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Abstract
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Betting and prediction markets provide a natural environment for testing theories of

decision making under uncertainty and price formation. The uncertainty about the value of

the assets traded in these markets is resolved unambiguously and the outcome is observed

publicly. In most cases it is also reasonable to presume that the realized outcomes are

exogenous with respect to market prices. In regular �nancial markets, in contrast, the

intrinsic value of assets is observed only in the long run (if ever) and is often a¤ected by

prices.

In racetrack betting and lottery games throughout the world, a widely adopted market

structure is parimutuel wagering.1 According to the parimutuel system, the holders of

winning tickets share the total amount of money bet on all outcomes in proportion to

their bets, net of the takeout for taxes and expenses. The parimutuel odds that are

paid out to winning bets (as a multiple of the amount wagered) depend on the overall

distribution of bets and are thus determined by the wagering public itself. Because these

odds are not skewed by price-setting suppliers (such as bookmakers), parimutuel betting

markets are particularly well suited to testing market e¢ ciency.2

The most widely documented empirical regularity observed in horse-betting markets is

the favorite-longshot bias (hereafter, FLB): horses with �short�odds (i.e., favorites) tend

to win more frequently than indicated by their odds, while horses with �long�odds (i.e.,

longshots) win less frequently.3 Consequently, the expected returns on longshots are lower

than on favorites. This �nding is puzzling, because expected returns are not equalized

across horses. To further add to the puzzle, note that for parimutuel lottery games, such

as Lotto, a reverse FLB always results: the expected payo¤ is lower on numbers that

attract a higher-than-proportional fraction of bets.4

1All horse-race betting in the U.S. is parimutuel. This mutual system is also used in greyhound
racing, jai alai, and other sporting events in which participants �nish in a ranked order. Recently, the
parimutuel structure has been adopted in a number of prediction markets, where claims contingent on
various economic indices are traded. As Nicholas Economides and Je¤rey Lange (2005) document, these
markets allow traders to hedge risks related to the release of U.S. nonfarm payroll employment data and
European harmonized indices of consumer prices.

2In parimutuel markets, the demand for bets on one outcome generates the supply on all other outcomes.
See Steven D. Levitt (2004) for a discussion of supply-driven distortions in betting markets not using the
parimutuel system.

3For surveys of the extensive literature, we refer to Richard H. Thaler and William T. Ziemba (1988),
Donald B. Hausch and Ziemba (1995), Raymond D. Sauer (1998), Bruno Jullien and Bernard Salanié
(2008), and Ottaviani and Sørensen (2008).

4See David Forrest, O. David Gulley, and Robert Simmons (2000) for a test of rational expectations in
lotteries. The reverse FLB is also present in some betting markets (see e.g. Kelly Busche and Christopher
D. Hall 1988, Leighton Vaughan Williams and David Paton 1998, and our discussion below).
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This paper develops a theory that can explain the variation in the occurrence of the

FLB and its reverse across parimutuel betting markets. In the model, bettors decide

simultaneously whether, and on which of several outcomes, to bet. Each bettor�s payo¤has

two components. First, there is a �common value�component, equal to a bet�s expected

monetary payo¤ according to the �nal odds.5 Second, bettors derive a private utility from

gambling.6 For simplicity, we set this �recreational value�to be the same for all bettors

and outcomes.7

To characterize the e¤ect of private information on market outcomes, we allow bettors

to have heterogeneous beliefs based on a common prior and the observation of private

signals. While private information is clearly absent in lottery games, there is widespread

evidence of its presence in horse betting.8 In a limit case relevant for lottery games, the

private signals contain no information.

We model betting as a simultaneous move game. This is a realistic description of lottery

games, in which the numbers picked by participants are not made public before the draw.

For betting on horse races, the distribution of bets (or, equivalently, the provisional odds

given the cumulative bets placed) is typically displayed over time on the tote board and

updated at regular intervals until post time, when no more bets are accepted. However, a

large proportion of bets are laid in the very last seconds before post time.9 Thus, we focus

on the last-minute simultaneous betting game and characterize the symmetric Bayes-Nash

equilibrium.10

Building on the equilibrium structure, we characterize the surprise generated by the

ex post realization of the actual bets. The sign and extent of FLB depend on the amount

of information relative to noise that is present in the realized bets. We show that if the

population of informed bettors is large and/or private information is su¢ ciently precise,

then ex post favorites are more likely to win than the realized market odds indicate at face

value� and the opposite is true for longshots. If an outcome turns out to attract a larger

5By assuming risk neutrality, we depart from a large part of the betting literature since Martin Weitz-
man (1965) in which bettors are risk loving. Section 6 discusses this and other alternative theories.

