2 R by û = u1 (x̂). By de�nitions, x̂ is feasible in the problem and

achieves utility level û. Consider any y 2 RL+ with u (y) > û. Observe that for any j,

uj (y) � u (y) > û = uj (x̂). By Lemma 2 applied to uj, then ruj (x̂) � y > ruj (x̂) � x̂.

Since every �j > 0, it follows that p̂ � y > p̂ � x̂ = m̂, so any such y lies outside the budget

set. Second, by the Theorem of the Maximum, the maximal utility that the consumer

can achieve is a continuous function of (p;m). Since the utility functions uj are C1, and

since the gradient vectors are linearly independent, the �rst part of the proof extends to

an open region of price-income pairs (p;m) near (p̂; m̂), in which region a solution x (p;m)

near x̂ to the utility maximization problem solves the equations u1 (x (p;m)) = � � � =

uL (x (p;m)) = ~u (p;m) for some ~u (p;m) near û. Third, an increase in the price of good `

will ceteris paribus decrease the utility level, so the demanded bundle x moves along the

curve solving u1 (x) = � � � = uL (x) = ~u for decreasing utility level ~u. The claim is then

that x` is a decreasing function of ~u when d̂` < 0. This follows from an application of the

implicit function theorem to the L equations u1 (x) = ~u; : : : ; uL (x) = ~u.

The proposition actually veri�es a stronger property than Gi¤en�s when more than one

good is involved. If the entries in d̂ are negative for all of some subset K of the goods, then

holding �xed the income as well as prices of all other goods, the Marshallian demand for

all K goods in the subset will increase when all their prices are simultaneously marginally

increased.

The proposition exploits the zero substitution e¤ect at a kink in the indi¤erence curve.
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This extreme can be relaxed through approximation. The function minfu1; : : : ; uLg is ap-

proximated by the constant elasticity of substitution (CES) function (u�1 + � � �+ u
�
L)
1=� as

�! �1. If u1; : : : ; uL are concave functions of x, then also u (x) = (u�1 (x) + � � �+ u
�
L (x))

1=�

is concave in x. The function u therefore represents continous, monotone, convex prefer-

ences. When �� is su¢ ciently large, all indi¤erence curves near x̂ are su¢ ciently close to

those of minfu1(x); : : : ; uL(x)g, and the sign of d̂ determines whether the good is Gi¤en

also in the CES case.

4 Example

An example will illustrate how the proposition can be applied to construct demand func-

tions with local Gi¤en behavior. Let L � 2. Suppose that each uj is of the familiar

Cobb-Douglas form

uj (x1; : : : ; xL) = x
aj1
1 � � �xajLL ; (2)

with strictly positive constants aj1; : : : ; ajL. This utility function satis�es (i) continuity,

(ii) monotonicity and (vi) quasi-concavity. Speci�cally, we will suppose that the vectors

a1; : : : ; aL 2 RL+ are de�ned by aj = (1; : : : ; 1; b; 1; : : : ; 1) =cj with b > 1 in the j�th coordi-

nate, and cj � b+ L� 1. Since aj1 + � � �+ ajL � 1, the utility function uj is concave.

For the sake of the example, focus will be on the consumption bundle x̂ = (1; : : : ; 1).

For û = 1, we have uj (x̂) = û; and uj is C1 at x̂ with ruj (x̂) = a0j. The assumptions of

the proposition are satis�ed, so calculation of the vector d̂ helps to determine which are

Gi¤en goods at x̂. It is simple to verify that

�
ru1 (x̂) j � � � j ruL (x̂)

��1
= G (3)

where row j of matrix G is

gj =
cj

b (b+ L� 2)� (L� 1) [�1; : : : ;�1; b+ L� 2;�1; : : : ;�1] (4)

with b+ L� 2 in the j�th coordinate. Note that b > 1 and L � 2 imply b+ L� 2 > 1 as

well as b (b+ L� 2)� (L� 1) > 0.
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Now, it follows from (1) that

d̂` =

LX
j=1

gj` =
c` (b+ L� 2)�

P
j 6=` cj

b (b+ L� 2)� (L� 1) : (5)

Since the denominator is positive, it should be clear that the sign of d̂` is determined by

the relative size of c` to
P

j 6=` cj. In particular, d̂` < 0 and ` is a local Gi¤en good around

the price-income pairs de�ned in the proposition, when c` is su¢ ciently relatively small.

The only assumption is that each such positive constant is at least b + L� 1, so it is not

hard to make all but one such constant relatively small (by making the last one very large).

For an illustration, let 1 � k < L and suppose that b+L� 1 � c1 = : : : = ck < ck+1 =

: : : = cL. Each of the �rst k goods will simultaneously be local Gi¤en goods provided

c1 (b+ L� 2� k + 1) < (L� k) cL. This is true when cL is su¢ ciently large.

A natural interpretation of the utility function minfu1(x); : : : ; uL(x)g follows from

Lancaster�s (1966) new consumer theory, in which consumers care about characteristics

produced by the purchased bundle. In the present context, think of the concave Cobb-

Douglas functions as production functions.7 The assumption that b > 1 means that factor

` is relatively essential for the production of characteristic `. The illustration then provides

the important insight that, given the existence of a kink point x̂, good ` is more likely

to be Gi¤en if c` is relatively large. This means that the production of characteristic `

o¤ers a relatively high marginal return to all its inputs. The following intuitive reason can

then explain the Gi¤en property. When the price of good ` rises, the production of all

characteristics will be scaled back. Since characteristics are perfect complements, those

with lower marginal returns can scale back their relatively essential factors a lot for a small

reduction in the characteristic. In turn, this scaling back would give too great a reduction

in the high-marginal return characteristic ` if it were not for an increase in its relatively

essential factor `.
7This interpretation does not permit the consumer to allocate inputs in di¤erent proportions across

productive activities. Lancaster (1966) formulates the model both with and without such a possibility.
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5 Converse

As already mentioned in the introduction, it is commonly accepted that there cannot

exist a price-income pair at which all L goods are simultaneously Gi¤en. The standard

derivation of this result goes via the Slutsky equation. The argument thus invokes an

assumption of di¤erentiability of the demand function which needs not always be satis�ed.

