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In an influential paper, David S. Scharfstein and Jeremy C. Stein (1990) modeled

sequential investment by agents concerned about their reputation as good forecasters.

Consider an agent who acts after observing the behavior of another ex-ante identical

agent. Scharfstein and Stein argue that reputational herding requires that better agents

have more correlated signals conditionally on the state of the world. They claim that

without correlation the second agent would have no incentive to attempt to manipulate

the market inference about ability by imitating the behavior of the first agent. In this

note we show that in their model correlation is not necessary for herding, other than in

degenerate cases.

Our clarification exploits a parallel with statistical herding, introduced by Abhijit V.

Banerjee (1992) and Sushil Bikhchandani et al. (1992) (BHW). BHW feature investors who

maximize expected profits in a common value environment and have access to conditionally

independent private signals of bounded precision, while still observing the behavior of

others. Eventually, the evidence accumulated from observing earlier decisions is sufficiently

strong to swamp the private information of a single decision maker. Thereafter, everyone

rationally copies the prevailing behavior.

We notice that payoffs have a common value nature in both the statistical and the

reputational model. The observed behavior of other agents possibly affects the probability

belief attached to different states of the world as well as the payoff conditional on each state.

Herding arises from the interaction of these two channels affecting the expected payoff,

be it physical or reputational. Positive differential conditional correlation of signals in the

reputational model is tantamount to the introduction of positive payoff externalities in the

statistical model. This reinforces the tendency to herd already present with independence.

The fact that differential conditional correlation is not needed for herding is a clear

strength of the reputational herding model. It is not necessary to assume common unpre-

dictable components of returns at the individual level in order to rationalize the empirical

∗Ottaviani: Department of Economics and ELSE, University College London, Gower St., London WC1E
6BT, UK (e-mail: m.ottaviani@ucl.ac.uk); Sørensen: Institute of Economics, University of Copenhagen,
Studiestræde 6, DK–1455 Copenhagen K, Denmark (e-mail: peter.sorensen@econ.ku.dk). We are
grateful to Philippe Aghion, Christophe Chamley, David Hirshleifer, Bengt Holmström, Philippe Jehiel,
Alessandro Lizzeri, Margaret Meyer, Stephen Morris, seminar participants at Copenhagen and Paris
(Delta-ENS), the referees, and especially Colin Campbell for advice and comments.

1



findings that individual prediction errors of security analysts are correlated.1

After setting up Scharfstein and Stein’s model in Section I, we summarize their findings

in Section II and provide a unified definition of herd behavior in Section III. Section IV

contains our critique of their line of argument and clarifies the role of differential conditional

correlation. In Section V we propose alternative robust scenarios where herding would

indeed be driven by correlation. Section VI concludes.

I. Scharfstein and Stein’s Model

Consider the following model of sequential investment by privately informed agents (ma-

nagers), who are motivated by implicit incentives rather than the payoff of their principals

(investors). Each agent is endowed with some private information (or signal) on the pro-

fitability of the investment (or state of the world) in a common value environment. More

able agents have access to better information about the state in Blackwell’s sense. The

investment decision made by each agent on behalf of their principal is observed by two

sets of receivers, who are possibly able to infer the agent’s signal. First, other investors

(agents and principals) who decide afterwards update their beliefs on the state. Second,

the labor market assesses the ability of each agent on the basis of the choice made as well

as the realized level of profits. As in Bengt R. Holmström’s (1999) seminal model, agents

are solely concerned about the market updating on ability performed on the basis on their

observable decisions.

Specifically, Scharfstein and Stein look at the case with two agents who make individual

investment decisions, one (agent B) after the other (A). The state of investment profitabil-

ity is assumed to be binary, either high (xH > 0) or low (xL < 0), while not investing

yields the safe return 0. Similarly, the signal is binary, either good (sG) or bad (sB).