6See, for example, John Conlisk (1993).
7In the case of parimutuel derivative markets mentioned in footnote 1, the private value derives from

the bene�t of hedging against pre-existing risks correlated with the outcome on which betting takes place.
8See Section 6.
9See National Thoroughbred Racing Association (2004).
10Ottaviani and Sørensen (2006) endogenize the timing of bets in a dynamic model. They show that

small privately informed bettors have an incentive to wait until post time and thus end up betting simul-
taneously.

2



fraction of bets (and the associated odds are shorter), more bettors must have privately

believed that this outcome was likely. Hence, the occurrence of short odds indicates

favorable information. When this information is su¢ ciently strong, the FLB results, as

observed in horse betting.

When bettors are less informed, the realized bets contain less information and are

more a¤ected by noise. To understand the e¤ect of noise, apply our methodology to

Lotto. Bettors� signals are completely uninformative about the outcome. Market odds

will again vary randomly, depending on the noisy realization of the bets. Given that all

numbers are equally likely to be drawn, by construction the expected payo¤ is lower for

those numbers that attract more than their fair share of bets. This is because the jackpot

is shared among the lucky few who pick the winning number, according to the parimutuel

rule. Thus, lottery outcomes with short market odds yield automatically lower expected

returns than outcomes with long market odds. More generally, when signals contain little

information, and there is aggregate uncertainty about the �nal distribution of bets due to

noise, our model predicts a reverse FLB� as is observed in parimutuel lotteries.

The paper proceeds as follows. Section 1 casts our contribution within the theory lit-

erature. Section 2 formulates our general model with an arbitrary number of outcomes.

Section 3 characterizes the di¤erent equilibrium regimes, depending on the level of partici-

pation in the market. Focusing on the case in which all outcomes are ex ante equally likely

and the recreational value is so large that no bettor abstains, Section 4 develops our ex post

comparison between market and posterior probabilities, based on the surprise e¤ect. This

symmetric model is ideal for uncovering the role of noise and information in generating

the FLB or its reverse. Section 5 examines the comparative statics properties of the FLB

by analyzing the e¤ect of exogenous changes in parameters on the ratio of private infor-

mation to noise present in equilibrium. Mostly within tractable special cases, we illustrate

how the extent of the FLB varies with respect to the amount of private information, the

number of bettors, the number of outcomes, the divisibility of bets, the presence of ex post

noise, factors (such as the recreational interest in the event or the takeout rate) that a¤ect

the bettors�participation decision, and ex ante asymmetries across outcomes. Section 6

compares our explanation of the empirical evidence with the main alternatives proposed in

the literature. Section 7 concludes. Appendix A collects the proofs of all propositions. Ap-

pendix B reports details on a tractable example using the Dirichlet distribution, including

3



the proofs of all lemmas.

1 Literature

This paper builds on the informational explanation for the FLB proposed by Ottaviani

and Sørensen (forthcoming) in a simple model without noise.11 To develop testable im-

plications for the extent of the FLB across di¤erent environments, this paper analyzes a

general version of the model which allows for noise and endogenizes the level of market

participation. We argue that the comparative statics predictions of the model are broadly

in line with evidence from parimutuel games characterized by di¤erent levels of information

relative to noise.

The informational explanation investigated here is fundamentally di¤erent fromMukhtar

M. Ali�s (1977) Theorem 2, which derives the FLB from heterogeneity of bettors�prior

beliefs.12 We assume instead that bettors share a common prior belief, but possess private

information. In addition, while Ali�s explanation hinges on ex ante asymmetries in the

probabilities of the di¤erent outcomes, our explanation is valid also when the outcomes are

all ex ante equally likely. To isolate our informational mechanism, our baseline analysis

focuses on a fully-symmetric environment.

Hyun Song Shin (1991 and 1992) formulates an information-based explanation of the

FLB in the context of �xed-odds markets, in which prices are determined by bookmakers.

Even though our informational assumptions are similar to Shin�s, the logic and the extent

of the FLB are di¤erent in the two markets. While Shin�s explanation for the bias relies

on ex ante asymmetries, our explanation in the context of parimutuel markets does not.13

The �rst game-theoretic analysis of parimutuel markets with private information is by

Frédéric Koessler, Charles Noussair, and Anthony Ziegelmeyer (2008). They construct

11Ottaviani and Sørensen�s (forthcoming) is essentially the limit version of the model of this paper as
the number of bettors per outcome goes to in�nity (so that noise disappears by the law of large numbers)
and bettors are forced to participate.
12See also Émile Borel (1938), Edmund Eisenberg and David Gale (1959), Sumir Chadha and Richard

E. Quandt (1996), Lawrence D. Brown and Yi Lin (2003), and Justin Wolfers and Eric Zitzewitz (2004)
for analyses of prediction markets with heterogeneous prior beliefs across bettors, in the absence of private
information.
13In addition, Ottaviani and Sørensen (2005b) show that the parimutuel payo¤structure involves a built-

in insurance against the winner�s curse. In parimutuel markets, an increase in the number of informed
bettors tends to make market odds more extreme, thereby reducing the FLB. In �xed-odds markets, in
contrast, an increase in the fraction of informed bettors strengthens the FLB, because adverse selection
is worsened.
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equilibria when bettors have binary signals. Our analysis is simpli�ed by assuming instead

that bettors have continuously distributed signals, as in other auction-theoretic models of

price formation. We are then able to characterize and quantify the FLB, endogenize the

bettors�participation decision, and derive a number of empirical predictions.

