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Abstract
In the standard herding model, privately informed individuals sequentially see

prior actions and then act. An identical action herd eventually starts and public
beliefs tend to “cascade sets” where social learning stops. What behaviour is so-
cially efficient when actions ignore informational externalities? We characterize the
outcome that maximizes the discounted sum of utilities. Our four key findings are:
(a) Cascade sets shrink but do not vanish, and herding should occur but less readily
as greater weight is attached to posterity.
(b) An optimal mechanism rewards individuals mimicked by their successor.
(c) Cascades cannot start after period one under a signal logconcavity condition.
(d) Given this condition, efficient behaviour is contrarian, leaning against the my-
opically more popular actions in every period.

We make two technical contributions: As value functions with learning are not
smooth, we use monotone comparative statics under uncertainty to deduce optimal
dynamic behaviour. We also adapt dynamic pivot mechanisms to Bayesian learning.
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1 INTRODUCTION
“What we have here is failure to communicate.” — Cool Hand Luke (1967)

In the benchmark ideal, markets fully aggregate dispersed information. When this does
not happen, economics can be subtle and surprising. For instance, the possible collapse
of trade with asymmetric information in Akerlof (1970) made sense of warranties and
paved the way to the no-trade theorems in finance. In the last quarter century, the most
cited new example of the failure of information communication has been informational
herding. Here, the problem arises when privately-informed and like-minded individuals
sequentially act, after seeing prior actions. When action menus are finite — like investing
or not investing — different private signals are pooled into the same action, and as a
result, the learning process eventually breaks down in a striking way: The public history
of past actions overwhelms all later private signals and a herd on some action starts.1

In the herding model, everyone Bayes-updates the public belief — the posterior given
the public history — with their endowed private signal. If private signals are boundedly
strong, then strong enough public beliefs overwhelm them. BHW called this a cascade,
and it guarantees a herd. In a cascade, actions reflect no new private signals, and so the
public belief is no longer updated, in a failure of information aggregation.

This paper optimally resolves the failure to communicate in informational herding:
We formulate and solve the welfare problem for this paradigm. To do so, we set up the
experimentation exercise by an infinite-lived planner who devises individual choice rules,
i.e., how to map private signals to observable actions. We also introduce a pivotal transfer
scheme that decentralizes our solution. This is the first solution of the social planner’s
problem for the herding problem, amidst a vast literature on this topic. Our solution
radically generalizes Banerjee’s original 1992 conjectured solution.

This paper then derives long-run and short-run characterization results of the planner’s
solution. We first show that the cascade set of public beliefs shrinks as the planner places
higher weight on the welfare of future individuals. For our second major finding, we assert
that the social planner should reduce the mimicry chance at the margin: Specifically, we
show that individuals should act in this contrarian way: the more likely is a state, the
more individuals should lean against the actions optimal in that state. This is optimal
whenever the private signals obey an intuitive and often met condition that we describe
below in (1). This result offers clear behavioural predictions that apply in every period.

1Respectively, these are insights of Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992)
(or BHW), and Smith and Sørensen (2000) (or SS). Chamley (2004) is an excellent distillation.
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Our paper makes four distinct novel contributions to dynamic information economics.
1. Optimal Dynamic Information Design. Proposition 1 derives a new index

rule for the social planner’s dynamic experimentation model. Individuals should take the
action with the highest social value — namely, the weighted average of the individual’s
private value of the action and the informational gain to society. Since social values
remain linear in private beliefs, the planner’s payoff frontier is also piecewise linear in this
private type. So the planner recommends each action for an interval of private beliefs.
But his desire to signal information entails current sacrifices. An agent might optimally
take myopically dominated actions, or take actions in a myopically suboptimal order
(Appendix G.1), such as the low action for high beliefs and the high action for low beliefs!

We then practically decentralize this behavioural rule with a pivotal transfer scheme
that affects the slope and intercept of the agent’s private value function. Proposition 3
devises a Vickrey-Clarke-Groves mechanism that punishes mimickers and rewards anyone
mimicked. This one-stage look-ahead scheme can internalize the informational externality
because the successor’s action is informative of the state. While this socially optimal
incentive scheme is new, it is reminiscent of how academia rewards authors for citations.

2. Cascade Sets Shrink but Don’t Vanish with Patience. The planner’s
experimentation solution has a simple long-run takeout message: Although cascade sets
shrink, they do not vanish, so cascading remains socially efficient, only for a smaller set
of public beliefs when posterity matters more (Proposition 2). To see why, note that
learning shuts down in a cascade if and only if the planner’s value function coincides with
the myopic value function (Claim B.5). But as the discount factor increases, optionality
is more valuable, and the value function naturally rises. Hence, the static and planner’s
value functions coincide for fewer public beliefs, and the cascade set shrinks (see Figure 3).
Finally, the planner’s solution inherits from the original herding model that public beliefs
converge to a cascade limit, and actions converge to a herd. The probability of a herd on
an ex-post suboptimal action falls to zero as the discount factor rises to one.

3. Posterior Monotonicity Precludes Cascades. We next prune problematic
updating behaviour from the herding model. Assume that two Bayesians Ike and Joe share
a prior belief on the high state. Ike acts on the basis of his private belief, and Joe then sees
this action choice, aware of Ike’s Bayes-rationality. Posterior monotonicity (PM) asserts:

prior belief rises → Joe’s posterior belief rises, conditional on a given action by Ike. (1)

2



While posterior monotonicity is a compelling property, it can fail in a herding model
since actions generate endogenous signals: For at higher prior beliefs, Ike takes any action
for less favorable private signals, and so his action less strongly endorses the high state.
For some signal distributions, this swamps the direct effect of a higher prior public belief.

Proposition 4 establishes that a log-concavity condition (LC) met by standard con-
tinuous signal distributions is equivalent to posterior monotonicity. Posterior monotonic-
ity failures play a pivotal role in many applications of the herding model, as SS showed
that delayed cascades (i.e., starting after period one) can arise only when posterior mono-
tonicity fails. In other words, the discrete signal distribution in BHW was not merely
illustrative, but forced the delayed cascades. Condition (LC) rules out delayed cascades.

4. Contrarianism. We conclude by exploring how the planner skews action choices
at the margin. In the standard selfish herding model, everyone is indifferent between
adjacent actions at fixed cutoff posterior beliefs. Proposition 5 deduces from posterior
monotonicity that contrarian behaviour is efficient—the planner’s cutoff private belief rises
in the public belief. This finding arises in every period, and so is testable, such as done in
Çelen and Kariv (2004). So a high action should be discouraged more as the public belief
rises. Intuitively, at a higher public belief, the lower action is less likely, and so is more of
a surprise. Thus, it is informationally more valuable. But when posterior monotonicity
fails, the logic fails. At the higher public belief, with fixed cutoff, the posterior actually
falls, which is already the desired effect — the planner needs not add to that.

Related Literature. Banerjee (1992) first proposed a remedy for the social learn-
ing externality: conceal early actions. Our planner could choose to imitate concealment
by dictating the resulting signal-to-action maps, but ignoring available information is in
general suboptimal from the planner’s own single-person decision problem perspective.2

Centrally planned social learning is a topical and important problem, and new optimal
mechanisms have recently been explored in applied settings.3

(a) Actions as Signals. Our informational design problem may resemble the prob-
lem at the core of Bayesian persuasion (Kamenica and Gentzkow, 2011): in each period,
our planner precommits to a state-dependent distribution over the actions that carry
public signals to successive agents. In case 2 of the example in §2, the Professor parti-
tions his private signals into one of two messages — one for each action — to maximize
his Student’s value. So a Bayesian persuasion problem transpires in every period of our

2Doyle (2010) explores a planner’s problem in Chamley and Gale’s endogenous-timing herding model.
3Actions include an unobserved information acquisition decision in Glazer, Kremer, and Perry (2015).
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model, but where (i) the objective function is the endogenous value function, and (ii) the
distribution over public signal realizations is constrained by the exogenously given private
signal distribution and the number of available private actions.

Dow (1991) first attacked this type of problem, in which an observed action summarizes
a private signal: A consumer observes a price realization, but in the next period can only
recall its partition interval. In the second and final period, another price realization is seen,
and a choice is made. The optimal determination of the first-period coarse price partition
is like our planner’s partition of signals. Like Dow, our planner trades off the present and
future, but the horizon is infinite, and he also struggles with an unknown state of the world.

(b) Socially Efficient Herding. Our planner’s optimum is also a team equilib-
rium, where everyone maximizes the present value of utilities. As with our contrarianism,
teams shy away more from more popular actions in Vives’s (1997) continuum-agent Gaus-
sian setting.4 March and Ziegelmeyer (2020) experimentally find evidence of contrarian
behaviour among altruistic agents.5 Our contrarianism relates to the excessive imitation
found in Eyster and Rabin (2014), but now in the traditional finite action herding setting.
It explains why agents in herding models may efficiently excessively rely on their own
signals, without assuming irrationality (Eyster and Rabin, 2010).

(c) Bayesian Experimentation. The bad herding outcome parallels the familiar
failure of complete learning in the two-armed bandit (Rothschild, 1974). Yet, the analogy
is puzzling: Easley and Kiefer (1988) prove that complete learning generically arises in
experimentation problems with finite state and action spaces, but the herding outcome
likewise arises in a model with finite actions and states. This puzzle is resolved by our
experimenting planner choosing a continuously defined signal-to-action map.6

The paper opens with a two-period example of our two substantive findings of the
planner’s model: shrinking cascade sets and contrariarism. It then explores in sequence the
social planner’s problem as an experimentation model; the implementation results from
our welfare indexes; the subtleties of dynamic information revelation; the way that cascade
sets shrink in patience; the novel monotone restriction on signals that precludes cascades,
and then the contrarianism finding that exploits this. Many proofs are appendicized.

4Vives always employs the normal learning model, ruling out results like ours on the distributional
shape’s importance. On the other hand, that model characterizes the long-run properties of learning by
the speed with which the public precision approaches infinity. Our analysis offers no analogy.

5In a related setting, Medrano and Vives (2001) describe behaviour that reveals less private information
as ‘contrarianism.’ We find it more natural that contrarian behaviour leans against the public belief.

6Pastorino and Kehoe (2011) seek monotonicity of the optimal rule in a dynamic setting similar to
ours. In their paper, the experimenter is constrained to choose from a finite set of interval partitions.
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Signal Densities

V (π) = (5π − 4 + 1/π)/2

U(π) = max(2π − 1, 1− 2π)

fL(σ)

fH(σ)

signal σ

Myopic Payoff and Value

public belief π

Figure 1: The Selfish Professor (§2). At left are the private signal densities on [0, 1]:
The likelihood odds favoring state H rise from 0 to 2 as the signal σ rises. At right are
∨-shaped myopic (expected) payoffs U(π) and value V (π) for the selfish Professor in the
public belief π. These apply to the selfish Student if plotted against continuation belief p.
In the cascade set [0, 1/3], signals are useless, and the value and expected payoff coincide,
V (π) = U(π). If π > 1/3, information is valuable, and so V (π) = 1

2
(5π−4+1/π) > U(π).

2 AN ILLUSTRATIVE TWO PERIOD EXAMPLE
Our paper proceeds indirectly, using recursion and dynamic programming. But we first
explicitly solve a simple two-period example that captures both of our main predictions of
the planner’s problem: shrinking cascade sets and contrarianism. Assume that economic
theory research fashion is captured by one of two unobserved states, either low-brow
theory L or high-brow theory H. A Professor and a Student share a prior belief π on
state H. Respectively, they observe conditionally independent draws σP , σS of a private
signal, with cdf’s FH(σ) = σ2 and FL(σ) = σ, and densities fH(σ) = 2σ and fL(σ) = 1,
as in Figure 1. Since the signal likelihood ratio fH(σ)/fL(σ) = 2σ in favor of state H
increases, higher signals σ lead to higher posterior beliefs p in state H. Also, low σ > 0

are arbitrarily powerful indicators of state L, but all σ < 1 have bounded power for H.
After seeing his signal, the Professor either starts a low-brow paper l or high-brow

paper h. His Student then learns from his paper choice, and makes his own paper selection.
Research pays 1 if the paper and state match, and −1 otherwise (Figure 1). If the Professor
updates to the posterior belief q in state H, his expected payoff is U(q)≡max(2q−1, 1−2q).

We compare two extreme motivations for the Professor: he selfishly only cares about
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his own expected payoffs, or he is entirely motivated by his Student’s expected payoffs.

Case 1: The Selfish Professor. Assume the Professor writes paper h when state H
is most likely — i.e. for posterior beliefs q ≥ 1/2. By Bayes rule, this happens when his
posterior likelihood ratio of states H to L exceeds one, or [fH(σ)/fL(σ)][π/(1− π)] ≥ 1.
This happens for high private signals σ above a selfish threshold signal σ̄(π) ≡ (1−π)/(2π).
For any prior belief π < 1/3 in state H, the threshold signal impossibly exceeds one — in
this case, the Professor always writes paper l. This event when the prior belief overwhelms
all private signals is called a cascade. Here, the Professor’s (prior expected) value — or
highest expected payoff — is V (π) = U(π) when π < 1/3. Otherwise, his payoff in state H
is ±1 for signals σ ≷ σ̄(π), and oppositely so in state L. All told, the value is therefore:

V (π) = π[1− 2FH(σ̄(π))] + (1− π)[2FL(σ̄(π))− 1] =
1

2
(5π − 4 + 1/π).

This value V (π) is strictly convex on (1/3, 1), as depicted in Figure 1. Since the
Professor profits from his information here, we have V (π) > U(π) on (1/3, 1). Indeed,

V (π)− (1− 2π) = (3π − 1)2/(2π) > 0 and V (π)− (2π − 1) = (π − 1)2/(2π) > 0.