For the sake of completeness, here is a result derived from �rst principles.

The solution to the utility maximization problem must satisfy the following weak axiom

of revealed preferences (WARP). Given two pairs (p;m) ; (p0;m0) 2 RL+1++ , if x (p;m) 6=

x (p0;m0) and if p �x (p0;m0) � m then p0 �x (p;m) > m0. Interpreting this, p �x (p0;m0) � m

implies that x (p0;m0) is a feasible choice at (p;m), so that utility maximization reveals

the preference relation u (x (p;m)) > u (x (p0;m0)).8

For convenience, it will be assumed that the demand function is continuous. The

only purpose of this assumption in the argument is to ensure that there is a neighbor-

hood around the hypothetical L Gi¤en good point (p;m) in which the demand function is

bounded away from zero in all coordinates. Continuity of the demand function can be de-

rived as a necessary implication of properties (i) continuity and (vii) strict quasi-concavity

of the utility function.

Proposition 4 Suppose that the demand function is continuous. There does not exist

any (p;m) 2 RL+1++ with the property that for all ` 2 f1; : : : ; Lg, good ` is is Gi¤en in a

neighborhood of (p;m).

Proof. Suppose to the contrary that such (p;m) 2 RL+1++ exists. The proof will seek

a contradiction. Denote x0 = x (p;m). Observe that x0 � 0 since the non-negative

consumption of every good will be strictly smaller when its own price falls. Observe also

that p � x0 = m, for there would otherwise exist p̂ = p + "p1 close enough to p with

" > 0 such that p̂ � x0 � m, in contradiction to the WARP because x (p̂;m) 6= x0 and

p � x (p̂;m) � p̂ � x (p̂;m) � m. Denote `1 = 1. Choose p1 2 RL++ close to p such that

p1` = p` for all ` 6= `1; and p1`1 > p`1. Denote x1 = x (p1;m). Observe that x1`1 > x0`1 � 0
8See for instance chapters 1�3 in Mas-Colell, Whinston and Green (1995) for details.
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since `1 is a local Gi¤en good. Also, p �x1 < p1 �x1 � m = p �x0; ruling out x1 � x0. Hence,

there exists some `2 2 f2; : : : ; Lg with the property that x1`2 < x0`2. Next, choose p2 2 RL++
such that p2` = p` for all ` 6= `2; and

�
p1`1 � p`1

�
x1`1 =

�
p2`2 � p`2

�
x1`2. Denote x

2 = x (p2;m).

Note that p2 is arbitrarily close to p when p1 was chosen close enough to p. By construction,

p2 � x1 = p`1x
1
`1 + p

2
`2x

1
`2 +

P
` 6=`1;`2 p`x

1
` = p1`1x

1
`1 + p`2x

1
`2 +

P
` 6=`1;`1 p`x

1
` = p1 � x1 � m.

Since `2 is a local Gi¤en good, x2`2 > x0`2 > x1`2, so x
2 6= x1. By the WARP, we have

u (x2) > u (x1) and p1 � x2 > m � p2 � x2. Expanding this inequality, observe that�
p1`1 � p`1

�
x2`1 >

�
p2`2 � p`2

�
x2`2 >

�
p2`2 � p`2

�
x1`2 =

�
p1`1 � p`1

�
x1`1, implying x

2
`1 > x1`1 >

x0`1. Re-iterating the previous argument, x
2 � x0 is impossible, so there must exist some

`3 6= `1; `2 with x2`3 < x0`3. Repeat this step inductively, until a �nal L-th iteration, in

which pL 2 RL++ is de�ned by pL` = p` for all ` 6= `L�1; and
�
pL�1
`L�1 � p`L�1

�
xL�1
`L�1 =�

pL`L � p`L
�
xL�1
`L
. Continuity of the demand function implies that if the �rst choice of p1

is su¢ ciently close to p, then every p2; : : : ; pL constructed in this fashion is so close to

p that all the Gi¤en properties hold. Again, u
�
xL
�
> u

�
xL�1

�
by the WARP, implying

xL`L�1 > xL�1
`L�1 > x0`L�1. The Gi¤en good property of L and the result of the previous

induction step give xL`L > x0`L > xL�1
`L
. Also, for every z 2 f1; : : : ; L� 1g, u

�
xL
�
>

u
�
xL�z

�
implies pL�z � xL > m = pL � xL. This is expanded as

�
pL�z
`L�z � p`L�z

�
xL`L�z >�

pL`L � p`L
�
xL`L >

�
pL`L � p`L

�
xL�1
`L

=
�
pL�1
`L�1 � p`L�1

�
xL�1
`L�1 > � � � >

�
pL�z
`L�z � p`L�z

�
xL�z
`L�z .

Hence, xL`L�z > x
L�z
`L�z > x

0
`L�z for every z 2 f1; : : : ; L� 1g. Since also xL`L > x0`L , it follows

that xL � x0. This is the desired contradiction to p � xL < pL � xL = m = p � x0.
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