2 Model

Bets can be placed on the realization of a random variable, k 2 f1; : : : ; Kg ; where K �
2 is the number of possible outcomes. In Lotto games, k corresponds to the winning

combination. For bets on the win pool in a horse race, k represents the identity of the

winning horse. The model applies more generally to pools on outcome combinations within

and across races.14

There are N bettors with a common prior belief distribution q, where qk � 0 is the

prior probability of outcome k.15 Bettor i 2 f1; :::; Ng is privately endowed with signal si,
leading to the private (posterior) belief distribution pi. Bettors di¤er only because of the

realization of their private signals, but they are identical ex ante: the joint distribution

of private beliefs and the state is unchanged if the identities of the players are switched.16

We assume that this joint distribution of private beliefs is continuous. For any individual,

the density of the private belief conditional on outcome k is denoted by g (pjk).
On the basis of the private belief, each bettor decides the outcome on which to bet a

�xed and indivisible amount, normalized to 1, or to abstain from betting.17 All bettors are

risk neutral and maximize the expected monetary payo¤, plus a �xed recreational utility

value received from betting. This recreational value (u � 0) is foregone when a bettor

abstains, and hence generates a demand for betting.18

14For example, a race with L horses thus has K = L(L�1) �exacta�outcomes, consisting in the winner
and the runner-up in a given race. Some exotic bets have a very large number of outcomes. In the �pick
six�pool, for instance, bettors are asked to guess the winners in six consecutive races, usually the second
through the seventh in a given day. If there are L horses in each race, the pick six pool admits K = L6

combinations.
15We assume common prior to isolate the e¤ect of asymmetric information. See Ottaviani and Sørensen

(2005a) on the interaction of heterogeneous prior beliefs and private information.
16The assumption that bettors are ex ante identical is not essential for our results, but allows us to

obtain a closed-form solution for the equilibrium. See Ottaviani and Sørensen (2006) for a model in which
instead some bettors are outsiders (motivated by recreation) while other bettors are privately-informed
insiders.
17See Rufus Isaacs (1953) and Ottaviani and Sørensen (2006) for analyses in which bettors can choose

how much to bet. See Section 5.3 for a discussion of the e¤ect of allowing bets to be divisible.
18Without this recreational utility, there is no betting in equilibrium, as predicted by the no-trade
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The total amount of money bet on all K outcomes is placed in a common pool, from

which a takeout fraction, � 2 [0; 1), is subtracted for taxes and other expenses incurred
to run the game. The remaining money is returned to those who bet on the winning

outcome, k. We assume that there is no payment to the bettors when no bets were placed

on the winning outcome.19 Let bk denote the total amount bet on k. If k is the winning

outcome, then every unit bet on k receives the monetary payo¤ (1� �)
�PK

l=1 bl

�
=bk. The

market probability of outcome k is equal to the fraction of money bet on that outcome,

bk=
�PK

l=1 bl

�
.

To ease the exposition, we present our formal results in terms of market probabilities,

but it is easy to derive equivalent implications for odds. In betting markets, the odds on

outcome k are typically de�ned as the amount of money paid by the system for each dollar

laid on that outcome, in addition to the dollar wagered. In order to balance the budget

for any outcome realization, the parimutuel odds are (1� �)
�PK

l=1 bl

�
=bk � 1. Given

the one-to-one correspondence between market odds and probabilities, our results can be

immediately rephrased in terms of odds.

The strategy of a bettor maps every private belief into one of the K+1 actions: bet on

outcome k or abstain. In equilibrium, every bettor correctly conjectures the strategies used

by the opponents and then plays the best response to this conjecture. By assumption, the

game is always symmetric with respect to the players. Throughout the paper, we focus on

symmetric equilibria; that is, on Bayes-Nash equilibria in which all bettors use the same

strategy, mapping private beliefs into actions.20

3 Equilibrium Regimes

We begin by computing the expected payo¤ of a bettor. A bettor�s payo¤ conditional on

winning is random, because of the uncertainty present in opponent signals and bets. By

risk neutrality, a bettor who assigns probability pk to outcome k obtains an expected payo¤

equal to pkWk�1+u when betting on outcome k, whereWk is the expected payment from

the pool to a bet on k, conditional on the realization of outcome k. Given the opponents�

theorem (Paul Milgrom and Nancy Stokey 1982).
19Our results continue to hold qualitatively with alternative rules on how the pool is split when no one

bets on the winner. For example, the pool could be divided equally among all active bettors.
20Koessler, Noussair, and Ziegelmeyer (2008) note that there also may be asymmetric equilibria when