Each agent’s ability type is again binary, either smart (S) or dumb (D). The prior beliefs,

common to all agents and the labor market, are Pr(xH) = α and Pr(SA) = Pr(SB) = θ,

with superscripts referring to the agents. State and abilities are stochastically indepen-

dent. Agents are assumed not to know their own type. While the signal received by smart

agents is informative, with Pr(sG|xH , S) = p > q = Pr(sG|xL, S), it is uninformative for

dumb agents, i.e. Pr(sG|xH , D) = Pr(sG|xL, D) = z. Let p(θ) ≡ Pr(sG|xH) = θp+(1−θ)z

and q(θ) ≡ Pr(sG|xL) = θq + (1 − θ)z. The posterior beliefs µG ≡ Pr(xH |sG) and µB ≡
Pr(xH |sB) on the state are computed via Bayes’ rule, e.g. µG = p(θ)α/[p(θ)α+q(θ)(1−α)].

Notice that µG > α > µB by p(θ) > q(θ).

1For recent empirical work cf. Owen A. Lamont (1995), Judith A. Chevalier and Glenn D. Ellison
(1999), John R. Graham (1999), and Harrison G. Hong et al. (2000).
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II. Scharfstein and Stein’s Result

When is the first agent able to communicate her private information?2 If the signals are

transmitted credibly, the posterior beliefs on ability by the market are θ(s, x) ≡ Pr(S|s, x)

for s ∈ {sB, sG} and x ∈ {xL, xH}, e.g. θ(sG, xH) = pθ/[pθ+z(1−θ)] computed via Bayes’

rule. There is a separating equilibrium where agent A in possession of signal sG is believed

to have such a signal when investing (and similarly an agent who does not invest is rightly

believed to possess sB) if

µGθ(sG, xH) + (1− µG)θ(sG, xL) ≥ µGθ(sB, xH) + (1− µG)θ(sB, xL) (1)

µBθ(sB, xH) + (1− µB)θ(sB, xL) ≥ µBθ(sG, xH) + (1− µB)θ(sG, xL). (2)

Substituting the posteriors on state and ability into (1) and (2), the incentive compatibility

constraints for the first agent are:

α[p− z][1− q(θ)] ≥ [1− α][z − q][1− p(θ)], (3a)

α[p− z]q(θ) ≤ [1− α][z − q]p(θ). (3b)

In equation (4) at page 467 of their paper, Scharfstein and Stein make the additional

assumption that the ex-ante distribution of signals is the same for smart and dumb agents,

z = αp + (1− α)q, (4)

so that the actual signal received by the first agent does not contain any information

about her own ability type. This non-informativeness condition is satisfied only for one

particular prior belief α on the state. Whenever this condition is not satisfied, the agent

acquires posterior information about own forecasting ability by merely observing the signal.

Assuming non-informativeness has two important implications in their binary model.

First, a separating equilibrium exists for the first agent. Rewriting (4) as α[p − z] =

(1 − α)[z − q], it is seen that both (3a) and (3b) hold if and only if p(θ) ≥ q(θ), already

true by assumption. It follows that, in the most informative equilibrium, observation of

A’s investment decision allows subsequent agents to deduce her private information.

Second, if the signals were conditionally independent, there would also be a separating

equilibrium for the second agent. Consider agent B who possesses signal sG and moves

2When discussing the first agent A, we assume that the message sent by the second agent B does not
influence the market’s updating on A’s ability. This is justified in any of three relevant scenarios: (i) if
agent A is the only agent in the model, (ii) if the signals received by the two agents are conditionally
independent, or (iii) if agent B is pooling in equlibrium. We are always in one of these scenarios in the
cases discussed below.
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after A has revealed sB by choosing not to invest. Denote by θ(si, sj, xk) the posterior

probability of B being of type S, conditionally on state xk and on signals si and sj being

revealed respectively by agent A and B. In the case considered here,

θ(sB, sG, xH) =
Pr(sB

G|SB, sA
B, xH) Pr(SB)

Pr(sB
G|SB, sA

B, xH) Pr(SB) + Pr(sB
G|DB, sA

B, xH) Pr(DB)
.