Consider next the Student’s choice. After seeing the Professor’s paper genre l or h,
the Student respectively updates to the continuation prior belief p = pl(π) or ph(π).
Provided the Professor sometimes writes either genre, we have pl(π) < π < ph(π). The
selfish Student likewise writes the low-brow paper l iff her signal τ < σ̄(p) = (1− p)/(2p).
Similarly the Student secures an expected value V (p) from the continuation belief p.
Suppose that the Professor is in the cascade set, with π ≤ 1/3. Since p = pl(π) ≤ π,
whenever the Professor writes a low-brow paper, the Student copies him.

Case 2: The Altruistic Professor. Consider next the opposite extreme when
the Professor chooses his paper genre to maximize his Student’s expected value. Since
σ̄(1/3) = 1, with a prior belief at or just below 1/3, the selfish Professor always chooses
the low brow paper, which sends the student a useless signal. To help the Student, by
informing him of high signals, the altruistic Professor therefore leans against the prevailing
prior belief, by choosing a lower altruistic threshold signal σ̂ < σ̄(π). In other words, he
writes the high brow paper more often, yielding respectively lower continuation beliefs:
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p̂l(π, σ̂) < pl(π|σ̄(π)) and p̂h(π, σ̂) < ph(π|σ̄(π)). We can explicitly compute them:

p̂l(π, σ̂) =
πσ̂2

πσ̂2 + (1− π)σ̂
< π < p̂h(π, σ̂) =

π[1− σ̂2]

π[1− σ̂2] + (1− π)[1− σ̂]
, (2)

and the action chances are the denominators of (2). The Professor chooses σ̂ to maximize
the Student’s expected value. As in the right panel of Figure 1, if p̂l(π) ≥ 1/3, this value
is:

E[V (P )|π, σ̂] = E[(5P − 4 + 1/P )/2|π, σ̂] = 5
2
π − 2 + 1

2
E[(1/P )|π, σ̂], (3)

where we have used the fact that E[P |π, σ̂]=π, by the law of iterated expectations.
To evaluate the expectation (3), we can rule out the case where the continuation beliefs

obey p̂l(π) > 1/3 for any prior belief π > 1/3.7 Rather, the Professor optimally endows
the Student with the two continuation beliefs p̂l(π) ≤ 1/3 < p̂h(π). Since the Student’s
value is V (p) = 1− 2p on [0, 1/3], and V (p) = 5p− 4 + 1/p on [1/3, 1], its expectation is:

E[V (P )|π, σ̂] = [πσ̂2+(1−π)σ̂](1−2p̂l(π))+(π[1−σ̂2]+(1−π)[1−σ̂])(5p̂h(π)−4+1/p̂h(π))/2.

If we substitute the continuation beliefs (2), this expression reduces to

E[V (P )|π, σ̂] = V (π) +
(3π − 1) [1− πσ̂2 − πσ̂ − π] σ̂

π(1 + σ̂)
+
π(1− π)σ̂2(1− σ̂)

π(1 + σ̂)
. (4)

Taking logs of the second two terms, the first order condition in σ̂ then simplifies to

4π2σ̂3 + 2π(5π − 1)σ̂2 + 4π(2π − 1)σ̂ + 3π2 − 4π + 1 = 0. (5)

Let us first see what this says about the cascade set. At the highest cascade prior belief π̄,
the Professor optimally always chooses the low brow paper. In other words, the altruistic

7For if so, by substituting from (2), the last term in (3) reduces to:

E[(1/P )|π, σ̂] = 1/π +
(1− π)2

π

1− σ̂

1 + σ̂
.

This expectation is falling in the threshold signal, maximized at σ̂ = 0. But for positive low signal
thresholds σ̂ > 0, the low-brow genre l conveys a very discouraging message to the Student, resulting in
a low continuation belief pl(π) < 1/3. Given this contradiction, the lower continuation belief must lie in
the cascade set: pl(π) < 1/3. But unless the higher continuation belief ph(π) exceeds 1/3, the student
always finds himself in the cascade set, and information is worthless. In this case, he earns payoff U(π).
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max(2π − 1, 1− 2π)

E[V (P )|π, σ̄(π)]

V (π)altruistic
cascade

selfish cascade
0.2 1/3

π

Myopic Expected Payoffs and Values

selfish threshold
signal σ̄(π)

selfish posterior
threshold q = 0.5

altruistic posterior
threshold q(π) < 0.5

σ
or
q

altruistic
threshold

signal σ̂(π)

1

0.5

0
π 1

Optimal Thresholds

Figure 2: The Selfish and Altruistic Professors. The (solid) expected payoffs for
the altruistic Professor exceed the value V (π) of the selfish Professor, as he profits from
the Student’s signal too. A foretaste of our long run finding, the selfish cascade set is
strictly smaller than the altruistic cascade set — [0, 0.2] ⊂ [0, 1/3]. At right, we depict our
short run finding, contrarianism: As the prior chance of state H increases, the altruistic
Professor writes paper l more often, and the threshold posterior q rises in π.

threshold signal is σ̂ = 1. This implies

0 = 4π̄2 + 2π̄(5π̄ − 1) + 4π̄(2π̄ − 1) + 3π̄2 − 4π̄ + 1 = (5π̄ − 1)2.

For an alternative insight here, starting just above the prior belief π̄ = 1/5, if the Professor
almost always chooses the low brow paper, the high brow paper signals σP very close to
one, with likelihood ratio near 2. Hence, this endows the Student with the continuation
belief just above 1/3. This in turn leaves the Student just outside his cascade set. In
summary, the altruism shrinks the Professor’s set of cascade beliefs from [0, 1/3] to [0, 1/5].

Next, one might ask how altruism impacts the Professor’s actions at the margin,
as he slowly grows more confident in state H. Consider the Professor’s posterior odds
2y = 2πσ̂/(1 − π) ≥ 1/2 for state H, when he is at the knife-edge. Substituting this
expression into (5), the optimal posterior odds 2y(π) on the domain 1/5 ≤ π ≤ 1 obey

4(1− π)2y(π)3 + 2(5π − 1)(1− π)y(π)2 + 4π(2π − 1)y(π)− (3π − 1)π = 0. (6)

We can fortunately factor this cubic to get

[2(1− π)y(π) + 3π − 1][2(1− π)y(π)2 + 2πy(π)− π] = 0.

8



With a cubic derivative with positive lead coefficient, the SOC requires the first or third
solution of the FOC. But the first solution is negative. We thus need the positive solution
of the quadratic:

y(π) =

√
π2 + 2π(1− π)− π

2(1− π)
. (7)

This yields the optimal altruistic threshold signal σ̂(π) = (1−π)y(π)/π falling from 1 to 0
as π increase from 0.2 to 1. The corresponding threshold posterior belief increases. So the
Professor leans more against the high action the higher is π, as his indifference posterior
odds y(π) are higher. We call this property of an optimal solution contrarianism.

Recalling (4), the altruistic Professor’s value function is — as plotted in Figure 2 —
the myopic payoff U(π) on [0, 1/5] inside the cascade, and on [1/5, 1] is:

E[V (P )|π, σ̂(π)] = V (π) +
1− π

π
·
π(3− 2π)−

√
1− (1− π)2

π +
√

1− (1− π)2
.

In this paper, we argue that these two basic insights — shrinking cascade sets and
contrarianism — are robust to any infinite horizon model of herding in which the social
planner partially discounts the utility of future decision makers, provided signals obey (1).

A key dynamic feature of this two period example owes to its nonstationarity: When
the altruistic or selfish Professor is not in a cascade set, the Student lands in a cascade set if
he sees paper l, since its continuation belief is pl(π) < 1/3. By contrast, in our stationary
infinite horizon model in §3, the cascade set is constant in all periods, and cannot be
entered if posterior monotonicity (1) obtains (as holds in this example’s signal).

3 THE FORWARD-LOOKING HERDING MODEL

We start with the standard herding model of Smith and Sørensen (2000) (SS), and show
that its planner’s problem exactly corresponds to a single agent experimentation model.
An infinite sequence of agents (decision-makers) share a common 50-50 prior belief, for
simplicity, over two payoff relevant states ω∈{L,H}. They act in the order n = 1, 2, . . ..

Agents share a state-dependent utility function uω(a) over actions a ∈ {1, . . . , A}.
Action 1 is uniquely best in state L, and action A in H. Payoffs obey increasing differences:
uH(1) − uL(1) < uH(2) − uL(2) < · · · < uH(A) − uL(A). Action a has myopic payoff, or
expected payoff:

ū(a, r) = (1− r)uL(a) + ruH(a), (8)
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as a function of the probability r of state H. Since they may be useful for communication,
we allow myopically dominated actions a, where ū(a, r) < supã ū(ã, r) for all r ∈ [0, 1].

The nth agent sees a random private signal σn about the state. We can identify
this signal with the interim belief σn = P (H|σn). The signals are i.i.d. across agents
in each state ω = L,H, with cdf F ω. No signal perfectly reveals the state, so that FH

and FL are mutually absolutely continuous with common support supp(F ). Because the
signal is the interim belief, the derivative satisfies dFH/dFL = σ/(1 − σ). This is the
“no-introspection property” deduced in our earlier SS paper — namely, that sampling an
individual with signal σ should be just as informative as observing signal σ. Easily, this
implies FH(σ) ≤ FL(σ), with strict inequality between the extremes of supp(F ). Signals
are unbounded if their support supp(F ) contains 0 and 1, and bounded 8 if supp(F ) ⊆ (0, 1).
Also, some signals are informative: supp(F ) contains signals above and below σ = 1/2.

Individuals observe the history of actions but not private signals. Before choosing
action an, the n’th agent observes the history of n−1 predecessors’ actions. Conjecturing
their strategies, he can then deduce the updated public belief πn = P (H|a1, . . . , an−1) in
state H. Combining his private signal σ with public belief π gives the posterior belief
map:

r = R(π, σ) ≡ πσ

πσ + (1− π)(1− σ)
. (9)

This paper explores welfare properties of this model: Abstractly, the planner may
modify how agents map private signals into actions, after any given history; in §6, we
show how to implement this. A choice rule ξ prescribes some action a = ξ(σ) for every
signal σ.9 A strategy sn for the n’th agent assigns a choice rule to each action history of
length n− 1. The planner’s preference depends on a discount factor δ ∈ [0, 1) that trades
off payoffs earned by present and future agents. The planner chooses the strategy profile
s = (s1, s2, . . .) ∈ S to maximize the expected present value of the utility stream uω(an),
namely:

vδ(π) = sup
s∈S

E[(1− δ)
∞∑
n=1

δn−1uω(an)], (10)

where we call vδ the value function. The expectation is both over states ω and over the
random process of private signals. The original herding model is the special case δ=0.

8In §2, supp(F ) contained 0 but not 1. For convenience, we henceforth omit this possibility.
9If some signals σ have positive probability under F , optimization requires choice rules with a random

action. For simplicity, we refer only to pure rules. Results remain valid for mixed choice rules.
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4 DYNAMIC PROGRAMMING SOLUTION

We solve the social optimum (10) using dynamic programming. A stationary, or Marko-
vian, policy assigns a choice rule ξ for every public belief π, our state variable. With
rule ξ, action a happens with probability ψ(a, ω, ξ) =

∫
ξ−1(a)

dF ω in state ω, and uncon-
ditionally with probability ψ(a, π, ξ) = πψ(a,H, ξ) + (1 − π)ψ(a, L, ξ) (slightly abusing
notation). Action a results in continuation public belief p(a, π, ξ) = πψ(a,H, ξ)/ψ(a, π, ξ)

when ψ(a, π, ξ) > 0. We call action a, and its continuation belief, active if p(a, π, ξ) > 0.
For any policy, starting at belief π, the continuation value of (10) is a function vδ(π).

By dynamic programming, the optimal (average present) value function vδ solves the
Bellman equation:

v(π) = sup
ξ∈Ξ

(Tξv)(π), (11)

where the policy operator Tξ maps any continuation value v into the current value, namely:

(Tξv)(π) =
∑A

a=1 ψ(a, π, ξ)[(1− δ)ū(a, p(a, π, ξ)) + δv(p(a, π, ξ))]. (12)

Since the upper envelope of affine functions is convex, the value function vδ solving (11)
is convex, and therefore everywhere has a left and right derivative. Because the optimal
strategies at beliefs 0 and 1 respectively entail taking actions 1 and A, Figure 3 arises:

Lemma 1 (Value Functions). The value vδ is bounded, continuous, and convex in public
beliefs π, with extreme slopes v′δ(0+) ≥ uH(1)− uL(1) and v′δ(1−) ≤ uH(A)− uL(A).

We do not solve the Bellman equation (11) as formulated, since it optimizes over
policies. Rather, we work in value space. So inspired, recall the multi-armed bandit
(§6.5 of Bertsekas, 1987), in which an experimenter each period chooses among finitely
many actions, each providing a random and independent reward. Gittins (1979) solved
for the optimal behaviour: Replace each action by a sure thing reward that subsumes its
optionality; each period, one chooses the action with the highest such Gittins index.

We now argue that the planner’s optimal policy admits an analogous index rule — even
though the actions obviously do not have independent reward distributions: Faced with
the public belief π and private posterior r, the agent chooses the action a with the largest
welfare index w(a, π, r) — equal to the social payoff as privately gauged by the agent.

A convex function v has supporting subtangents τ(π, r) at public beliefs π, defined as
functions of the posterior r ∈ [0, 1], and uniquely defined when v′(π) exists. We next design
welfare indexes using these subtangents, and thereby implement the planner’s outcome.
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Proposition 1 (Optimal Behaviour). For any public belief π, an agent with posterior
belief r takes the action a with maximal welfare index

w(a, π, r) = (1− δ)ū(a, r) + δτ(p(a, π, ξ), r), (13)

for some supporting subtangent τ(p, r) to v at public belief p, when evaluated at posterior r.