N is small.
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strategies, each bettor can calculate � (ljk), the probability that an opponent bets on
outcome l when k is the winning outcome. Using elementary probability theory, we can

explicitly compute the expected payment, Wk, as a function of the betting probabilities

� (ljk):

Proposition 1 Suppose that N � 1 opponents bet on the outcomes 1; : : : ; K with condi-

tional probabilities � (1jk) ; : : : ; � (Kjk). Then the expected payment from the pool to a bet

on k conditional on the realization of outcome k satis�es

Wk =

8<: (1� �)
P
l �(ljk)�[

P
l6=k �(ljk)][1��(kjk)]

N�1

�(kjk) if � (kjk) > 0;
(1� �)

h
1 + (N � 1)

P
l 6=k � (ljk)

i
if � (kjk) = 0:

(1)

We are now ready to characterize the equilibrium of the game. There are three equi-

librium regimes, depending on the level of recreational value u:21

Proposition 2 Assume that the distribution of private beliefs is continuous with full sup-

port. There exists a uniquely de�ned critical value, u�(N) 2 (� ; 1), such that:

1. if u � u�(N), there exists a symmetric equilibrium in which all bettors bet actively,

2. if u 2
�
� ; u�(N)

�
, in any symmetric equilibrium some (but not all) of the bettors

abstain, and such an equilibrium exists,

3. if u � � , all bettors abstain in the only symmetric equilibrium.

When the recreational value is su¢ ciently high or, equivalently, the takeout rate is

su¢ ciently low, even bettors without strong private beliefs bet on one of the horses�

this is the �no abstention� regime on which we focus for most of the paper. With low

recreational value or high takeout rate, bettors without strong private beliefs prefer not

to place any bet� this is the �partial abstention�regime that we analyze in Section 5.5.

Additional increases in the takeout rate further reduce participation, until the market

completely breaks down by the logic of the no-trade theorem.22

21Proposition 2 can be extended to the case in which support is not full. Let �p denote the maximal
belief that any bettor attaches to any outcome. Let �u = 1� �p (1� �). Then u� > �u � � and cases 1 and
3 of Proposition 2 hold as stated. The claim in case 2 holds when u 2 (�u; u�). If u 2 (� ; �u], our proof
implies a weaker version of case 3, that there exists an equilibrium in which every bettor abstains.
22Bettors with beliefs p = 1 and p = 0 always participate, but these beliefs have probability zero by the

assumption that the belief distribution is atomless.
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4 Market vs. Posterior Probabilities

This section develops our theory of the FLB as an ex post surprise e¤ect. Given that

bettors are privately informed, and that their behavior depends on their private beliefs,

the realized market probabilities contain information about the chance of di¤erent out-

comes. In our Bayes-Nash equilibrium� as in parimutuel betting markets on horse race

outcomes� bettors are surprised when they see the realization of the market probability,

but they are unable to adjust the positions they have already taken.23

Applying Bayes�rule, for each market probability we can compute the corresponding

posterior probability belief held by an outside observer (with a prior belief equal to the

common prior). The idea is to compare each realized market probability with the corre-

sponding posterior probability that incorporates the information revealed to the outside

observer. As we explain below, the empirical probability can be identi�ed with the poste-

rior probability. The thrust of our approach consists of examining factors that a¤ect the

systematic relation between market and posterior� and thus empirical� probabilities.

To present our results in the clearest way, for most of the paper (up to Section 5.6) we

focus on the symmetric case in which all outcomes are ex ante equally likely (qk = 1=K) and

the posterior beliefs are symmetrically distributed. Thus, the belief distribution remains

unchanged following a permutation of the identities of the K outcomes. In addition, we

posit that signals are conditionally independent and identically distributed across bettors.

Up to Section 5.5, we further prevent any abstention by assuming that u is su¢ ciently

large.

The symmetric case is also an important empirical benchmark. Horse races are typically

designed to be balanced in order to assure that their outcome is genuinely uncertain.

Horses are sorted into categories depending on their observable characteristics, and known

di¤erences are eliminated in part by burdening the advantaged horses with additional

weights. While asymmetries are never perfectly eliminated, these procedures are intended

to reduce the presence of strong ex ante favorites or ex ante longshots.

Proposition 3 If u is su¢ ciently large and signals are symmetrically distributed, it is a
23Any bias would be eliminated if bettors could instead adjust their positions after observing the realized

market probabilities, as in a rational expectations equilibrium. However, the information on the �nal odds
is typically not available to bettors because a substantial amount of bets are placed at the end of the betting
period when the �nal odds are not yet determined, as in our simultaneous-move game.