There is a separating equilibrium for the second agent B if

Pr(xH |sB, sG)θ(sB, sG, xH) + [1− Pr(xH |sB, sG)]θ(sB, sG, xL)

≥ Pr(xH |sB, sG)θ(sB, sB, xH) + [1− Pr(xH |sB, sG)]θ(sB, sB, xL). (5)

With conditionally independent signals, (5) is equivalent to z ≤ αp+(1−α)q. This is seen

by replacing α with the relevant prior µB in (3a). In the symmetric case, after agent A

reveals sG by investing, the condition for a separating equilibrium for B is z ≥ αp+(1−α)q.

Condition (4) is exactly necessary in order to have a separating equilibrium for the second

agent in both cases.

Under the non-informativeness assumption (4), the left-hand side of (5) equals the right-

hand side, as Scharfstein and Stein note on page 473. By assuming conditional dependence,

i.e. Pr(sB
G|SB, sA

B, xH) < p and Pr(sB
G|SB, sA

B, xL) < q, this indifference is broken. While

a contradictory pair of signals still yields Pr(xH |sB, sG) = α, the posterior reputations

change as contradictory signals suggest that A and B are more likely to be dumb. Thus

they write on page 468: “If the signals of smart managers are drawn independently from

the distributions, our results concerning herd behavior fail to go through. Heuristically,

herd behavior requires smart managers’ prediction errors to be at least partially correlated

with each other.” Before demonstrating the fragility of this claim in Section IV, we provide

a unified definition of herd behavior which can be applied to different models.

III. Herding Models

A. Models. Consider the following three models of sequential investment with com-

mon values. First, in the efficient benchmark with sequential information, each principal

has direct access to some private information as well as to the information of previous

principals. Second, in BHW’s observational learning model, each principal again has ac-

cess to private information, but can now observe only the investment decision of previous

principals. Third, in Scharfstein and Stein’s reputational model, the private information

is held by agents concerned about their reputation rather than the payoffs to their prin-

cipals. The investment decision is delegated to the agent by each principal, and previous

investment decisions are again publicly observed.
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In the reputational model, managerial investment decisions act as messages sent to the

market. As in the cheap-talk model of Vincent P. Crawford and Joel Sobel (1982), such

messages are per se costless to the agent. Nevertheless, different messages can be differently

attractive to an agent (sender), depending on the information possessed. The market

(receiver) can then re-assess ability on the basis of the message sent and the realization of

the state. In this case, information can possibly be communicated in equilibrium. Since

agents are indifferent about physical returns, investment decisions are arbitrarily associated

with messages sent in equilibrium. In order to avoid this multiplicity problem, Scharfstein

and Stein assume the association more favorable to the principal.

B. Herding. BHW’s principals have direct access to private information when in-

vesting. Since the investment garbles the private signal, there is an informational in-

efficiency, compared with the benchmark model. When enough public information has

been accumulated in the investment history, a boundedly informative private signal has

no private value to the investor. The investor’s decision is then determined only by public

information, and does not depend on the private signal. Subsequent investors learn noth-

ing from observation of such investment behavior, and herding results in the statistical

model. This is referred to as statistical herding, since all later ex-ante identical individuals

are in the same situation and take equally uninformative actions.

In Scharfstein and Stein’s model, agency problems introduce further inefficiencies. The

information is in the hands of agents, whose objectives are fundamentally different from

those of the principals. Herding in the reputational model (reputational herding) arises

when the investment made does not reflect any private information originally possessed

by the agent. This happens when the most informative equilibrium is pooling, so that the

ex-ante more profitable investment decision is taken regardless of the private information

of the agent. This decision is also identical to that taken by the predecessor.

IV. Role of Correlation

As reported in Section II, Scharfstein and Stein find that differential conditional correlation

is necessary for reputational herding. This result is valid in the binary model under

condition (4), which restricts the prior belief on the state in such a way that the signal

received by the first agent is not informative about her own ability. In subsection A we

argue that such a non-informativeness condition does not have any clear role in the model.