The value function subtangent τ(p, r) at a public belief p admits a useful economic
interpretation: The marginal social benefit of a higher posterior is the slope v′(pa) at the
continuation public belief pa = p(a, π, ξ). The privately informed agent thus assigns social
value τ(pa, r) to the continuation game after action a where followers act optimally at pa.
The welfare index (13) is a linear function of his posterior beliefs over the state of the
world because both myopic payoffs and social incentives are.

Recall that the optimal strategy in the selfish herding model of SS was a simple
interval rule: Choose action a if one’s posterior belief r lies in an interval Ia, where {Ia}
partitions [0, 1]. Actions with empty intervals are not taken. The rule may randomize
at the threshold (boundary) θa between adjacent intervals Ia and Ia+1. Since the welfare
index w(a, π, r) in (13) is affine in r, interval rules remain socially optimal.10

Corollary 1 (Interval Rules). An interval rule {Ia} is optimal at any public belief π.

In the socially planned herding model, the communication value of actions can swamp
myopic payoff considerations. Inspired by the search model of Dow (1991), we make two
observations about the planner’s optimal strategy reflecting this insight.11

Lesson 1: Myopically dominated actions may be socially valuable.
Since more actions intuitively facilitates communication, myopically dominated actions

might help. To see this, suppose that action A dominates A− 1 by ε in states L and H.
We claim that for small ε > 0, action A− 1 is optimal with positive probability for some
public beliefs and large δ < 1. Intuitively, the static payoff losses can be made small, but
the informational gain of an extra signal has boundedly positive value (proof in §G.1).

Lesson 2: The myopic action order might not be socially optimal.
The natural order entails using higher actions on higher intervals, if both are used.

For high discount factors δ < 1, the natural order need not be optimal (shown by example
10Dow (1991) derived an interval partition, albeit without our Bayesian binary state structure. Mean-

while, when δ = 1, our Proposition 1 more roughly corresponds to the FOC of Dow’s Proposition 2.
11We generalize Dow’s 1991 Proposition 2, which assumes perfect patience and a simple second-period

value function. His Example 3 shows that a multiplicity of optimal solutions can arise in these problems.
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in §G.1). But the action ordering is myopically optimal by our increasing differences
assumption, and remains so with not too much concern for posterity. Define the gap
∆a≡(uH(a)−uL(a))−(uH(a−1)−uL(a−1)) for actions a ≥ 2. By increasing differences,
∆a > 0 for all a ≥ 2. Next, define ∆ = ∆2 + · · ·+∆A and ∆ = min{∆2, . . . ,∆A}.

Corollary 2. For any discount factor δ < ∆/(∆+∆), the optimal rule obeys the natural
action ordering. With two actions, this holds for δ < 1/2.

5 CASCADE SETS: NONEMPTY BUT SMALLER

For the selfish informational herding model, SS show that for bounded private signals,
learning eventually ceases since the public belief π eventually lands in an absorbing state.
The socially planned herding model has the same long run outcome. Let the action cascade
set Ca(δ) be all public beliefs for which action a is optimal irrespective of the signal σ. In
the Appendix, we piece together the dynamic learning story of how public beliefs almost
surely land in a cascade set: Since active learning ceases in Ca(δ), the value and myopic
payoff coincide v(π) = ū(a, π) in it; naturally, Ca(δ) is a closed interval, as in Figure 3.
So the value function is affine on cascade sets. Conversely, if the signal distribution has
convex support and the natural action ordering is optimal, then the value funtion is affine
only on cascade sets (see §B). So the value is strictly convex iff active learning occurs.

For our first key finding of the paper, we argue that the cascade phenomenon is
efficient, but cascades happen too soon. For since the value function weakly increases in
the discount factor (Claim A.3), the value function coincides with the constant myopic
payoff on weakly smaller cascade sets. In the perfect patience limit, the planner maximizes
for the long run: these sets collapse to {0}, {1}, and incorrect herds no longer occur, as
social learning is always correct (since a wrong point belief a.s. never happens).

Proposition 2 (Cascade Sets Shrink With Altruism, But Never All Vanish).
(a) The value function strictly increases in δ for all public beliefs π outside cascade sets.
(b) Cascade sets for an action are nested, strictly shrinking as δ<1 rises. For large δ<1,
any a /∈ {1, A} has an empty cascade set, while limδ→1C1(δ)={0} and limδ→1CA(δ)={1}.
(c) A herd almost surely starts, and the probability it is incorrect vanishes as δ ↑ 1.

The shrinking of the cascade sets happens for a simple reason: Since the planner is
indifferent about experimentation at the edge of a cascade set, if he grows more patient, his
value of information rises, and he strictly prefers to experiment; so the cascade set shrinks.
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Rising Value Functions Cause Shrinking Cascade Sets
uL(1)

uL(2)

uL(3)

uH(1)

uH(2)

uH(3)

C1(δ)C1(δ̄) C2(δ) C3(δ̄)C3(δ)

Figure 3: Myopic Payoffs, the Value Function, and Cascade Sets for 3 Actions.
Cascades arise when the value function and myopic payoff coincide. Indeed, the value
function strictly exceeds the myopic payoff when signals are valuable and can move beliefs,
but coincide inside the cascade set intervals, because social learning stops. As the discount
factor δ rises, the value increases, and the cascade sets therefore shrink. Interior cascade
sets eventually vanish: C2(δ̄) = ∅ and C2(δ) ̸= ∅ for δ < δ̄ < 1, while extreme cascade
sets shrink but never vanish: C1(δ) ⊃ C1(δ̄) ̸= ∅ and C3(δ) ⊃ C3(δ̄) ̸= ∅.

6 OPTIMAL DYNAMIC INFORMATION DESIGN

In a team equilibrium of our multistage game, everyone altruistically seeks to maximize
the planner’s payoff, taking other actions as given (Radner, 1962). We claim that a social
optimum is a team equilibrium for any discount factor δ < 1. To see why, suppose that
all but one agent uses a sequentially rational optimal strategy s∗, but that someone has
a strictly better reply ξ̂ at a history in period n. Then the planner can improve his value
at that history by fully mimicking this deviation, i.e. using rule ξ̂ in the first period and
then continuing with s∗ as if s∗n had been applied at stage n with this history (as the team
would not have detected the deviation). This contradicts social optimality of strategy s∗.

While socially optimal behaviour is a team equilibrium, it need not constitute a Nash
equilibrium. We wish to elicit altruistic behaviour from the selfish agents using a transfer
scheme that only depends on the observed action history. By the index formula (13), we
ultimately must award an agent the transfer δτ(π, r)/(1 − δ). But this depends on the
unobserved private posterior belief r, and therefore is infeasible for the planner.

When the planner’s policy prescribes an interval rule that does not swap the myopic
interval order, it suffices to reward an agent just on the basis of his own action. For the
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0 π pa 1

Value Function Tangents Determine Socially Optimal Transfers

Value v ∝ state H transfer for a
}

∝ state L transfer for a
{ τ(π, 1)

τ(pa, 1)

τ(pa, 0)

τ(π, 0)

Figure 4: Value Function and Optimal Transfers. The subtangent τ(p, r) to the value
function at public belief p yields the present value for someone with any posterior belief r
(Proposition 1). Thus, higher posterior beliefs raise this value iff the value function slopes
up. At extreme posteriors r = 0, 1, the tangents at public beliefs p = pa or p = π yield the
state-contingent transfers tL(a|π) and tH(a|π) for action a in (14), directly proportional
to (∝) the respective indicated axis gaps. Proposition 3 implements these as functions of
the successor’s action (which reflects the unobserved state) and not the state.

planner can move the selfish agent’s threshold between any two actions up (or down) by
taxing (or subsidizing) the higher action. But transfers based on the agent’s own action
can never reverse the myopic action ordering, and so cannot implement the optimal action
ordering. We solve this using a pivot mechanism — namely, one that rewards agents for
their marginal contribution to social welfare — here, by changing the public belief.

In exchange for taking action a, an individual must be paid the state ω contingent
transfer tω(a|π) equal to his successor’s incremental value (seen in Figure 4):

tω(a|π) =
δ

1− δ
(vω(p(a, π, ξ))− vω(π)), (14)

defining the state-contingent values vL(p)≡τ(p, 0) and vH(p)≡τ(p, 1) at public belief p.
Since the transfers (14) depend on the unknown state ω, they are unavailable to the

planner. Fortunately, since future agents’ choices reflect their information, and thereby
the state, we can surmount this hurdle. Let the next agent take the least active action â

for his lowest private signals σ ≤ σ̂. Because, as initially noted, FL(σ̂) > FH(σ̂) strictly
inside supp(F ), action â occurs more often in state L than state H. We can thereby
emulate the incentive effect of the state-dependent transfer (14) by an action transfer
t(a, a′) that depends just on the current and next actions, denoted a and a′:

Proposition 3 (Pivot Mechanism). The optimum (10) is implemented by a mechanism
whose transfers depend on the public belief, and the actions of an agent and his successor.
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Our proof in §D simply asks whether the next agent takes the lowest active action â or
any other action ¬â. The current agent earns the state ω contingent transfer tω(a|π) from
taking action a if the following two linear equations in two unknowns have a solution:

tω(a|π) = F ω(σ̂)t(a, â) + [1− F ω(σ̂)]t(a,¬â) for states ω = H,L. (15)

This mechanism12 implements the social best, as everyone earns his marginal contribution.
We next argue that with just two actions and the myopic action order, this pivot

mechanism rewards individuals who are mimicked by successors. In other words, imitation
is not only the best form of flattery, but also is socially optimal:

Corollary 3 (Mimicry is Optimally Rewarded). Assume the myopic action ordering with
two actions. The pivot action transfers obey t(a, a)>t(a, a′) whenever a′ ̸=a and neither
public belief π nor the continuation belief p(a, π, ξ) lie in the cascade set C(δ).

7 MONOTONE POSTERIOR BELIEFS
Before turning to our contrarianism result, we must dispense with a surprising Bayesian
updating property — the failure of posterior monotonicity (1). Our insight applies across
information economics, as the desired new regularity property. Let Bayesians Ike and Joe
share a common (prior) public belief π. Ike privately observes a conditionally independent
private signal σ, and arrives at a private posterior belief r = R(π, σ). Ike optimally chooses
action a ∈ {1, 2, . . . , A} when his belief r lies in the known interval Ia. Seeing his action,
Joe infers that r∈Ia, and updates to a continuation public belief13 p(a, π).

(PM) Fixing any interval rule, any prior public beliefs π′ > π, and any active action a

(with ψ(a, π), ψ(a, π′)>0), continuation public beliefs are ranked p(a, π′)>p(a, π).

So seeing the same action, a more optimistic prior leads to a more optimistic posterior
belief. This may seem obvious, but it can fail. Joe’s continuation public belief p(a, π)
averages over Ike’s posteriors R(π, σ)∈ Ia. As the prior π increases, Ike chooses action a

for lower signals σ. In fact, for multinomial signals it can fail: Suppose Ike takes the high
12Unlike the dynamic pivot mechanism in Bergemann and Välimäki (2010), each agent acts just once.
13Let action a have chance ψ(a, π) and lead to posterior public belief p(a, π), fixing the agent’s proba-

bilistic map from posterior beliefs to actions (as π varies). In the interior of Ia, the agent adopts action a
for sure, and at any boundary point r′ of Ia the agent takes action a with fixed chance. Under (LC) stated
below, boundary points occur with probability zero, and the exact mixing strategy becomes irrelevant.
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action for realized signal σ3, but not for σ1 or σ2. A slightly higher π might lead Ike to
choose the high action also for σ2. This leads to a discontinuous drop in Joe’s posterior.

Monotonicity is restored by an appropriate logconcavity assumption, (LC), applied to
the log-likelihood ratio signal transformation ℓ = Λ(σ)≡ log(σ/(1−σ)). Bayes rule (9) is
then additive: Λ(r)=Λ(π)+Λ(σ). Notice that Λ(Ia) shifts Λ(π) by a fixed interval of ℓ.

(LC) The private signal distribution is atomless with convex support, and one state-
contingent density for its log-likelihood ratio is strictly logconcave.14

Property (LC) holds for both states, if it ever holds. For if the signal σ = S(ℓ) =
eℓ/(1+eℓ) has log likelihood ratio ℓ = Λ(σ), then by the chain rule, the state-ω.contingent
density for the log-likelihood ratio is ϕω(ℓ) ≡ fω(S(ℓ))S ′(ℓ). So ϕL and ϕH share a
common support supp(ϕ). Recalling §3, we have (dFH/dFL)(σ) = σ/(1 − σ) and thus
ϕH(ℓ)/ϕL(ℓ) = eℓ. Since log ϕH = log ϕL + ℓ, we have ϕH logconcave iff ϕL is logconcave.

Proposition 4 (Posterior Monotonicity). Private signals obey (LC) iff (PM) holds.

Intuitively, once Bayes rule is additive, (LC) is equivalent to the monotone likelihood
ratio property of private posterior Λ(π)+ ℓ with respect to π, in turn equivalent to (PM).
Loglinearity might then appear equivalent to posterior constancy, but loglinearity rules
out unbounded beliefs, and the belief bound contributes to push up the posterior.15

The Professor-Student example in §2 offers an instructive knife-edge case for condition
(LC). For its likelihood ratio eℓ = fH(s)/fL(s) = 2s, with fL(s) = 1, the above formula
yields the loglinear state-L density ϕL(ℓ) = S ′(ℓ) = (1/2)eℓ. Consistent with Proposi-
tion 4, for any rule where threshold posterior π2σ̂/[π2σ̂ + (1 − π)] is held constant, the
continuation beliefs from (2) have pl(π, σ̂) constant and ph(π, σ̂) rising in π.