8



symmetric equilibrium to bet on the most likely outcome, that is, on the k which maximizes

pk. If bettors have private information, then the probability that any bettor bets on the

winner, � (kjk), exceeds � (ljk) = [1� � (kjk)] = (K � 1), the probability that any bettor
bets on any other outcome l 6= k.

Empirical investigations of the e¢ cient market hypothesis proceed by grouping obser-

vations into classes according to their market probabilities, computed from �nal market

odds. When n bets are placed on outcome k, the implied market probability for outcome

k is �k = n=N , equal to the fraction of money bet on this outcome. Empiricists then

compute the empirical fraction of races that are won by horses belonging to each obser-

vation class. As �rst noticed by Richard M. Gri¢ th (1949), the comparison of market

with empirical probabilities typically reveals systematic di¤erences between these proba-

bilities.24 At one end of the spectrum, large market probabilities (associated to favorites)

tend to be smaller than the corresponding empirical probabilities. At the other end of

the spectrum, longshots tend to win less frequently than indicated by their (already low)

market probabilities.

We are now ready for the key step in our analysis. Based on the realized market proba-

bility for outcome k, an outside observer can update the prior to the posterior probability

for this outcome, denoted by �k. Because signals are random, bets on a given outcome

follow a binomial distribution. When exactly n bets are placed on k, Bayes� rule then

yields

�k =
qk Pr (betsjk true)

Pr (bets)
=

� (kjk)n [1� � (kjk)]N�n

� (kjk)n [1�� (kjk)]N�n+ (K�1) � (kjl)n [1�� (kjl)]N�n
; (2)

where l 6= k. The law of large numbers guarantees that the empirical frequency of outcome
k across many repetitions of the game is approximately equal to this posterior probability,

�k. By incorporating the information revealed in the betting distribution and adjusting

for noise, this posterior probability is the correct estimate of the empirical probability of

outcome k.

In our model, the systematic relation between posterior and market probabilities de-

pends on the interplay between the amount of noise and information contained in the

bettors�signals. To appreciate the role played by noise, note that even with very few bet-

tors, market probabilities can range from zero to one. For example, if most bettors happen
24See footnote 3 for references to surveys of the empirical literature.
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to draw signals that lead them to believe k is the most likely outcome, then the market

probability for outcome k would be very high. However, when the signals contain little

information, the posterior probability is close to the prior. In this case, deviations of the

market probability from the prior should be largely attributed to randomness contained in

the signal. Then the reverse FLB is present: market probabilities are more extreme than

posterior probabilities.

To illustrate the role of information relative to noise, consider a setting with K = 2

outcomes and set the probability of a correct bet at � (kjk) = 2=3. Suppose that the

number of bettors N is odd and focus on the betting realizations in which exactly one

more bet is placed on outcome 1 than on outcome 2. The informational content of the

�rst (N � 1) =2 bets placed on either outcome is identical and cancels out. However, the
chance of the last bet is twice as large when 1 is the winner than when 2 is the winner.

Hence, the posterior probability of 1 being the winner is 2=3. On the other hand, the

market probability for outcome 1 is (N + 1) = (2N). This number is strictly decreasing in

N and equal to the posterior probability 2=3 when N = 3. Noise dominates information

when the number of bettors is small (N = 1), resulting in a reverse FLB. As the number

of bettors increases, realized market bets contain more and more information, so that the

posterior associated to any given market probability becomes more extreme. This implies

the FLB, which results here with N > 3 bettors. More generally, we have:

Proposition 4 Assume that the belief distribution is symmetric and that u is so large that

no bettor abstains. Let �� 2 (0; 1) be de�ned by

�� =
log
�
1��(kjl)
1��(kjk)

�
log
�
1��(kjl)
1��(kjk)

�
+ log

�
�(kjk)
�(kjl)

� (3)

for any pair l 6= k. Take as given any market probability �k 2 (0; 1) for outcome k.

As the number of bettors, N , becomes su¢ ciently large, a longshot�s market probability

�k < �
� (respectively, a favorite�s �k > ��) is strictly greater (respectively, smaller) than

its associated posterior probability, �k.

By de�nition (3), �� is a proportion of bets on outcome k that is neutral, i.e., at which

the posterior belief is precisely equal to the prior.
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5 Testable Implications

We now derive testable implications of our theory by investigating a number of comparative

statics properties that follow from Proposition 4. Exogenous changes in the environment

a¤ect the amount of information relative to noise contained in the bets, thereby determin-

ing the sign and extent of the FLB. Until Section 5.6, we maintain the assumption that

the game is ex ante symmetric across outcomes.