Once this non parsimonious assumption is lifted, reputational herding generally arises even

in their binary model, without any need for conditionally correlated signals. The only
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advantage of correlation is to generate a stronger form of herding in this special model. In

subsection B we compare the outcomes of different herding models. In subsection C we

discuss the mechanics of herding and the role of correlation in these models.

A. Non-informativeness Condition. Our critique proceeds in four main steps:

(i) In the binary model, the non-informativeness condition is sufficient but not necessary

to guarantee the existence of a separating equilibrium for the first agent. (ii) When such

condition is not imposed, herding by the second agent results even with independence in

the binary model. (iii) The non-informativeness condition is a degenerate assumption,

which holds only for a nongeneric prior on the state. It is necessarily not satisfied for the

second agent, if it is satisfied for the first. (iv) Whenever the signal structure is nonbinary,

inefficient reputational herding easily arises under the non-informativeness condition even

in the absence of correlation. Thus, in more general models, the non-informativeness

condition does not imply that correlation is necessary for herding.

First, we show that condition (4) is sufficient but not necessary to obtain a separating

equilibrium for the first agent A.3 Condition (3a) must fail if p ≤ z, while (3b) fails if

z ≤ q; in either case there is no separating equilibrium for the first agent.4 To rule out

this uninteresting case, it is reasonable to assume q < z < p. There is an informative

equilibrium for the agent when the prior on the state is not too extreme compared to the

precision of the signal. For example, for symmetric signal distributions (q = 1 − p and

z = 1/2) we have θ(sG, xH) = θ(sB, xL) > θ(sG, xL) = θ(sB, xH), so that (3a) and (3b)

become µG ≥ 1/2 and µB ≤ 1/2, or equivalently 1 − p(θ) ≤ α ≤ p(θ).5 In this case, (4)

restricts instead the prior belief on the state to be fair, α = 1/2. There is room to depart

from (4) and still get separation.

Second, in the binary model reputational herding obtains even with statistically in-

dependent signals whenever condition (4) is not satisfied. Then, one of the conditions

(3a) and (3b) for separating equilibrium of the second agent fails. Therefore, when

z 6= αp + (1−α)q — or equivalently for symmetric signal distributions unless the prior on

the state is fair — the second agent herds with positive probability even with condition-

3Here, the non-informativeness condition guarantees the existence of an informative equilibrium for
the first agent. More generally, even under this condition the equilibrium is not perfectly revealing when
small misrepresentations of signals are possible, as in models with continuous signals.

4It is easy to check that under these same conditions there are no mixed-strategy informative equilibria.
5It can be easily shown that whenever there is a separating equilibrium there is also a mixed-strategy (or

hybrid) equilibrium. For example, when α ∈ [1/2, p (θ)] the agent with signal sG invests with probability
one, while the agent with signal sB does not invest with probability (2α− 1)/(p (θ)− 1 + α) ∈ [0, 1) and
invests with complementary probability. This equilibrium is clearly less informative than the separating
equilibrium. There are no other mixed-strategy equilibria.
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ally independent signals. The conditional dependence assumption, which Scharfstein and

Stein claim necessary for reputational herding, is needed only in their knife-edge case. For

instance, in the symmetric independent binary signal model with initial prior α ∈ (1/2, p],

the second manager herds after the first manager credibly transmits a good signal by in-

vesting. If in addition αxH +(1−α)xL < 0, such herding is inefficient, i.e. it would not have

resulted if the principal had direct access to the information. Furthermore, reputational

herding arises with probability one with a sequence of agents endowed with conditionally

independent signals, regardless of the initial prior.

Third, assuming that the signal is uninformative (by itself) about the agent’s ability

amounts to a restriction to a degenerate set of priors on the state. This is evident from

equation (4) in the binary setting, and is clearly true with general information structures.

Furthermore, the restriction has no clear conceptual role. Even in their model, the non-

informativeness condition never holds for the second agent who decides after observing the

(informative) decision of the first, as the relevant belief about the state cannot satisfy (4).