We noted above that (PM) fails for multinomial signals. We now give a continuous
density example in which (PM) fails because (LC) fails. Choose b ∈ (1/2, 1), and define the
density f(σ) = 1/(2−2b) on [0, 1−b]∪ [b, 1], and f(σ) = 0 otherwise. Let fH(σ) = 2σf(σ)

and fL(σ) = 2(1 − σ)f(σ). Suppose that action 2 is optimal for posterior beliefs over
1/2. Given a public prior belief π > b, the posterior likelihood ratio after seeing action 2
is therefore:

LR(π) ≡ π

1− π

1+b
2

+
∫ 1−b

1−π
σ

1−b
dσ

1−b
2

+
∫ 1−b

1−π
1−σ
1−b

dσ
.

14Only atomless distributions with convex support can be logconcave, but some of the most familiar
probability distributions have this property (see Marshall and Olkin (1979), §18.B.2.d).

15When π rises, the interval of private beliefs that maps to action a must shift down. Where this interval
includes a belief bound, its downward shift either includes more signals at the top or fewer signals at the
bottom. This effect creates the upward movement in the posterior upon observing action a.
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When b>(1 + 2
√
2)/7, we verify that LR(π) is decreasing on (b, b+ ϵ) for some ϵ > 0.16

A delayed cascade is one that starts after period one because public beliefs transition
into a cascade set. In their “bounded beliefs example”, Smith and Sørensen (2000) found
that this arises iff the map from posterior public belief after an action is not monotone in
the prior belief. That is, landing in a cascade set requires that Condition (LC) fail:

Corollary 4 (No Delayed Cascades). Given (LC), there is no delayed cascade if δ = 0.

Cascades arise in Bikhchandani, Hirshleifer, and Welch (1992) since they posit multi-
nomial signals, violating (LC).17 A particularly popular application of the herding model
uses binary signals, implying the failure of posterior monotonicity.

8 CONTRARIANISM

We have seen that as the weight on posterity increases and δ increases, cascade sets shrink,
and so strictly fewer public beliefs guarantee mimicry (Proposition 2). This captures a
long run form of contrarianism: When people care more about posterity, they insist on
more precise social learning before blindly following the herd. We now formulate and
prove a short run contrarianism that impacts behaviour in every period, and therefore is
observably testable — such as using the methods developed in Çelen and Kariv (2004).
We show that at the margin, as public beliefs shift weight towards the high state, it is
socially efficient to lean more away from actions that are myopically better in that state.

Let θa(π) be the optimal threshold posterior between actions a and a+1 at the public
belief π. To be precise, behaviour is strictly contrarian if, for any public beliefs π′ > π with
the same optimal action ordering,18 any optimal thresholds θ(π) = (θ1(π), . . . , θA−1(π))

for posterior beliefs are strictly ranked: θa(π′) > θa(π) for all actions a = 1, . . . , A− 1. In
other words, fewer posteriors result in the higher action when the public belief is higher.
Behaviour is contrarian if θ(π′) ≥ θ(π).

16Straightforward algebra provides LR′(b) = (1 + 2b− 7b2)/(1− b)4, negative when b>(1 + 2
√
2)/7.

17Herrera and Hörner (2012) note for the binary action model that posterior monotonicity is equivalent
to two immediate properties: increasing hazard ratio and increasing failure ratio. They copy arguments
from Smith and Sørensen (2000) to prove this sufficient for ruling out cascades, but incorrectly claim that
the property is necessary.

18We have seen that the optimal action ordering generally depends on the public belief. But the
threshold comparison θ(π) < θ(π′) is meaningful only when the same action ordering is optimal at π and
π′, and that the set of active actions is identical. Abusing notion, call A the number of active actions.
Fixing one interval rule, we re-label active actions so that higher actions are taken at higher signals.
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Why Rising Public Beliefs Raise Posterior Thresholds

0 p1 p̂1 p2 p̂2 1posterior/public beliefs

τ(p1, 1)

τ(p2, 1)

τ(p̂1, 1)

τ(p̂2, 1)

τ(p1, 0)

τ(p2, 0)

τ(p̂1, 0)

τ(p̂2, 0)

public belief π ↑
⇒ continuations p1, p2 ↑

⇒ tangent gap ↑

θ(π)↑

Figure 5: Contrarianism via Comoving Tangents. By posterior monotonicity, when
the prior public belief increases from π to π̂, the continuation public beliefs p1 < p2 after
actions a = 1 and a = 2 shift up to p̂1 < p̂2, respectively. Note that the gap between the
(red) tangents to the value function at p1 and p2 is less than the analogous gap between
the (blue) tangents at p̂1 < p̂2. The gap equals (1− δ)[u(2, θ)− u(1, θ)]/δ, by optimality
equation (16). So to restore this equality, the threshold θ shifts higher for π̂. All told,
contrarianism purely reflects how slopes of value function tangents co-move. (See §F.1.)

Proposition 5. Let signals obey (LC). Behaviour is contrarian if δ ∈ [0, 1). If δ > 0 and
actions obey the natural order, then behaviour is strictly contrarian outside cascade sets.

While cascade sets shrink for all signal distributions (Proposition 2), contrarianism
requires posterior monotonicity. The example in §2 typifies this link, and in Appendix G.2
we see that contrarianism can fail without posterior monotonicity.

For insight into the role of posterior monotonicity, assume two active actions a = 1, 2

respectively optimal for posteriors in [0, θ] and [θ, 1], as in Figure 5. Seeing action a, we
arrive at the continuation public belief p(a, π, θ). By Proposition 1, the optimal action
a for any posterior r has the maximal welfare index w(a, π, r). We use this to take an
infinitesimal FOC. Given the Bellman operator in (12), slightly shifting posteriors from
action 1 into action 2 by reducing the threshold by dr yields a net payoff gain (dr) times:

w(2, π, r)−w(1, π, r) = (1− δ)[ū(2, r)− ū(1, r)]+ δ[τ(p(2, π, θ), r)− τ(p(1, π, θ), r)]. (16)

If the public belief π rises to π′, this adjusts difference (16) via the value function tangents.
Now, by posterior monotonicity, the continuation beliefs rise: p(a, π̂, θ) > p(a, π, θ)

for a = 1, 2. We can exploit a useful property of pairs of tangents to a convex function.
Not only do the welfare indexes w(1, p, r) and w(2, p, r) coincide at the posterior belief
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threshold r = θ, but more strongly, w(1, p, r) crosses w(2, p, r) from above at r = θ. In
other words, the net gain to taking the higher action grows in the posterior belief r. The
posterior threshold r = θ where w(1, π, θ) = w(2, π, θ) therefore rises, as desired: θ′ > θ.

Lastly, strict contrarianism arises if δ > 0 and the value function is strictly convex.
For tangents in (13) have positive weight and strictly shift slope in π outside cascade sets.

9 CONCLUSION
This paper makes major technical and four substantive contributions to social learning.

We formulate and solve the planner’s problem for informational herding with a dis-
counted concern for posterity (§3–4). This has long remained open because it is technically
challenging: We secure long run results by adapting optimal experimentation theory, and
derive short run comparative statics without a derivative or a single-crossing property.

§5 The social optimality of herds has been questioned since Banerjee (1992): We prove
that they remain socially optimal, but just that cascade sets shrink in the discount factor.

§6 We implement our planner’s solution with a simple transfer scheme that rewards
people who are followed. Since our agents need not introspect about others’ preferences
or optimal behaviour, this addresses a problem identified by Gagnon-Bartsch and Rabin
(2016), that individuals might have limited understanding of others’ optimal strategies.

§7 We derive a robust and frequently met new log-concavity property (LC) on signal
distributions that notably precludes any delayed cascade in the standard herding model.
Considering the central role of cascades in social learning, their fragility is important.

§8 We prove that, under property (LC), people should act in a contrarian way, leaning
against increasingly popular actions in every period. Unlike the shrinking cascade set
result, this prediction is novel not merely for social learning, but also has no counterpart
in the experimentation or Bayesian persuasion literatures. It is a testable altruistic expla-
nation for experimental herding work that agents excessively rely on their own signals.

In the popular symmetric two-action binary-signal model, the cascade set consists
of two extreme public belief intervals, strictly shrinking with the discount factor. The
efficient plan is simple: outside the cascade set, always follow the private signal. The
constant rule renders it easy to compute the value function from the Bellman equation.
This rule does not and cannot reveal any signs of contrarianism as we have defined it.
But individuals in C(0) \ C(δ) should drop their private inclination to herd, and rather
follow their signal.
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A DYNAMIC PROGRAMMING PROOFS

In this section, we set up the dynamic programming optimization, and then use convex
duality to prove that the solution in Proposition 1 and its properties are as claimed in §4.

Value Functions: Proof of Lemma 1. As Bayes rule does not identify p(a, π, ξ)
if ψ(a, π, ξ) = 0, we impose a weak refinement: p(a, π, ξ) = R(π, σ) for some σ ∈ supp(F ).

We use the Bellman operator T = supξ∈Ξ Tξ from the RHS of (11). From (11) and (12),
if v ≥ v′ then Tv ≥ Tv′. As is standard in discounted programs, T is a contraction, and so
has a unique fixed point vδ. This fixed point lies in the space of bounded, continuous, and
convex functions. We show convexity. Since T is a contraction operator, it suffices that v
convex implies Tv convex. Let πλ = λπ1+(1−λ)π2, where λ ∈ (0, 1). Fix an optimal rule
ξ mapping signals to actions at πλ. Using Bayes rule, p(a, π, ξ) = πψ(a,H, ξ)/ψ(a, π, ξ),
we get:

p(a, πλ, ξ) =
λψ(a, π1, ξ)

ψ(a, πλ, ξ)
p(a, π1, ξ) +

(1− λ)ψ(a, π2, ξ)

ψ(a, πλ, ξ)
p(a, π2, ξ). (17)

The first (myopic) term in (12) at πλ is the convex combination of the terms with π1 and
π2, as ū is linear in beliefs. As v is convex and (17) holds, the second (future) term obeys:

ψ(a, πλ, ξ)v(p(a, πλ, ξ)) ≤ λψ(a, π1, ξ)v(p(a, π1, ξ)) + (1− λ)ψ(a, π2, ξ)v(p(a, π2, ξ)).

Summing over actions a = 1, . . . , A in (12) yields an upper bound on the Bellman operator:

Tv(πλ) = Tξv(πλ) ≤ λTξv(π1) + (1− λ)Tξv(π2) ≤ λTv(π1) + (1− λ)Tv(π2).

Let U(π) = maxa ū(a, π) denote the myopic maximal expected payoff. The bound on
tangent slopes follows because actions 1 and A are respectively best in states L and H:
v(0) = uL(1) and v(1) = uH(A), that the convex function v exceeds the myopic payoff U ,
and that ū(1, r) and ū(A, r) give the extreme slopes of U , by supermodularity.

Claim A.1 (Iterates). {T nU} monotonely converges to the solution vδ ≥ U of (11).

Proof. Let rule ξ̃ a.s. choose the myopically optimal action, i.e., the maximizer over rules
ξ ∈ Ξ of

∑A
a=1 ψ(a, π, ξ) [(1− δ)ū(a, p(a, π, ξ)) + δU(p(a, π, ξ))]. Then p(ξ̃(σ), π, ξ̃) = π

a.s., and so the value U(π). Optimizing over ξ ∈ Ξ, we get TU(π) ≥ U(π) for all π. By
induction, T nU ≥ T n−1U , a monotone sequence converging to a fixed point vδ ≥ U .

Claim A.2 (Slopes). uH(1)− uL(1) ≤ v′(0+) ≤ v′(1−) ≤ uH(A)− uL(A).

21



Proof: This follows graphically, as v ≥ U is convex, with v(0) = U(0) and v(1) = U(1). �

Claim A.3 (Weak Value Monotonicity). When δ2 ≥ δ1, vδ2(π) ≥ vδ1(π) for all π.

Proof. Clearly,
∑A

a=1 ψ(a, π, ξ)ū(a, p(a, π, ξ)) ≤
∑A

a=1 ψ(a, π, ξ)v(p(a, π, ξ)) for any rule ξ
and any function v ≥ ũ. If δ increases, then Tξũ pointwise increases too, since more weight
is placed on the larger component of the RHS of (12). By (11), T ũ is pointwise higher.
Iterating this argument, T nũ is higher. Let n→ ∞, and appeal to Claim A.1.

Welfare Index Characterization: Proof of Proposition 1. A convex
function v is the upper envelope of its supporting tangent lines. Parameterized by their
slope and intercepts, the subtangent space Tv ⊂ R2 is compact. Since ū and τa are
affine functions, and since p(a, π, ξ) =

∫
ξ−1(a)

R(π, σ)dF π, we can exchange the order of
summation and maximization to rewrite operator (12) as

(Tξv)(π) = max
(τ1,...,τA)∈T A

v

A∑
a=1

∫
ξ−1(a)

[(1− δ)ū(a,R(π, σ)) + δτa(R(π, σ))]dF
π(σ). (18)

Exchange the sup in (10) with the max in (18) to get the planner’s dual problem:19

v(π) = max
(τ1,...,τA)∈T A

v

sup
ξ∈Ξ

A∑
a=1

∫
ξ−1(a)

[(1− δ)ū(a,R(π, σ)) + δτa(R(π, σ))]dF
π(σ). (19)

The supremum over rules ξ in (19) entails allocating private signal σ to the action a where
(1 − δ)ū(a,R(π, σ)) + δτa(R(π, σ)) is maximal, and r = R(π, σ). This yields the index
expression (13). For a fixed rule ξ, (18) implies that τa is tangent to v at p(a, π, ξ). �

Interval Rules: Proof of Corollary 1. The inner “sup” in optimization (19)
asks, for every signal, which action is optimal. In this integral sum, for every signal, one
takes the action with the highest index. This optimum is achieved by an interval rule. �

Proof of Lesson 1: Dominated actions may be socially valuable. A
simple example suffices. Let A − 1 be a dominated action with uL(A − 1) > uL(A) + ε2

and uH(A − 1) = uH(A) − ε. Assume bounded signals: supp(F ) ⊂ (0, 1). Suppose
first that A − 1 were not available. By Claim B.2(b), there is a cascade set [π̄, 1] for

19As an aside, convex duality offers a computational strategy for solving the dynamic programming
problem. In the iteration, given a value vn, the next value vn+1 is obtained in principle by searching
across all the possible rules. But convex duality suggests an alternative faster way to compute vn+1: The
required tangent space is merely the set of all the left and right derivative lines to vn.
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action A, where π̄ < 1. Since v(π) = ū(A, π) for π ∈ [π̄, 1], and v(π) > ū(A, π) for
π < π̄, the value function v is not locally linear at π̄. Now, we make A− 1 available, and
check that it can improve this value. At belief π̄, consider the rule that maps σ ≤ 1/2

into action A − 1, and σ > 1/2 into action A. This induces continuation public beliefs
p(A− 1, π̄, ξ) < π̄ < p(A, π̄, ξ). Since the convex v is not locally linear at π̄, the expected
continuation value exceeds v(π̄) by some η > 0. This policy change produces a myopic
loss less than ε, beating the optimal policy when δη > (1− δ)ε, i.e. for small enough ε. �

Natural Action Order if not too Patient: Proof of Corollary 2. By
Proposition 1, it is optimal to choose the action with highest welfare index. Since w(a, π, r)
is linear in r, the natural order arises if (∂/∂r)w(a, π, r) strictly rises in a. As v is convex,
the slope of any subtangent line τ of v is sandwiched:

uH(1)− uL(1) ≤ v′(0+) ≤ ∂τ

∂r
≤ v′(1−) ≤ uH(A)− uL(A), (20)

recalling that the right derivative of a convex function is always uniquely defined. Hence:

∂w(a+ 1, π, r)

∂r
− ∂w(a, π, r)

∂r
≥ (1− δ)∆a+1 − δ∆.