5.1 Information

How does the FLB depend on the amount of information revealed in equilibrium? To

answer this question for the symmetric case with K = 2 outcomes, we de�ne the informa-

tiveness of bets as the likelihood ratio � (1j1) =� (1j2) = � (2j2) =� (2j1), which determines
the extent of updating following the observation of a realized bet. Quite naturally, we

establish below that the bets are more informative when individual bettors possess better

information, in the sense of Blackwell. We �nd that the FLB arises for any market proba-

bility, provided that bets are su¢ ciently informative, and that it is more pronounced with

greater informativeness.

Proposition 5 Assume K = 2 and that the belief distribution is symmetric. (i) If individ-

ual bettors are better informed, bets are more informative. (ii) Take as given any longshot�s

market probability �k < 1=2 (respectively, a favorite�s �k > 1=2). The associated posterior

probability �k is decreasing (respectively, increasing) in the bets� informativeness, and is

strictly smaller (respectively, greater) than �k if and only if

1

1� 2�k
log

�
1� �k
�k

�
< N log

�
� (1j1)
� (1j2)

�
: (4)

To illustrate the impact of private information on the FLB, consider a special case of

the Dirichlet signal example (developed in detail in Appendix B) with K = 2 outcomes.25

In this example, bettors have less private information when � is higher and are completely

uninformed in the limit as � !1.

25In a model without private information, Brown and Lin (2003) consider Dirichlet distributed prior
beliefs. Our setting with Dirichlet distributed posterior beliefs is fundamentally di¤erent. See footnote 12.
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Figure 1: Posterior probability as a function of market probability, for
�=10,1,1/10

Lemma 1 In the Dirichlet signal example for K = 2 and any real � > 0, the equilibrium

probability that any bettor bets on the winner is

� (kjk) = 1

2
+

� (2� + 1)

� (� + 1)� (�)

4��

2�
: (5)

Holding �xed the number of bettors at N = 4, Figure 1 displays the posterior probabil-

ity (2) as a function of the market probability, �, for three levels of the Dirichlet parameter

� = 10; 1; 1=10 (corresponding to equilibrium probabilities � (kjk) = :588; :75; :942), rep-

resented in progressively darker shading. For an given level of � and therefore � (kjk),
the FLB inequality (4) is harder to satisfy at more extreme market probabilities. At the

easiest point, �1 = 1=2, the condition is 2 < N log [� (1j1) =� (1j2)]. Hence, there is a
reverse FLB when the signal is very noisy. As the signal�s informativeness rises above a

critical value, the FLB occurs in an ever larger region around �1 = 1� �2 = 1=2. As the
�gure illustrates, the FLB arises for any market probability provided that the signal is

su¢ ciently informative.

5.2 Number of Bettors

How does the FLB depend on the number of bettors, N? Because each bettor draws an

i.i.d. signal from the same distribution, increasing the number of informed bettors increases

the amount of information.

Proposition 6 Assume that the belief distribution is symmetric. Take as given any long-

shot�s market probability �k < 1=2 (respectively, a favorite�s �k > 1=2). The associated
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Figure 2: Posterior probability as a function of market probability, for
N=2,4,10

posterior probability �kis decreasing (respectively, increasing) in the number N of informed

bettors.

The more bettors, the greater the extent of the FLB.26 To illustrate, consider the

uniform signal example developed in Appendix B, corresponding to the Dirichlet example

with � = 1. For the special case with K = 2, we have � (1j1) = � (2j2) = 3=4 from (2).

Figure 2 shows the posterior probability �k as a function of the market probability �k =

n=N . The curves correspond to N = 2, 4, and 10, drawn in progressively thicker shading.

The FLB results if the posterior probability is below the (dashed) diagonal for � < 1=2

and above the diagonal for � > 1=2.

5.3 Number of Outcomes

To derive results about changes in the number of outcomes, we need again to impose some

structure on the distribution of beliefs. We begin by considering completely uninformed

bettors, then turn to the uniform signal example, and �nally extend the model to allow

bets on more than one outcome.

Reverse Bias in Lotto. Unless the game is corrupt, Lotto gamblers have no private

information about the outcome drawn, regardless of the number of possible combinations.
26In addition, the number of bettors also a¤ects the probability distribution over �. The law of large

numbers implies that a greater number of bettors will generate a less random �. As the number of bettors
approaches in�nity, the realization of market probabilities conditional on outcome k becomes deterministic
and fully reveals the outcome.
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Lotto corresponds to a degenerate version of our model with completely uninformative

signals. In equilibrium, each gambler picks a random combination with probability 1=K.

When N=K tends to in�nity, the distribution of bets across all outcomes becomes uniform,

according to the law of large numbers. However, the designers of Lotto games typically set

K according to the rule of thumb K t N (see, e.g., Ian Walker and Juliet Young, 2001).

Hence, there remains a fair amount of noise in the bet distribution.