Fourth, we provide an example to illustrate that whenever the signal is not binary

the non-informativeness condition (4) bears no connection with the indifference of the

second agent mentioned above. The example also shows how excess reputational herding

can arise even with conditionally independent signals. We add a third uninformative sig-

nal to the symmetric binary model, occurring with probability r. Then Pr(sG|x, D) =

Pr(sB|x, D) = (1 − r)/2 and Pr(sN |x, D) = r for any x ∈ {xH , xL}. For type S,

Pr(sG|xH , S) = Pr(sB|xL, S) = (1−r)p, Pr(sB|xH , S) = Pr(sG|xL, S) = (1−r)(1−p), and

Pr(sN |xH , S) = Pr(sN |xL, S) = r. Signals are conditionally independent and priors are

α = θ = 1/2, so that the non-informativeness condition Pr(s|S) = Pr(s|D) is satisfied. In

an informative equilibrium agent A uses this strategy: message mG is sent after signal sG

and with probability 1/2 after sN , and mB is sent otherwise. Consider agent B who acts

after A sent mG. Receipt of signals sG or sN will give B a posterior belief on state above

1/2, while signal sB will drive this posterior below 1/2. In the potentially efficient strategy

σ signals sG and sN are mapped into one message mG, and sB into mB. Simple algebra

proves that σ cannot be played in equilibrium, since the sB type has a strict incentive to

deviate to mG. Similarly, truthtelling is not an equilibrium since sB would deviate. Agent

B is pooling in the most informative equilibrium if√
(p + 1/2)(1− p + 1/2) > 2r/ (1− r) . (6)

Therefore, correlation is not needed for herding by the second agent. If the above condition

does not hold, there is a partially separating equilibrium whereby sG is mapped into mG

while sN and sB are mapped into mB. Despite the non-informativeness condition, the
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incentive constraints for the second agent hold strictly, unless there is equality in (6).

Furthermore, notice that agent B is behaving inefficiently, regardless of correlation.

B. Comparison of Outcomes. In general, investment decisions are determined by

completely different incentives in the statistical and the reputational model. Nevertheless,

their otherwise unrelated outcomes coincide in the special case with independent binary

signals for appropriately defined physical payoffs (e.g. for xH + xL = 0 in the case of

symmetric signals). Notice that there is no logical relation between statistical and repu-

tational herding. For example, statistical herding results in the absence of reputational

herding after the first agent invests under condition (4), conditional independence, and

αxH + (1 − α)xL > 0.6 Conversely, reputational herding results without statistical herd-

ing after the first agent invests under condition (4), positive differential correlation, and

αxH + (1− α)xL < 0.

Notice that when the information of the first decision maker is valuable (i.e. with

µGxH + (1− µG)xL ≥ 0 ≥ µBxH + (1− µB)xL, assumption (7) of Scharfstein and Stein),

the BHW outcome is efficient in the binary model with two decision makers. In this case,

the action taken by the first decision maker fully reveals her information, so that the

second individual has access to all the information socially available. Even if statistical

herding arises, the outcome with two decision makers is efficient. Scharfstein and Stein

maintained (4) and concluded that correlation of signals was an essential ingredient to

obtain inefficient reputational herding. We have shown that this is not the case under

independence in the binary signal model once condition (4) is lifted, as well as in more

general models even under the non-informativeness condition (see the example at the end

of subsection A).

C. Mechanics of Herding: Correlation as Externality. While the statistical

model exogenously specifies identical payoff functions for all investors, payoffs in the rep-

utational model are endogenously derived from the beliefs of the evaluator. Nevertheless,

for given evaluator’s beliefs about the agent’s signaling strategy, reputational payoffs are

again identical across decision makers. Payoffs have therefore a common value nature in

both models. Notice that this analogy between the two models holds only for fixed eval-

uator beliefs. The strategic nature of reputational cheap talk adds the requirement that

such beliefs be consistent in equilibrium with the signaling incentives of the agent.

It is useful to decompose the expected payoffs in both models in probabilities and

6Observe that the agency problem may actually improve information aggregation.