This is strictly positive when δ < ∆a+1/(∆ +∆a+1). Finally, ∆ = ∆2 for A = 2. �

B CASCADE SETS: PROOF OF PROPOSITION 2

The proof in this section characterizes stationary beliefs for the dynamic optimization.

Claim B.1 (Strict Convexity of Values). On cascade sets, the value function is affine and
obeys v(π) = U(π). Outside of cascade sets, v(π) > U(π), and furthermore, if the signal
support is convex and actions are naturally ordered, v is strictly convex.

Proof: At any cascade public belief π ∈ [z, z̄] ⊂ Ca(δ), a.s. taking action a yields some
state-contingent expected values vL and vH . So on [z, z̄], v(r) = (1− r)vL + rvH is affine.

Next, if π is not a cascade belief, by definition it is not optimal to induce one action
a.s., whence vδ(π) > U(π) if δ ∈ [0, 1). We next argue that it is strictly convex.

For a contradiction, let v be affine around a noncascade belief π̂ ̸∈ C(δ). Let ξ̂ be an
optimal rule mapping signals σ to actions a. Put H(π) =

∑
a ψ(a, π, ξ̂)w(a, π̂, p(a, π, ξ̂)).

First, v(π̂) = H(π̂), by (11) and Proposition 1. Second, H is affine because welfare indices
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are affine, and continuation public beliefs are a martingale (i.e. (17)). Third, H(π) ≤ v(π)

from (19), as H employs both a particular rule ξ̂ and particular tangents to v at p(a, π̂, ξ̂).
Since v is affine, H(π) = v(π) around π̂. By (19), ξ̂ is optimal for π near π̂ and w(a, π̂, r)

is an optimal index function at π. Assume two active actions 1 and 2. As the actions
are naturally ordered, p(1, π̂, ξ̂) < p(2, π̂, ξ̂) and ū(2, r)− ū(1, r) is strictly increasing. So
the welfare indices w(1, π̂, r) and w(2, π̂, r) cross once. As the signal support is convex
and both actions are active, the crossing θ uniquely fixes the optimal rule ξ̂ at π̂. But
for public beliefs π ̸= π̂ near π̂, the fixed private signal threshold rule ξ̂ selects different
actions for posteriors r near θ as π varies, since (9) is increasing in π. Contradiction. So
the convex value function is not affine on any subinterval, and so is strictly convex. �

Claim B.2 (Structure of Cascade Sets).
(a) For discount factors δ ∈ [0, 1), we have 0 ∈ C1(δ) and 1 ∈ CA(δ), and C(δ) ̸= [0, 1].
(b) With bounded signals, C1(δ)=[0, π(δ)] and CA(δ)=[π̄(δ), 1] for 0<π(δ)<π̄(δ)<1.
(c) With unbounded signals, C1(δ) = {0}, CA(δ) = {1}, and Ca(δ) = ∅ for a ̸= 1, A.

Proof of (a): Action 1 is myopically strictly optimal if π = 0. Since it always updates
to continuation belief π = 0, it is dynamically optimal for any discount factor δ ∈ [0, 1).
Ditto for π = 1. As signals are valuable in the selfish problem, ∪A

a=1Ca(0) ̸= [0, 1]. �
Proof of (b): Action 1 is strictly optimal at belief π = 0, and so selfishly optimal for
π ≤ π′, for some π′ > 0. In particular, ū(1, π) > ū(a, π) + η for all a ̸= 1 for some
η > 0, and for all π ∈ [0, π′/2]. No action can reveal a stronger private signal than
any σ ∈ supp(F ) ⊆ [σ0, σ1] ⊂ (0, 1). So any initial belief π is updated to at most
p̄(π) = πσ1/[πσ1 + (1− π)(1− σ1)]. For π small enough, p̄(π) ∈ [0, π′/2] and p̄(π)− π is
arbitrarily small. By continuity, vδ(p̄(π))−vδ(π) is less than η(1−δ)/δ for small enough π.
By the Bellman equation (11), any a > 1 is strictly suboptimal for such small beliefs. �
Proof of (c): For unbounded signals, SS deduce Ca(0) = ∅ whenever 1 < a < A, and
C1(0) = {0} and CA(0) = {1}. Cascade sets weakly shrink in δ by Claims A.3 and B.1. �

Claim B.3 (Cascade Sets Shrink at Interior Edges). For any discount factor δ > 0 and
action a ∈ {1, . . . , A}, if π̌ ∈ (0, 1) is an endpoint of the cascade set Ca(0), then π̌ ̸∈ Ca(δ).

Proof : We focus on left endpoints, and so on an action a > 1. Let π̌ = minCa(0), with
least posterior belief ř = R(π̌,min supp(F )) < π̌, for which (†): ū(a− 1, ř) = ū(a, ř). Put

wa−1(r) = (1− δ)ū(a− 1, r) + δτ(ř, r) and wa(r) = ū(a, r). (21)
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As ř < π̌, we have ř ̸∈ Ca(0). Since Ca(δ) ⊆ Ca(0) by Claim A.3, we have ř ̸∈ Ca(δ). By
Claim B.1, ū(ř, a) < vδ(ř) = τ(ř, ř). So (21) and (†) imply wa(ř) < wa−1(ř). If π̌ ∈ Ca(δ),
then wa(ř) is the welfare index at posterior ř, contradicting Proposition 1. �

Claim B.4 (Continuations). Continuation beliefs lie in at most one cascade set if δ > 0.

Proof : With unbounded signals, absent perfectly revealing signals, continuations never lie
in a cascade set. Assume bounded signals. Let σ = min supp(F ) and σ̄ = max supp(F ).
Assume two continuations p1 < p2 for some π lie in distinct cascade sets, p1 ∈ Ca′(δ) and
p2 ∈ Ca′′(δ), with Ca′(δ) below Ca′′(δ) in [0, 1]. Then p1 ∈ Ca′(0) and p2 ∈ Ca′′(0), by
Proposition 2(b). Let π′ ≡ maxCa′(0) ≤ minCa′′(0) ≡ π′′. Then p1 ≤ π′. Choose x1, x2
in [σ, σ̄] with R(π, x1) = p1 and R(π, x2) = p2. As Bayes-updating commutes:

R(p1, σ̄)=R(R(π, x1), σ̄)=R(R(π, σ̄), x1)≥R(R(π, x2), x1)≥R(p2, σ)≥R(π′′, σ)≥R(π′, σ̄)

and so p1 ≥ π′. Thus p1 = π′ ≡ maxCa′(0), which contradicts Claim B.3. �

Claim B.5 (Strict Value Monotonicity). The value function strictly increases in δ ∈ [0, 1)

outside the cascade sets: If δ2 > δ1, then vδ2(π) > vδ1(π) for all public beliefs π ̸∈ C(δ2).

Proof: Let δ2 > δ1, and fix π /∈ C(δ2). If π ∈ C(δ1), we’re done, since vδ1(π) = U(π) <

vδ2(π). If π /∈ C(δ1), then the δ1-optimal rule ξ sometimes induces an action â with
continuation p(â, π, ξ) /∈ C(δ1). [The public belief π is the average of continuations, each
cascade set Ca(δ1) is an interval, and at most one cascade set is hit, by Claim B.4.] Then

(1− δ1)ū(a, p(a, π, ξ)) + δ1vδ1(p(a, π, ξ)) ≤ (1− δ2)ū(a, p(a, π, ξ)) + δ2vδ2(p(a, π, ξ))

for every action a by Claim A.3, with strict inequality for some action â, since δ2 > δ1 and
vδ2(p(â, π, ξ)) > vδ1(p(â, π, ξ)). By (11) and (12), the δ1-optimal rule ξ strictly exceeds
vδ1(π), for the discount factor δ2. Optimizing over δ2-rules, we have vδ2(π) > vδ1(π). �

Claim B.6 (Shrinkage). With bounded beliefs, action cascade sets strictly shrink in δ.

Proof: Fix action â and 0<δ1<δ2< 1. As Câ(δ) = {π|vδ(π) − ū(â, π) = 0} is closed by
continuity, we prove that if the cascade set edge π̂ ≡ minCâ(δ1), then π̂ /∈ Câ(δ2) if â ̸=1.

Case 1: Multiple Optimizers. Assume that at π̂, some optimal rule for δ1 uses
actions other than â with positive probability. Then some continuation beliefs fall outside
C(δ1) with positive probability. For if not, by Claim B.4, all continuations lie in the same
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cascade set; therefore, not playing â incurs a myopic cost with no informational gain. As
in the proof of Claim B.3, vδ2(π̂) > vδ1(π̂) = ū(â, π̂), and therefore π̂ ̸∈ C(δ2).

Case 2: A Unique Optimizer. Assume that the unique optimal rule for δ = δ1 at
belief π̂ is almost surely to play â. Choose a belief sequence πn ↑ π̂ = minCâ(δ1), so that
πn ̸∈ Câ(δ1). For each n, let Tn = (τna , a = 1, . . . , A) be optimal tangents in (19). For
every n, πn ̸∈ Câ(δ1) implies the existence of action ǎn ̸= â and signal σn ∈ supp(F ):

(1− δ1)ū(ǎn, R(πn, σn)) + δ1τ
n
ǎn(R(πn, σn)) ≥ (1− δ1)ū(â, R(πn, σn)) + δ1τ

n
â (R(πn, σn)).

Since T |A|
v and supp(F ) are compact and A is finite, there is a subsequence where Tn has

limit T ∗ = (τ ∗a ), an has limit ǎ ̸= â, and σn has limit σ̂. Write r̂ = R(π̂, σ̂). By the
Theorem of the Maximum, T ∗ is an optimal subtangent vector for π̂, so that

(1− δ1)ū(ǎ, r̂) + δ1τ
∗
ǎ (r̂) ≥ (1− δ1)ū(â, r̂) + δ1τ

∗
â (r̂). (22)

Since â is uniquely optimal at π̂, subtangent τ ∗â must be identical to the myopic function
ū(â, ·). By Claim B.3, π̂ is strictly inside Câ(0) ⊃ Câ(δ1). So action â is myopically strictly
dominant, i.e. ū(â, r̂) > ū(ǎ, r̂). Then (22) implies τ ∗ǎ (r̂) > τ ∗â (r̂). Hence, (1− δ2)ū(ǎ, r̂) +

δ2τ
∗
ǎ (r̂) > (1 − δ2)ū(â, r̂) + δ2τ

∗
â (r̂), as δ2 > δ1. Optimizing over tangents in (19) at δ2

yields vδ2(π̂) > ū(â, π̂). So π̂ /∈ Câ(δ2). �

Claim B.7 (The Perfect Patience Limit). Interior cascade sets are empty for large δ<1,
while limδ→1C1(δ) = {0} and limδ→1CA(δ) = {1}.

Proof: Fix a cascade set Ca(δ) ̸= ∅ for action a /∈ {1, A}. It suffices to use a simple rule
ξ taking action a− 1 for σ ∈ Ia−1 = [0, θ] and otherwise action a, where both actions can
happen: 0<F (θ)<1. By continuity of p(a, π, ξ) in π on the compact subset Ca(δ) ⊂ (0, 1),
for some ε > 0, after the good news σ ∈ Ia, public beliefs rise by p(a, π, ξ) − π ≥ ε for
all π ∈ Ca(δ). Let π′′ ≡ maxCa(δ) and define [π′, π′′] ≡ [π′′ − ε/2, π′′] ∩ Ca(δ). Since the
convex function vδ(p) ≥ ū(a, p) with equality iff p∈Ca(δ), by Claim B.2(a), there exists
η > 0 so that ψ(a−1, π, ξ)vδ(p(a−1, π, ξ))+ψ(a, π, ξ)vδ(p(a, π, ξ)) > vδ(π)+η on [π′, π′′].

We claim that the interval [π′, π′′] is excised from Ca(δ
′) for large enough δ′ ∈ (δ, 1).