As a result of this noise, some combinations receive no bets, others receive one bet,

and still others receive two or more bets. The market probability of a Lotto outcome

would again be the fraction of bets placed on it. We show here that outcomes with high

market probability have low expected return. Note that the jackpot is shared among all

those who picked the winning combination and that the posterior probability is equal to

the prior probability, 1=K, regardless of the market probability. The expected return to

a bet on an outcome with market probability � is thus (1� �) = (�K) � 1. Because this
return is decreasing in the market probability, the reverse FLB always results. This bias

is an immediate consequence of how parimutuel payo¤s are determined.

Next, we show that whenK is large and N is �xed, an increase inK results in a further

increase in the reverse FLB. Holding N �xed, as K increases (i.e., as N=K tends to zero),

all gamblers will bet on di¤erent outcomes with probability 1. A favorite then has market

probability 1=N , while the posterior (as well as prior) probability of that outcome is 1=K.

The reverse FLB, measured by the expected loss to a bet on any favorite, 1�(1� �)N=K,
is increasing in K.

Reduced Bias in Exotic Bets. We now turn to consider how the FLB depends on

the number of outcomes, K, holding the number of bettors �xed. We restrict attention

to the uniform signal example, for which we can obtain an explicit characterization of the

equilibrium conditional betting probabilities:

Lemma 2 In the uniform signal example, the equilibrium probability that any bettor bets

on the winner is

� (kjk) =
K�1X
j=0

�
K � 1
j

�
(�1)j

(j + 1)2
: (6)

Within the uniform signal example, we can use (6) to compute the main statistics of the

equilibrium for di¤erent values ofK, as reported in Figure 3. Note that the likelihood ratio
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K = 2 K = 5 K = 10 K = 100 K = 10; 000

� (kjk) 3=4 0:457 0:293 5:19� 10�2 9:79� 10�4
� (kjl) 1=4 0:136 0:0786 9:48� 10�3 9:99� 10�5
�(kjk)
�(kjl) 3 3:36 3:73 5:47 9:80

�� 1=2 0:277 0:161 2:51� 10�2 3:86� 10�4

Figure 3: dependence of equilibrium structure on number of outcomes K

for updating has the following properties. When the number of outcomes rises, observation

of a bet on outcome k contains more favorable information for outcome k. In Figure 3, ��

from (3) is the market belief that is neutral when N !1. WhenK = 2, an outcome earns

a positive expected monetary return as soon as the market probability is higher than the

prior, 1=2. However, for greater K, we note that the neutral market probability satis�es

�� > 1=K. When there are many possible winning outcomes, any particular outcome must

attract more than the average fraction 1=K of total bets for the posterior probability to be

above the market probability. Intuitively, the noise present in the signals used by bettors

induces this wedge between the prior probability and the market probability above which

a horse becomes a good bet.

When the number of outcomes is large relative to the number of bettors, the noise

e¤ect dominates in equation (2), resulting in a reverse FLB: the posterior probability is

higher than the market probability for longshots, but is lower for favorites. This �nding

is consistent with Peter Asch and Quandt�s (1987 and 1988) observation of a reduced (or

reverse) FLB for exotic bets, in which the ratio of outcomes to bettors is relatively higher

than for the win pool.

Divisibility of Bets. We illustrate the role of our indivisibility assumption through

two simple examples. Consider �rst the case without private information, with K equally

likely outcomes. If bets are perfectly divisible, then in the symmetric equilibrium each

bettor places 1=K on each outcome. As a result, the market probability is always equal

to the empirical probability. The reverse FLB then disappears completely! Intuitively,

our previous explanation for the reverse FLB relied on the realized bets going beyond the

implied probability, but bettors can reduce this problem when bets are divisible. In reality,

however, the divisibility constraint binds because the minimum bet is bounded by the price

of an individual Lotto ticket. Because it is impossible to bet in�nitesimal amounts and
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N=K is small, the substantial amount of noise that is present in Lotto drives the reverse

FLB.

Second, the incentive to bet on more than one outcome exists also when bettors are

privately informed. However, this incentive is reduced because it entails acting against

one�s private information. To illustrate this point, we turn to an example with binary

signals. Assume that there are K = 2 equally likely outcomes, N = 2 bettors, and no

abstention. Suppose that each bettor observes a binary symmetric signal with precision

� = Pr (s = k) > 1=2 and is allowed to split the bet between the two outcomes. In the

symmetric equilibrium, each bettor places the fraction y� 2 (0; 1) on the outcome their
signal indicates. The expected payo¤ of a bettor placing y on the outcome believed to be

most likely is

�

�
�

2y

y� + y
+ (1� �) 2y

1� y� + y

�
+ (1� �)

�
�
2 (1� y)
y� + 1� y + (1� �)

2 (1� y)
1� y� + 1� y

�
:

In symmetric equilibrium, y� maximizes this expression. It is straightforward to verify

that the solution is y� 2
�
�; �2=

�
�2 + (1� �)2

��
. The FLB follows. When the bettors

obtain opposite signals, market and posterior probabilities are both equal to 1=2. When

the bettors obtain the same signal, the market probability for the favorite is y�, while the

posterior probability is �2=
�
�2 + (1� �)2

�
> y�.