8



payoffs. In the BHW model, the payoff conditional on state remains fixed, independently

of other investors’ decisions. Their decisions only affect the probability belief about the

state of the world, and therefore the relative attractiveness of investment.

In the reputational model, consider the second agent’s expected reputational payoff

given by equation (5). On the one hand, the signal revealed by the first agent and that

possessed by the second affect the probability assessment of the state of the world. On

the other hand, the conditional reputational payoff corresponding to the updated belief

about an agent’s ability depends on the investment made (or message reported) by both

agents as well as the realized state of the world. When the agents have conditionally

independent signals, this second channel is inactive, because the signals inferred from

the behavior of other agents do not directly affect the conditional reputational payoffs

θ(sB, sG, xk) = θ(sG, sG, xk) = θ(sG, xk). In this case, conditional payoffs change only

insofar as the different probability assessment on the state drives the evaluator to change

beliefs about the agent’s signaling strategy.

In both the BHW model and the reputational model with conditional independence,

information about the state accumulates by observing the behavior of the previous in-

vestors. Thus, the probability weights on some of the conditional payoffs increase. In the

two-signal model, the issue is whether the evaluator expects separation. As long as the

evaluator maintains such beliefs, the agents have common values. Eventually, the agent

prefers to deviate by pretending to have the ex-ante more likely signal. The most informa-

tive equilibrium is then pooling. The mechanics of the binary-signal reputational model

is exactly the same as that of the statistical model. Differential correlation of the signals

introduces an externality in the reputational payoff, not present in the basic BHW model.

With positive differential correlation there is an additional incentive to herd through the

payoff channel, equivalently to the introduction of positive payoff externalities in the statis-

tical model. The BHW-like probability channel and the payoff channel are then necessarily

intertwined in determining whether the most informative equilibrium is pooling.

Notice that informative signals are correlated with the state, even when they are con-

ditionally independent. Furthermore, signals of more informed agents are more correlated

with the state, so that the probability that the second agent is smart increases condition-

ally on receiving the same signal as the first agent. With more general signal structures,

the evaluator’s belief as well as the conditional payoffs change with the prior on the state,

even while sustaining a non-pooling equilibrium. The endogeneity of the evaluator beliefs

introduces an indirect dependence of the reputational payoff on the information revealed

by previous agents. In general, the probability and the payoff channels necessarily interact

even with independent signals.
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V. When is Correlation Necessary for Herding?

Adapting BHW’s logic to the reputational setting of Scharfstein and Stein, we have seen

that reputational herding occurs even without correlated prediction errors. This section in-

vestigates situations where differential conditional correlation is indeed necessary to obtain

herding in a reputational environment. We outline three scenarios: (A) In an investment

model with pure private values, only conditional correlation can force later agents to con-

dition their behavior on the predecessors’ actions. (B) In a model where agents have

intermediate levels of private information about their own ability, correlation is necessary

and sufficient to generate herding. (C) With unbounded private information precision on

the state of the world, correlation is necessary for herding and it also suffices when the

information is of sufficiently bounded precision on own ability.

A. Private Value Model. In the reputational setting with differential conditional

correlation, existence of informative equilibria depends on the interplay of the probability

and the payoff channel. It is impossible to isolate one channel from the other, unless

no information about the state can be inferred from observation of the message sent by

previous agents.

Consider instead an environment with completely idiosyncratic investment opportuni-

ties. Modify the Scharfstein and Stein model by allowing for agent-specific independent

states of the world, xA and xB. Agent i receives a signal si which carries information

about xi but not about xj, for i, j ∈ {A, B}. Without differential conditional correlation,

the information and thus the decision of agent A is without relevance for the decision

problem of agent B. In this pure private-value environment, observation of the investment

made by others does not convey any information on one’s own state. Therefore, agents

act independently on their own information, and there are no herding effects. However,

with differential conditional correlation of signals, the signal of agent A is relevant for the

interpretation of agent B’s information. If the signals agree, the likelihood that B is smart

is larger, and conversely when signals are contradictory.