For if vδ′(π′) = ū(a, π′), and thus in [π′, π′′], switching from the cascade rule to ξ yields a
continuation Bellman value in (11) at least η higher. For large δ′ ∈ (δ, 1), this gain exceeds
any first-period loss, proving sub-optimality of the cascade rule at π′, and so in [π′, π′′].
After finitely many iterations, each slicing an ε/2 interval, Ca(δ) vanishes for large δ. By
repeating this, for all ε > 0, Ca(δ) ∩ [ε, 1− ε] vanishes for large δ < 1 near 1. �
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C HERDING VIA BELIEF DYNAMICS: PROOFS

A herd obtains on action a at stage N if everyone henceforth choose action a. We argue
in this section that a herd starts — for if not, beliefs could not converge, violating the
martingale convergence theorem. Also, the limit is almost surely never fully wrong.

Claim C.1 (Limit Beliefs). The public belief process ⟨πn⟩ is a martingale unconditional
on the state, converging a.s. to some limit r.v. π∞. In state H, it a.s. belongs to (0, 1].

Public beliefs tend to the cascade set, for if not, limit actions would be informative.

Theorem 1 (Limit Beliefs are Cascade Sets). The limit belief π∞ of the planner’s problem
has support in C1(δ)∪· · ·∪CA(δ), and so is concentrated on the truth for unbounded signals.

Proof: At a non-cascade belief π, at least two actions have positive probability. By
Corollary 1, the highest such action is more likely in state H, and the least in state L. So
the continuation belief differs from π with positive probability. By the Markov-martingale
process characterization in Appendix B of SS, this noncascade belief π ̸∈ supp(π∞). �

Theorem 2 (Efficient Herds). A herd a.s. starts. For unbounded signals, it is on the ex
post optimal action, and for bounded signals, it is incorrect with vanishing chance as δ ↑ 1.

We extend the “Overturning Principle” of SS to show that herds arise. Claim C.3 below
proves that actions a′ ̸= a greatly move public beliefs π near the cascade set Ca(δ) — for
such (unexpected) actions yield a first order myopic loss and second order information
gain. This is the contrapositive of: limit cascade (a.s. occurs by Theorem 1) =⇒ herd.
Proof of Theorem 2: Fix an optimal policy — a map Υ from public beliefs to rules,
ξ = Υ(π). Let ε > 0 obey Claim C.3. Define events Ba

n = {πn is ε-close to Ca(δ)},
Ca
n={ψ(a, πn,Υ(πn))<1−ε}, and Dn+1={|πn+1−πn|>ε}. Given Ba

n∩Ca
n, Claim C.3 (ii)

yields P (Dn+1|πn) ≥ ε/A. Then
∑∞

n=1 P (Dn+1|π1, . . . , πn) = ∞ given Ba
n ∩ Ca

n infinitely
often (i.o.). By the Conditional Second Borel-Cantelli Lemma,20 a.s. Dn obtains i.o. given
Ba
n ∩ Ca

n i.o. Since ⟨πn⟩ a.s. converges by Claim C.1, Dn i.o. or Ba
n ∩ Ca

n i.o. have chance 0.
Let Ea be the event that ⟨πn⟩ has a limit in Ca(δ), intersected with the probability-

one event that Ba
n ∩ Ca

n occurs finitely often. By definitions of Ba
n and Dn+1, convergence

to Ca(δ) implies that eventually Ea ⊂ Ba
n \ Dn+1. Since Ba

n ∩ Ca
n occurs finitely often,

eventually Ea ⊂ Ba
n \ (Ca

n∪Dn+1). By Claim C.3(i), Ba
n \Ca

n implies that every a′ ̸= a leads
20This Lemma is Corollary 5.29 of Breiman (1968): Let event An be measurable w.r.t. (Y1, . . . , Yn) for

a stochastic process Y1, Y2, . . .. Then a.s. {An infinitely often} = {
∑∞

n=1 P (An+1|Yn, . . . , Y1) = ∞}.
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to Dn+1, so actions a′ ̸= a can occur only finitely often. So action a is eventually taken
on Ea. By Claim C.1 and Theorem 1, event ∪A

a=1Ea has chance one. So a herd starts. �

Claim C.2 (Bad Herds). The incorrect herd chance vanishes as δ↑1, for bounded signals.

Proof: As ((1 − πn)/πn) is a convergent, non-negative martingale in state H, by Fatou’s
Lemma, E[limn(1 − πn)/πn] ≤ (1 − π0)/π0. Let the boundary of C1(δ) have likelihood
ratio M < ∞. Then limn(1 − πn)/πn > M with chance at most 1/M . Since M ↑ ∞ as
δ ↑ 1 by Proposition 2(b), limn→∞ πn ∈ C1(δ) with a vanishing chance as δ ↑ 1. �

We now argue that near cascade sets, some action boundedly moves the beliefs.

Claim C.3 (A New Overturning Principle). For δ ∈ [0, 1), let Ca(δ) ̸= ∅ for action a.
Then there exists ε > 0 and an ε-neighbourhood K ⊃ Ca(δ), s.t. ∀π ∈ K ∩ (0, 1), either:
(i) ψ(a, π,Υ(π)) ≥ 1− ε, and |p(a′, π,Υ(π))− π|>ε for all active actions a′ ̸= a; or
(ii) ψ(a, π,Υ(π))<1− ε, and ψ(a′, π,Υ(π))≥ε/A and |p(a′, π,Υ(π))−π|>ε at some a′.

Proof: Choose η > 0 so small that ψ(a′, π,Υ(π)) < 1− η for any action a′ ̸= a and all π
within η of action a’s cascade set Ca(δ). If such η does not exist, a.s. taking some action
a′ is optimal at some π̃ ∈ Ca(δ), since the optimal rule correspondence is u.h.c. This is
impossible: always taking a′ incurs a strict myopic loss and no information gain.

Case 1: Bounded Signals. By Claim B.2(b), for π close enough to 0 or 1, active
learning optimally stops. So we need only consider π in some closed subinterval I ⊂ (0, 1).
As some signals are informative, min supp(F ) ≡ σ0 < 1/2 < σ1 ≡ max supp(F ). Define
S = supp(F ) \ ((2σ0 + 1)/4, (2σ1 + 1)/4). Let η1 = minπ∈I,σ∈S |R(σ, π)− π| > 0, and

η2 = min
π∈I

{∣∣∣∣ πFH(1
2
)

πFH(1
2
) + (1−π)FL(1

2
)
− π

∣∣∣∣ , ∣∣∣∣ π(1−FH(1
2
))

π(1−FH(1
2
)) + (1−π)(1−FL(1

2
))

− π

∣∣∣∣} > 0.

Choose ε = min{η, η1, η2, FH((2σ0 + 1)/4), 1− FL((2σ1 + 1)/4)}.
Item (i): When ψ(a, π,Υ(π)) ≥ 1 − ε, by Corollary 1, any a′ ̸= a is only taken for

σ ∈ S. Since p(a′, π,Υ(π)) averages R(σ, π) over σ to a′, |p(a′, π,Υ(π))− π| ≥ η1 ≥ ε.
Item (ii): Suppose ψ(a, π,Υ(π)) < 1 − ε. Any a′ ̸= a likewise has ψ(a′, π,Υ(π)) <

1 − η ≤ 1 − ε. Then there exists a′′ with ψ(a′′, π,Υ(π)) > ε/A which is not taken at
σ = 1/2. Then |p(a′′, π,Υ(π))− π| ≥ η2 ≥ ε.

Case 2: Unbounded Signals. By Lemma 1, v has absolute slope at most κ =

max(|uH(1) − uL(1)|, |uH(A) − uL(A))| < ∞. Since action 1 (A) is strictly optimal in
state L (H), there exists η3 ∈ (0, 1) such that: for all a ̸= 1, (1−δ)(ū(1, r)−ū(a, r) > Aδκη3
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when r ∈ [0, η3], and, for all a ̸= A, (1−δ)(ū(A, r)− ū(a, r) > Aδκη3 when r ∈ [1−η3, η3].
Let U denote the maximal possible myopic payoff difference among any pair of actions.
Choose ε = min{η, η3/2, (A−1)δκη3/[2Aδκη3+2(1−δ)U/A]}. WLOG, focus on action 1.

Item (i): Bayes rule gives p(1, π,Υ(π))≤π/(1−ε)<η3. Towards a contradiction, sup-
pose active a ̸= 1 has |p(a, π,Υ(π))−π| ≤ ε, so p(a, π,Υ(π)) < η3. Now, the planner gains
by merging actions a and 1, directing all these signals to 1. The continuation belief remains
in [0, η3], so the future value loss is at most ψ(a, π,Υ(π))δ2κη3. The myopic value gain is
at least ψ(a, π,Υ(π))(1 − δ)(ū(1, p(a, π,Υ(π)))) − ū(a, π,Υ(π)))) > ψ(a, π,Υ(π))Aδκη3.
This contradiction to optimality of Υ(π) proves the desired |p(a, π,Υ(π))− π| > ε.

Item (ii): Towards a contradiction, suppose all actions with ψ(a, π,Υ(π)) > ε/A have
|p(a, π,Υ(π))−π| ≤ ε. Then Ã = {a|p(a, π,Υ(π)) < η3} has chance ψ(Ã, π,Υ(π)) ≥ 1−ε.
The proof of item (i) shows that 1 /∈ Ã. Now another gain is available: Take 1 where any
action in Ã was taken, and take the arbitrary ã ∈ Ã where 1 was taken. The future value
loss from pooling Ã is at most δκη3, with chance ψ(Ã, π,Υ(π)) < 1. Since 1 replaces
worse actions, there is a myopic gain of at least Aδκη3 with chance ψ(Ã, π,Υ(π)) ≥ 1− ε.
There is possibly a myopic loss of at most (1−δ)U with chance ψ(1, π,Υ(π)) ≤ ε/A. This
sums to an overall gain since (1− ε)Aδκη3 − ε(1− δ)U/A > δκη3 by choice of ε. �

D IMPLEMENTATION PROOFS

Pivot Mechanism: Proof of Proposition 3. In a cascade on a, t = 0 solves (14)
and (15), as selfishness is optimal (Ca(δ)⊆Ca(0)).

Case 1. π ̸∈ C(δ), and that no active action hits the cascade set. Consider
any active action a. Since the next agent is not in a cascade set, we have FL(σ̂) > FH(σ̂).
Then there exists unique transfers t(a, â) and t(a,¬â) solving (15), since the determinant
is FL(σ̂)(1−FH(σ̂))− (1−FL(σ̂))FH(σ̂) > 0. These transfers deliver the right incentive:
The agent with posterior belief r expects to receive r[FH(σ̂)t(a, â)+(1−FH(σ̂))t(a,¬â)]+
(1−r)[FL(σ̂)t(a, â)+(1−FL(σ̂))t(a,¬â)] = rtH(a|π)+(1−r)tL(a|π) from action a. Then
ū(a, r)+rtH(a|π)+(1−r)tL(a|π) is an affine transformation of the index w(a, π, r) in (13),
where the transformation depends on π and not r. All told, this solves (14).

Case 2. π ̸∈ C(δ), and a continuation is in a cascade. If action a sparks
a cascade, equations (15) might not be solvable, as FL(σ̂) = FH(σ̂) (i.e., zero or one).
But by Claim B.4, at most one cascade set, say Ca′(δ), can possibly be hit by all actions.
So inspired, we devise a non-pivot mechanism: Choose a zero transfer for active actions
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leading to the cascade set Ca′(δ). For other active actions a, the transfer pays the difference
between continuation values of a and a′. Since vω(p(a′, π, ξ)) = uω(a

′), transfers solve (15),
where t′ω(a|π) = [δ/(1−δ)](vω(p(a, π, ξ))−uω(a′)). Also, ū(a, r)+rt′H(a|π)+(1−r)t′L(a|π)
is again an affine transformation of the index w(a, π, r) in (13), independent of r.

We can easily deter agents from taking inactive actions with large negative transfers. �

Mimicry with Two Actions: Proof of Corollary 3. Assume a = 1, with
p(1, π, ξ) ̸∈ C(δ). Assume first the case where p(2, π, ξ) ̸∈ C(δ). By (15),

t(1, 1)− t(1, 2) =
tL(1|π)− tH(1|π)

ψ(1, L, ξ)− ψ(1, H, ξ)
. (23)

Since the two actions are taken in the myopic order, ψ(1, L, ξ) > ψ(1, H, ξ). Thus, the
fraction has the sign of the numerator. The definition of t in (14) and vH(p) − vL(p) =

τ(p, 1) − τ(p, 0) = v′(p) imply tL(1|π) − tH(1|π) = [δ/(1 − δ)](v′(π) − v′(p(1, π, ξ))). By
the myopic action ordering, we have p(1, π, ξ) < π. By Claim B.1, the value function
is strictly convex and thus v′(π) − v′(p(1, π, ξ)) > 0. Thus t(1, 1) − t(1, 2) > 0. When
p(2, π, ξ) ∈ C(δ), the logic is the same, substituting t in (23) by t′. �

E POSTERIOR MONOTONICITY PROOFS

Claim E.1. Given (PM), private signals have a continuous cdf, increasing on an interval.

Proof: Assume a nonconvex private signal support. Pick any σ1 ∈ co(supp(F ))\ supp(F ).
Let σ0 be the upper bound of supp(F )∩[0, σ1), and σ2 the lower bound of supp(F )∩(σ1, 1].
Pick payoffs with Ia = [σ0, σ2] the posterior belief interval for some action a (Corollary 1).
By (9), the posterior map R(π, σ) is continuous and monotone, with R(1/2, σ) ≡ σ. Fix π
near 1/2 but π < 1/2. Then a positive probability ψ(a, π) > 0 of private signals above σ2
map to a posterior in Ia. Since (σ1, σ2) is a missing interval in supp(F ), no private signals
below σ2 map to a, and σ2 > σ1, and R(π, σ) is continuous, the continuation public belief
p(a, π) (an average of these private signals) exceeds σ1. Similarly, for π′ near 1/2 and
π′ > 1/2, the continuation public belief p(a, π′) is below σ1. This contradicts (PM).

Assume next, for a contradiction a positive mass of private signals at σ1. As there are
no perfectly revealing signals, σ1 ∈ (0, 1). Since some signals are informative, supp(F ) is
not a single-point. So supp(F ) contains [σ1, σ1 + η] or [σ1 − η, σ1], for some η > 0. In the
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first case,
σ̂0 ≡ E[σ|σ ∈ [σ1, σ1 + η]] < E[σ|σ ∈ (σ1, σ1 + η]] ≡ σ̂2,

since σ1 has positive probability. Assume payoffs so that action b has the posterior interval
Ib=[σ1, σ1+η]. Since σ1 maps to Ib, we have ψ(b, π)>0 if π<1/2 is near 1

2
, and ψ(b, π′)>0

if π′> 1/2 is near 1
2
. (In both cases, the posterior is near the private signal σ1.) As the

posterior R(π, σ) is continuous, the continuation public belief p(b, π) tends to a limit at
least R(1/2, σ̂2), as π approaches 1/2 from below, and at most R(1/2, σ̂0), as π approaches
1/2 from above. Since σ̂0 < σ̂2, this contradicts (PM). If the support is [σ1 − η, σ1], the
posterior interval [σ1 − η, σ1] likewise provides a non-monotonicity at prior 1/2. �

Proof of Proposition 4. The private signal density induces a density g(r|π) on
posterior beliefs r = R(π, σ) on state H. As in §7, write the signal σ=S(ℓ) = eℓ/(1+eℓ) in
terms of the log likelihood ratio ℓ = Λ(σ) = log(σ/(1−σ)), with state-ω contingent density
ϕω(ℓ) ≡ fω(S(ℓ))S ′(ℓ). Denote by ϕ(ℓ|π) = πϕH(ℓ) + (1 − π)ϕL(ℓ) the unconditional
density for the log-likelihood ratio ℓ of the private signal when the public belief is π.

By Bayes rule, the posterior log-likelihood ratio is ρ ≡ Λ(r) = ℓ+ Λ(π), and thus has
density ϕ(ρ − Λ(π)|π). By changing variable from r to ρ, the continuation public belief
in §4 is

p(a, π) =

∫
Ia
rg(r|π)dr∫

Ia
g(r|π)dr

=

∫
Λ(Ia)

S(ρ)ϕ(ρ− Λ(π)|π)dρ∫
Λ(Ia)

ϕ(ρ− Λ(π)|π)dρ
, (24)

writing p(a, π) for p(a, π, ξ). As S ′ > 0, (PM) ensues if ϕ is log-supermodular (LSPM).

Step 1 (An Equivalence). The density ϕL is strictly logconcave iff ϕ(ρ−Λ(π)|π) is strictly
log-supermodular in (ρ, π) wherever ρ− Λ(π) is in the support supp(ϕ).

Proof: Since ϕH(ℓ) = eℓϕL(ℓ) (see §7), we have ϕ(ρ−Λ(π)|π) = (1−π)(1+eρ)ϕL(ρ−Λ(π)),
since πe−Λ(π) ≡ 1−π. Strict LSPM of ϕ is equivalent to strict LSPM of ϕL(ρ−Λ(π)). As
Λ is strictly increasing, this holds iff ϕL is strictly logconcave, as Karlin (1968) shows. �

Step 2 (Necessity). ϕ(ρ−Λ(π)|π) strictly LSPM in (ρ, π) if ρ−Λ(π)∈supp(ϕ) ⇒ (PM).

Proof: Fix π′ > π and an active action a (so ψ(a, π), ψ(a, π′)> 0). Activity implies that
Λ(Ia)−Λ(π) and Λ(Ia)−Λ(π′) overlap supp(ϕ). Next, if ρ′ > ρ, and ρ′−Λ(π)>ρ−Λ(π′) are
in the convex supp(ϕ), then so are ρ−Λ(π) and ρ′−Λ(π′), as Λ increases. As ϕ(ρ−Λ(π)|π)
is strictly LSPM in (ρ, π), ϕ(ρ−Λ(π)|π)ϕ(ρ′ −Λ(π′)|π′) > ϕ(ρ′ −Λ(π)|π)ϕ(ρ−Λ(π′)|π′),
lest the left side vanishes. So (24) strictly increases in π, by Karlin and Rubin (1956). �
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Step 3 (Sufficiency). Suppose ϕ(ρ−Λ(π)|π) is positive and continuous in ρ on its support,
for every π. If (PM) holds, then ϕ(ρ−Λ(π)|π) is strictly LSPM when ρ−Λ(π) ∈ supp(ϕ).

Proof: If LSPM fails, there is π2>π1 and ρ2>ρ1 with ρ1−Λ(π1) and ρ2−Λ(π2) in supp(ϕ)

and (♢): ϕ(ρ1 − Λ(π1)|π1)ϕ(ρ2 − Λ(π2)|π2) < ϕ(ρ2 − Λ(π1)|π1)ϕ(ρ1 − Λ(π2)|π2). Define

H(x)≡ [log ϕ(ρ1−Λ(π2)|π2)−log ϕ(ρ1−Λ(π1)|π1)]−[log ϕ(x−Λ(π2)|π2)−log ϕ(x−Λ(π1)|π1)].

ThenH is continuous on [ρ1, ρ2], withH(ρ1)=0<H(ρ2) by (♢). Let x2=max{x∈ [ρ1, ρ2] :

H(x) = 1
2
H(ρ2)}, where ρ1<x2<ρ2. By definition of x2, if x∈(x2, ρ2), then H(x)>H(x2),

and so (by rewriting) ϕ(x−Λ(π2)|π2)/ϕ(x2−Λ(π2)|π2) < ϕ(x−Λ(π1)|π1)/ϕ(x2−Λ(π1)|π1).
Integrating this over x ∈ (x2, ρ2), and using continuity near x2, there exists ε ∈ (0, x2−ρ1)
such that ∫ ρ2

x2
ϕ(x− Λ(π2)|π2)dx∫ x2

x2−ε
ϕ(x− Λ(π2)|π2)dx

<

∫ ρ2
x2
ϕ(x− Λ(π1)|π1)dx∫ x2

x2−ε
ϕ(x− Λ(π1)|π1)dx

. (25)

Define the cdf Gi on [x2− ε, ρ2] by Gi(x) =
∫ x

x2−ε
ϕ(t−Λ(πi)|πi)dt/

∫ ρ2
x2−ϵ

ϕ(t−Λ(πi)|πi)dt.
Since G1(x2 − ε)=G2(x2 − ε)= 0 and G1(ρ2)=G2(ρ2)= 1, let x=max{x∈ [x2 − ε, x2] :

G1(x)=G2(x)} and x̄=min{x∈ [x2, ρ2] : G
1(x)=G2(x)}. Then G1 strictly stochastically

dominates G2 on [x, x̄], by (25). If action a is taken for ρ ∈ [x, x̄], we contradict (PM):

p(a, π2) =

∫ x

x
S(ρ1)ϕ(ρ1 − Λ(π2)|π2)dρ1∫ x

x
ϕ(ρ1 − Λ(π2)|π2)dρ1

<

∫ x

x
S(ρ1)ϕ(ρ1 − Λ(π1)|π1)dρ1∫ x

x
ϕ(ρ1 − Λ(π1)|π1)dρ1

= p(a, π1).

Next assume strict LSPM fails. So equality holds in (♢) for some π2 > π1 and ρ2 > ρ1,
so that ϕ(ρ1−Λ(π1)|π1)ϕ(ρ2−Λ(π2)|π2)=ϕ(ρ2−Λ(π1)|π1)ϕ(ρ1−Λ(π2)|π2). Now, H(x) ̸≡ 0

on [ρ1, ρ2], for otherwise p(a, π2) = p(a, π1) when a is taken on [x, x̄], a contradiction to
(PM). So we must either have H(x′) < 0 or H(x′) > 0 for some x′ ∈ (ρ1, ρ2). This
respectively contradicts (the just proved) LSPM on {x′, ρ2}×{π1, π2} or {ρ1, x′}×{π1, π2}.�

Step 4. If (PM) holds, then ϕ(ρ− Λ(π)|π) is strictly LSPM when ρ− Λ(π) ∈ supp(ϕ).

Proof: Assuming (PM), we extend step 3. Let (Xm) be a sequence of mean-0 normal r.v.s
with vanishing variance, and independent of ρ, θ. Let ρm denote the posterior belief for
someone who observes ρ+Xm, and let ϕm(ρm|π) denote its conditional density. Since the
density Υm of Xm is log-concave, the pair (ρ, ρm) satisfies the MLRP. In particular, for
any given Xm, posterior ρm is a continuous, increasing function of ρ.
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We show that the distribution of ρm inherits property (PM) for all m. Let thus any
interval J be given. For any realization Xm, let Jm(Xm) denote the interval such that
ρm ∈ J iff ρ ∈ Jm(Xm). The posterior belief given {ρm ∈ J} is

∫∞
−∞ p(Jm(x), π)Υm(x)dx.

By (PM), for every x, p(Jm(x), π) is weakly increasing in π, and strictly so wherever Jm(x)
intersects the support of ρ. The integral thus inherits (PM), as desired.

Since Xm and thus ρm have distributions that satisfy the auxiliary assumptions of
step 3, we can conclude that ϕm(ρm − Λ(π)|π) is strictly LSPM. Step 1 implies that ϕm

is strictly logconcave. As m tends to infinity, the variance of Xm vanishes, and in the
limit ϕ is logconcave. If ϕ is loglinear on any interval, π and J can be chosen so p(J, π) is
locally constant in π, in contradiction to (PM). �

F CONTRARIANISM PROOFS

Lemma 2 (Tangents to a Convex Function). Assume consecutive tangents τi < τii < τiii to
a value function v at zi < zii < ziii. Then τii(zi) ≥ τiii(zi) (respectively, τi(ziii) ≤ τii(ziii)),
with strict inequality unless v is affine on [zii, ziii] (respectively, on [zi, zii]).

Proof: When v is affine on [zi, zii], subtangents τi and τii can coincide, with τi(ziii) =

τii(ziii). Otherwise, τii is steeper than τi. Thus, τii(ziii)−τii(zii) > τi(ziii)−τi(zii), whence
τii(ziii)− τi(ziii) > τii(zii)− τi(zii). Since v is convex, the subtangent τi lies below v at zii,
so that τii(zii)=v(zii)≥τi(zii). So τii(ziii)>τi(ziii). The zi analysis is similar. �

By assumption, at public beliefs π < π′, there exist optima with the same action order.
The optimal rules at π and π′ therefore also solve the Bellman problem (11) with (12) when
we restrict the choice set to this action order. In this restricted problem, we explore the
comparative statics properties of the constrained Bellman equation for any belief outside
the cascade set C(δ). Define the constrained Bellman function as the right side of (12):

B(θ|π) =
∑

A

a=1
ψ(a, π, θ)[(1− δ)ū(a, p(a, π, θ)) + δv(p(a, π, θ))]. (26)

Solutions to the constrained problem maxθ∈Θ(π)B(θ|π) define an optimizer set Θ∗(π). To
prove Proposition 5, it suffices that Θ∗(π) increase in the strong set order.

F.1 Proof of Proposition 5 with Two Actions

We wish to apply a clever comparative statics result in Quah and Strulovici (2009). Their
Theorem 1 delivers our conclusion provided B(·|π′) exceeds B(·|π) in their interval dom-
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inance order. A sufficient condition for this order is their Proposition 2, that there exist
an increasing and strictly positive function α(θ) with Bθ(θ|π′) ≥ α(θ)Bθ(θ|π). Inspired
by (13) and (26), we derive an expression for Bθ(θ|π) in terms of the welfare index.

Lemma 3 (FOC). The Bellman function B is differentiable almost everywhere with
derivative

Bθ(θ|π) = g(θ, π) (w(1, π, θ)− w(2, π, θ)) . (27)

Also, B is absolutely continuous, with B(θ′|π)−B(θ|π) =
∫ θ′

θ
Bθ(θ̃|π) dθ̃ for θ, θ′ ∈ Θ(π).

Proof: From (26), the Bellman function is a.e. differentiable in θ. For by assumption (LC),
p(a, π, θ) is strictly monotone and differentiable, and the convex function v is differentiable
a.e. Since ū and τa are affine functions, and since p(a, π, ξ) =

∫
ξ−1(a)

r(π, σ)dF π, we can
use Proposition 1 to rewrite (12) as follows, proving Lemma 3:

B(θ|π) =
∫ θ

0

w(1, π, r)g(r|π)dr +
∫ 1

θ

w(2, π, r)g(r|π)dr. (28)

Returning to the proof of Proposition 5, suppose that the thresholds θ ∈ Θ∗(π) and
θ′ ∈ Θ∗(π′) are inversely ordered as θ′ < θ — otherwise, we’re done. Since r(σ, π) increases
in π, the open interval Θ(π) rises in π. So [θ′, θ] ⊂ Θ(π) ∩ Θ(π′). We first argue that
the index difference ∆(θ̃, π) ≡ w(1, π, θ̃)−w(2, π, θ̃) in (27) weakly increases in the public
belief π, when θ̃ ∈ [θ′, θ]. By Proposition 4, continuation beliefs rise in public beliefs:
p(a, π′, θ̃) > p(a, π, θ̃) for a = 1, 2. Using definition (13), Lemma 2 yields the desired,

∆(θ̃, π′)−∆(θ̃, π) = δ{[τ ′1(θ̃)− τ1(θ̃)] + [τ2(θ̃)− τ ′2(θ̃)]} ≥ 0. (29)

Next, α(θ̃) ≡ g(θ̃|π′)/g(θ̃|π) is a positive and nondecreasing function over [θ′, θ], since g
is log-supermodular, by Lemma 4. Then Lemma 3 and inequality (29) imply:

Bθ(θ̃|π′) = g(θ̃|π′)∆(θ̃, π′) ≥ g(θ̃|π′)∆(θ̃, π) = α(θ̃)Bθ(θ̃|π), (30)

This implies that B obeys the interval dominance order, by Proposition 2 in Quah and
Strulovici (2009). By their Theorem 1, Θ(π) rises in the strong set order — contrarianism.