With the probability channel mute, payoff externalities from differentially conditionally

correlated signals are necessary to have reputational herding effects. Nevertheless, this

assumption is not particularly appealing in this case. It is not clear why there should be any

particular correlation structure in the signals for otherwise unrelated decision problems.

B. Partial Private Knowledge on Own Ability. As illustrated by Brett Trueman

(1994), agents who possess prior private information on own ability have an incentive to
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differentiate themselves. With (sufficiently) accurate knowledge about ability, there is an

informative equilibrium for any prior on the state of the one-period model. This is easily

seen by modifying the basic single-agent game (with q = 1 − p and z = 1/2) to allow

for perfect private knowledge of own ability. In this case there exists for all α ∈ [0, 1] an

informative equilibrium whereby the smart type reveals truthfully her signal, while the

dumb type pools with one of the messages sent by the smart type. When α ≥ 1/2, the

dumb type with signal sG sends message mG, while that with sB randomizes by announcing

mG with probability ν ∈ [0, 1) and mB with remaining probability 1− ν. The probability

ν is determined by the indifference of the dumb type with signal sB,

αθ (mB, xH) + (1− α)θ (mB, xL) = αθ (mG, xH) + (1− α)θ (mG, xL) . (7)

If ν = 1 then θ (mB, xH) = θ (mB, xL) = 1, and the left-hand side of (7) strictly exceeds

the right-hand side. If ν = 0 then θ (mB, xH) = θ (mG, xL) < θ (mB, xL) = θ (mG, xH) and

the right-hand side weakly exceeds the left-hand side. By continuity some ν ∈ [0, 1) gives

the required indifference. Symmetrically, when α ≤ 1/2 there is an informative equilibrium

where the dumb type announces mB when receiving sB and randomizes between mB and

mG when receiving sG. Thus, herding cannot obtain when agents have perfect knowledge

of their own ability and signals are conditionally independent.7

Trueman’s result extends to the case of conditionally dependent signals and partial

knowledge of own forecasting ability, as exemplified by Christopher N. Avery and Cheva-

lier (1999). When smart agents have perfectly correlated signals, pooling is the most

informative equilibrium for the second agent if and only if the information about own

ability type is sufficiently imprecise. We show below that correlation is necessary and

sufficient to generate herding for an intermediate range of knowledge about own type.

Consider Scharfstein and Stein’s model with q = 1 − p and z = α = 1/2 and where

smart agents have perfectly correlated signals. Agents receive an additional conditionally

independent signal about own ability. This signal is promising with probability γ, and

otherwise unpromising. A promising agent is smart with probability θP , an unpromising

with probability θU . Necessarily the prior reputation satisfies θ = γθP + (1− γ)θU .

Since the model is symmetric, there is a separating equilibrium for agent A where

investment takes place only after observation of signal sG. The probability that agent B

is smart conditionally on being promising and receiving a signal which disagrees with A’s

is θP (1− θ)/(1− θ θP ), as derived by Avery and Chevalier. This is the expected posterior

reputation for B who successfully communicates to be promising and in possession of a

7Complete learning would not result if instead principals had direct access to the information of their
agents.
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signal opposite to A’s. The most informative equilibrium for B is pooling if and only

if this reputation falls short of the prior reputation θ, i.e. if and only if θP < θ∗P ≡
θ/[1− θ(1− θ)]. Otherwise the most informative equilibrium is of the Trueman signaling

kind. When instead agents have conditionally independent signals, similar calculations

show that pooling by B obtains if and only if θP < θ∗∗P ≡ θ/[1− θ(1− θ)(1− 4p(1− p))].

Clearly, θ∗∗P < θ∗P , so whenever θP ∈ (θ∗∗P , θ∗P ), there exists a separating equilibrium for B

when signals are conditionally independent, and there is no separating equilibrium for B

when signals are correlated. Hence in this case correlation is required for herding.

Interestingly, neither equilibrium is efficient. In the pooling equilibrium, there is too

little tendency to use own information. In the signaling equilibrium some unpromising

agents contradict their predecessor inefficiently, so there is “anti-herding”.