Consider the stronger claim in Proposition 5 that the optimizer set strictly rises.
Suppose first that thresholds θ ≥ θ′ are respectively optimal at public beliefs π < π′ . By
the already proven strong set order, θ ∈ Θ∗(π′). By Proposition 1, w(1, π, θ)−w(2, π, θ) =
w(1, π′, θ) − w(2, π′, θ) = w(1, π′, θ′) − w(2, π′, θ′) = 0. The first difference vanishes since
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θ is optimal at π, the second since θ is optimal at π′, and the third since θ′ is optimal at
π′. If θ > θ′, we contradict the fact that w(2, π′, r) − w(1, π′, r) increases in r, as follows
from (13). For the natural action order implies that ū(2, r)− ū(1, r) is strictly increasing,
and convexity of v implies that its tangent difference τ ′2(r)− τ ′1(r) is monotone.

Consider the other possibility with θ = θ′. Now π < π′ implies p(a, π, θ) < p(a, π′, θ),
and at least one of p(1, π′, θ), p(2, π, θ) is outside the cascade set, by Claim B.4. Lemma 2
gives the contradiction w(1, π, θ)− w(2, π, θ) > w(1, π′, θ)− w(2, π′, θ). The inequality is
strict because v is strictly convex outside the cascade set, by Claim B.1. �

F.2 Proof of Proposition 5 for Multiple Actions

Recall from the proof of Claim B.4 that supp(F ) = [σ, σ̄].

Claim F.1. Let θ ∈ Θ(π) obey θ0 = r(σ, π) and θA = r(σ̄, π). Assume θa = · · · = θa+j = x

for some a ≥ 1 and j ≥ 0 with a+ j ≤ A− 1, and θa−1 < x < θa+j+1. Then the Bellman
function B in (32) is absolutely continuous in x, and its derivative in x almost everywhere
equals:

Bx(θ|π) ≡ g(x|π) (w(a, π, x)− w(a+ j + 1, π, x)) . (31)

Also, for all π′′ > π′, there exists a positive and increasing function α(x) such that the
Bellman function B(θ|π) a.e. obeys Bx(θ|π′′) ≥ α(x)Bx(θ|π′) when θ ∈ Θ(π′) ∩Θ(π′′).

The proof of this many action generalization follows closely on Lemma 3, since we
take action a for r ∈ [θa−1, x], and action a+ j +1 for r ∈ [x, θa+j+1]. So the derivative of
the Bellman function B in x is similar to (27) which had payoffs and tangents for actions
a = 1 and a+ j+1 = 2. Thus, (31) follows. The inequality follows similarly from (30). �

For contrarianism, we must show that Θ∗(π′) exceeds Θ∗(π) in the strong set order.21

Claim F.2. The threshold space Θ(π) is a lattice, and B is supermodular for θ ∈ Θ(π).

Proof. Assume θ, θ′ ∈ Θ(π). Then θ ∧ θ′ ∈ Θ(π) since (θ ∧ θ′)a = θa ∧ θ′a ≤ θa+1 ∧ θ′a+1 =

(θ ∧ θ′)a+1 for every a. Similarly, θ ∨ θ′ ∈ Θ(π). Next, to show that B is supermodular
in θ, let θ′a > θa. If θ−a increases, both continuation beliefs p(a, π, θ) and p(a + 1, π, θ)

increase. Since p(a, π, θ) < θa < p(a+ 1, π, θ), Lemma 2 implies that w(a, π, θa) increases
while w(a + 1, π, θa) decreases. So the difference w(a, π, θa) − w(a + 1, π, θa) increases
in θ−a. Then by (31), the Bellman difference B(θ′a, θ−a) − B(θa, θ−a) increases in θ−a.
Supermodularity can now be decomposed into a summation of differences of this form.

21Recall that Y ′ dominates Y in the strong set order if y ∈ Y and y′ ∈ Y ′ ⇒ y∨ y′ ∈ Y ′ and y∧ y′ ∈ Y.
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Fixing the action ordering, the Bellman function (12) for a convex continuation value v
is:

B(θ|π) =
A∑

a=1

ψ(a, π, θ)[(1− δ)ū(a, p(a, π, θ)) + δv(p(a, π, θ)). (32)

We now prove Proposition 5 for finitely many actions. Pick beliefs π < π′ and assume
that θ ∈ Θ∗(π) and θ′ ∈ Θ∗(π′). If θ ≤ θ′, we are done. Assume next that they are
inversely ordered θ′ < θ. We verify θ ∈ Θ∗(π′) and θ′ ∈ Θ∗(π). First, both [θ1, θA−1] and
[θ′1, θ

′
A−1] are subsets of Θ(π) ∩ Θ(π′), since [θ1, θA−1] ⊂ Θ(π) and [θ′1, θ

′
A−1] ⊂ Θ(π′) and

[θ1, θA−1] lies above [θ′1, θ
′
A−1] in the strong set order, and yet Θ(π) lies below Θ(π′) in

the strong set order. Second, let X be the set of all cut-off rules with cut-off points in
Θ(π) ∩Θ(π′). By Tian (2014), B(·|π′) dominates B(·|π) in the interval dominance order
over X since, by Claim F.1, the condition for Proposition 2 in Tian (2014) is satisfied.

Finally, suppose that θ and θ′ are not ordered. We now need a stronger proof ingredient
— specifically, we exploit the supermodularity of B (Claim F.2). Our result follows if:

B(θ|π)− B(θ ∧ θ′|π) ≥ 0 (> 0) =⇒ B(θ ∨ θ′|π′)− B(θ′|π′) ≥ 0 (> 0). (33)

Let’s see why this suffices. Since θ is optimal at π, the left side is non-negative, and thus
θ ∨ θ′ is optimal at π′ by the weak inequality in (33). Conversely, if θ ∧ θ′ is not optimal
at π, then θ′ is not optimal at π′, by the strict inequality in (33).

We split the proof of (33) into two parts, since the choice domain Θ(·) depends on
the public belief. Let (θa, ..., θA−1) be the components of θ inside Θ(π′), for some a < A.
Choose z ∈ Θ(π′) with z < min{θa, θ′1}. Let θ̂ = (z, ..., z, θa, ..., θA−1), where the first a−1

components are z. Then θ̂ ∈ Θ(π) ∩Θ(π′), since θa−1 < z follows from θa−1 /∈ Θ(π′).
By supermodularity of B(·|π′), and because θ̂ ∨ θ′ = θ ∨ θ′, we have:

B(θ̂|π′)− B(θ̂ ∧ θ′|π′) ≥ (> 0) =⇒ B(θ ∨ θ′|π′)− B(θ′|π′) ≥ (> 0). (34)

Then (33) follows if we also argue:

B(θ|π)− B(θ ∧ θ′|π) ≥ (> 0) =⇒ B(θ̂|π′)− B(θ̂ ∧ θ′|π′) ≥ (> 0). (35)

We now prove (35). First, for all θ′′ ∈ [θ̂ ∧ θ′, θ̂], we have θ̂ = θ ∨ θ′′ and so:

B(θ̂|π)− B(θ′′|π) ≥ B(θ|π)− B(θ ∧ θ′′|π) ≥ 0, (36)
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by supermodularity of B(·|π) and optimality of θ at π, respectively. When θ′′ = θ̂ ∧ θ′

in (36), we have B(θ̂|π) − B(θ̂ ∧ θ′|π) ≥ B(θ|π) − B(θ ∧ θ′|π), since θ ≤ θ̂. Hence, if
B(θ|π)−B(θ ∧ θ′|π) > 0, then B(θ̂|π)−B(θ̂ ∧ θ′|π) > 0. Finally, the interval dominance
ordering of B(·|π′) over B(·|π′) lets us conclude (35). �

Strict Contrarianism. Pick π′>π. Let θ ∈ Θ∗(π) and θ′∈Θ∗(π′). Then behaviour
is contrarian, by Proposition 5. Suppose for a contradiction that it is not strictly so, and
thus θ′k ≤ θk for some k. By Proposition 5, θ∨θ′ is optimal under π′. Since θ′k ≤ θk, we have
(θ∨θ′)k = θk. Suppose that aj is the highest active action below ak, and am the least active
action above ak. Then (θ∨θ′)j−1 < (θ∨θ′)j = · · · = (θ∨θ′)k = · · · = (θ∨θ′)m−1 < (θ∨θ′)m,
since θ and θ′ have the same active actions in natural order. Our proof for two actions
then carries over to this case, by considering a neighbouring pair of active actions. �

G TWO EXAMPLES

G.1 Actions Need Not Be Taken in the Natural Order

To illustrate a non-natural action order (Lesson 2 in §4), consider signal densities fH(σ) =

σf(σ) and fL(σ) = (1 − σ)f(σ) on (0, 4/7), where f(σ) = 78σ6/47. Let action a = 1, 2

have payoff 2a − 3 in state H and 3 − 2a in state L, representing payoffs ±1 when the
action matches/mismatches the state. Choose a high discount factor δ = 0.95.

Figure 6 depicts the numerically calculated private posterior belief threshold θ(π). For
public beliefs π ∈ (.3, .4) ⊂ (0, 3/7), the optimal action order is reversed: action 1 is taken
at high signals σ, and action 2 at low signals σ.

To understand this reversion, consider the alternative of switching the two actions,
holding fixed the threshold. This switch yields the same information, as it maintains the
same chances for the two continuation beliefs. From (11), it gives no planner gain when

ψ(2, π, ξ)(2p(2, π, ξ)− 1) + ψ(1, π, ξ)(1− 2p(1, π, ξ))

> ψ(1, π, ξ)(2p(1, π, ξ)− 1) + ψ(2, π, ξ)(1− 2p(2, π, ξ)).
(37)

Using Bayes rule, p(a, π, ξ) = πψ(a,H, ξ)/ψ(a, π, ξ), this inequality holds when ψ(1, π, ξ)−
ψ(2, π, ξ) > 2π(ψ(1, H, ξ) − ψ(2, H, ξ)). Inequality (37) holds at low π, as the example
shows, when the reversed order takes action 1 for a relatively large set of high signals. �

Note that in this example, the last agent using his own information may take action 2
and push the public belief into the cascade set for action 1. Agents optimally herding on
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Figure 6: Inverted Action Ordering. The optimal posterior belief threshold θ(π).

action 1 thus need not follow the lead of the last agent who used private information.

G.2 Contrarianism Can Fail Without Posterior Monotonicity

We show by an example that (PM) is necessary for contrarianism in Proposition 5 when
the convex value function v can be chosen freely in (32). We use a version of the two-
period professor-student example with δ = 1 in §2 to show the principle. The student
has three actions available, while the professor has two actions taken in the natural order.
The student gets no private signal. The professor’s signal is described by the conditional
density g(r|π). By assumption, this signal structure violates posterior monotonicity for
some interval, say [θ̂, 1]. Thus,

p′ ≡
∫ 1

θ̂
rg(r|π′)dr∫ 1

θ̂
g(r|π′)dr

>

∫ 1

θ̂
rg(r|π′′)dr∫ 1

θ̂
g(r|π′′)dr

≡ p′′.

By this reversal, θ̂ must lie strictly inside the posterior belief supports at π′, π′′, so p′′ > θ̂.
Figure 7 illustrates the convex value function that we construct for the example. First

choose an arbitrary θ23 ∈ (p′′, p′). For any ε > 0, the convex function v̂(p|ε) consists of
three linear segments ℓ1, ℓ2, ℓ3(ε). Segments ℓ1, ℓ2 intersect at θ̂, while ℓ2, ℓ3(ε) intersect
at θ23. ℓ2 is steeper than ℓ1, and the slope of ℓ3 is ε > 0 higher than ℓ2. The intersection
of the extended line segments ℓ1, ℓ3(ε) is denoted θ13(ε).

We will show that when ε > 0 is small enough, θ̂ is the unique optimal threshold at
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Figure 7: Necessity Principle. The student’s value function for §G.2.

belief π′′, while only the strictly higher θ13(ε) and θ23 are candidates for optimal thresholds
at the lower belief π′. In either case, contrarianism fails.

Observe that the three kink points θ̂, θ13(ε), θ23 describe the only candidates for optimal
policies. By construction, they are the only ones that solve for index indifference — given
discount factor δ = 1, only the tangents to the value function matter. It remains to check
suboptimality of a cascade policy, whereby the posterior is the prior. But the interior
threshold θ̂ gives strictly more than v̂(π|0) at π = π′, π′′, due to the kink at θ̂.

Consider belief π′. The first order condition fails at θ̂ for any ε > 0, as the tangent at
the upper posterior p′ is ℓ3. So the optimal posterior cut-offs are among θ13(ε) and θ23.

Consider π′′. First, suppose we use the cutoff θ13(ε). As ε ↓ 0, the crossing point
θ13(ε) converges to θ̂, and the upper continuation belief converges to p′′. In other words,
it is eventually below θ23, since p′′ < θ23. At that point, the tangents at the continuation
beliefs after π′′ are ℓ1 and ℓ2. These tangents cross at θ̂, and therefore the FOC fails at
θ13(ε). Second, suppose we use the cutoff θ23. Since θ23 ∈ (p′′, p′), it is strictly inside the
posterior belief support. Thus, the upper continuation lies in (θ23, 1], and the lower one
either lies in [0, θ̂) or [θ̂, θ23). If in [0, θ̂), the tangents at the continuation beliefs are ℓ1
and ℓ3(ε). These cross at θ13(ε), and so the FOC fails at θ23. If in [θ̂, θ23), the FOC holds.
But as ε ↓ 0, the continuation value approaches v̂(π′′|0). But as noted before, θ̂ yields a
strictly higher continuation value than v̂(π′′|0). �
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