C. Unbounded Informativeness on State. What happens in a dynamic model

with more than two agents? Lones Smith and Sørensen (2000) point out that unbounded

signal strength on the state precludes herding à la BHW, as no uncertain prior then

suffices to overwhelm all possible private signals. We now present a four-signal example

with unbounded precision on the state. Correlation is then necessary and sufficient to

generate herding if signals are of sufficiently bounded informativeness on own ability.

The signal distribution for type T is Pr(s1|xH , T ) = Pr(s4|xL, T ) = rT , Pr(s2|xH , T ) =

Pr(s3|xL, T ) = q(1 − rT ), Pr(s3|xH , T ) = Pr(s2|xL, T ) = (1 − q)(1 − rT ), Pr(s4|xH , S) =

Pr(s1|xL, S) = 0. We assume that q ∈ (1/2, 1) and 0 ≤ rD < rS ≤ 1. Note that s1

perfectly reveals state xH while similarly s4 reveals xL. Prior is α = 1/2, while θI ∈ (0, 1)

can vary across agents. For the first agent A there is an informative equilibrium where

message mG is sent upon observation of signals s1 or s2, and message mB after s3 or s4.

Assume first that the signals are conditionally independent and restrict attention to

the situation after A had sent message mG credibly. Receipt of signals s1, s2, or s3 gives

B a posterior belief in state xH above 1/2, while signal s4 drives the posterior to 0. The

strategy σ whereby signals s1, s2, s3 are mapped into one message mG while s4 is mapped

into mB is an equilibrium for the second agent B. This reasoning can be applied iteratively

to show that any agent will use strategy σ as long as only mG has been reported by the

predecessors. This is an informative equilibrium, because along a pure mG history the

posterior on the state monotonically increases to 1, while if mB is reported by someone,

the posterior will be revised to 0. In any case, there is complete long-run learning on the

state of the world.

Finally, consider the case with conditionally dependent signals. For simplicity, assume

as above that the signals of agents A and B are perfectly correlated when they are both
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smart. Again, concentrate on the situation after A reported mG. Simple algebra shows

that the separating strategy σ from above is not incentive compatible for B when

(1− rS)θA > (1− rD)(
rS

rD

− 1)(1− θA) (8)

Under (8), only herding is an equilibrium. Clearly, as more agents are added in this

setting, herding results only from correlation without need for additional conditions like

(4). Condition (8) is easily satisfied by the parameters. It is more likely to hold when A

has a better reputation, and when there is only a small difference in ability between types

S and D. These conditions are conducive to herding by the second agent B, who has little

to gain by contradicting A’s report.

VI. Conclusion

Agency-driven herding results with greater generality than realized by Scharfstein and

Stein when formulating their innovative model. Reputationally concerned agents herd,

unless they know enough a priori about their own information quality. Differential condi-

tional correlation adds to the tendency to herd, but it is not required in a number of natural

models. When instead agents have substantial prior private information on their forecast-

ing ability, herding requires the “sharing-the-blame” effect introduced by Scharfstein and

Stein.

Our approach exploits the evident similarity of reputational and statistical herding

models. In either setting, consideration of conditionally dependent signals and payoff

externalities complicates tremendously the analysis of the multi-agent dynamic model.

With differential conditional correlation, the dynamic model cannot be solved forward,

other than in the case where the second agent always herds. If this agent’s behavior were

informative, it would also be necessary to go backward and check the behavior of the first

agent. For this reason, only very special reputational models have been studied to date.

The dynamic model with conditionally independent signals can instead be manageably

solved forward. Its outcomes depend on the building-block model with a single agent. A

general analysis of this static model of reputational cheap talk is needed.

The empirical interest on the topic also calls for more fundamental work in the area. In

both the statistical and reputational model, observational learning from others results in

outcomes less drastic than herding. Typically, individual behavior does not incorporate all

private information available. For the purpose of empirical work, it is useful to understand

the biases and information losses which can be attributed to the agency problem.
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