Intuitively, if players can bet on more than one outcome, then the amount of noise

relative to information present in equilibrium decreases and the FLB increases. More gen-

erally, we expect that the incentive to bet on multiple outcomes is particularly important

in exotic bets, where the ratio of outcomes to bettors is high. For example, someone who

received a tip on the outcome of two races fears the noise on the outcomes of the other

four races, making a �pick six� gamble (see footnote 14) akin to a lottery. Consistent

with popular advice, the best strategy is to bet on many combinations involving di¤erent

outcomes in those other races.

5.4 Common Error

Thus far we have maintained the hypothesis that the private signals are independent,

conditional on the true outcome, k. However, there is often an unpredictable component

in the outcome of the race� all the more so when weather and terrain conditions at the

racetrack are uncertain. Equivalently, there is residual uncertainty about the outcome that

16



could not be resolved even if in�nitely many private signals were observed. To analyze

the e¤ect of common error, we de�ne a new random variable x 2 f1; : : : ; Kg as the
information state and set at Pr (x = kjk) = � > 1=K the chance that the information state

is identical to the true outcome. Knowing information state x, the posterior probability

of the outcome k = x is then �. Individual signals are informative about x, but carry no

further information about the outcome.

By the symmetry of this setup, it continues to be a symmetric equilibrium for each

individual to bet on the most likely outcome according to their private belief. Denote by

~� (ljx) the chance of an individual betting on l in information state x. Generalizing (2),
an outcome k with market probability � now has posterior probability

~� =
�~� (kjk)N� [1� ~� (kjk)]N(1��) + (1� �) ~� (kjx)N� [1� ~� (kjx)]N(1��)

~� (kjk)N� [1� ~� (kjk)]N(1��) + (K + 1� 2�) ~� (kjx)N� [1� ~� (kjx)]N(1��)
;

where x 6= k. In this symmetric setting, the expected return associated with market

probability � is ~� (1� �) =� � 1. By simple algebra, it can be veri�ed that this expected
return is an increasing function of � when � > ��. Hence, an increase in ex post noise

(i.e., a reduction of �) �attens the expected return curve for favorites. As Snowberg and

Wolfers (2005) document, expected returns in horse races are an increasing function of the

market probability, but present a �at segment for intermediate market probabilities. We

conclude that the realistic addition of ex post noise brings our model closer to explaining

this occurrence of a �at segment.

5.5 Participation

Turn to the second case of Proposition 2, in which some, but not all bettors choose to

abstain. This extension allows us to show that the FLB unambiguously results as the no-

trade outcome is approached. To simplify the exposition, focus on a setting with K = 2

outcomes and suppose that the symmetric belief distribution has full support on [0; 1]. In

equilibrium, bettors with strong beliefs p > p̂1 in favor of outcome 1 bet on outcome 1,

while those with strong beliefs p < p̂2 (with p̂2 < p̂1) bet on 2.

Participation decreases when the recreational value of betting, u, is reduced (or, equiv-

alently, the takeout rate, � , is increased), because the expected loss from betting is not

compensated by the recreational value for more bettors with intermediate beliefs. Hence,

the overall amount of information present in the market is also reduced. However, the bet-
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tors with intermediate private beliefs are the �rst to drop out. Thus, the realized bets will

contain relatively more information and less noise. According to the logic of Proposition 5,

more informative bets contribute to the FLB.

Proposition 7 Assume that K = 2, that the belief distribution is symmetric and un-

bounded, and that u 2
�
� ; u�(N)

�
. (i) There exists a symmetric equilibrium with p̂2 =

1 � p̂1 2 (0; 1=2). (ii) Take as given any bet realization with total amounts b1; b2 > 0

placed on the two outcomes. If u is su¢ ciently close to � , a longshot�s market probability

�1 = b1= (b1 + b2) < 1=2 (respectively, a favorite�s �1 > 1=2) is strictly greater (respec-

tively, smaller) than the associated posterior probability �1.

Note that if there is a reverse FLB at u�, it will persist as u falls slightly below u�

because the equilibrium changes continuously. However, the reverse bias is overturned as

u falls further towards � , according to Proposition 7. In conclusion, information swamps

noise as trade vanishes (and the outcome of the no-trade theorem is approached) with the

reduction in recreational value, resulting unambiguously in the FLB.

5.6 Ex Ante Asymmetries

We turn to the e¤ect of ex ante asymmetries in the prior probabilities of di¤erent outcomes.

Even though races are designed to be balanced, typically the public has access to a fair

amount of prior information, in the form of past performance, morning line odds, and

handicappers�picks. When computing expected returns associated to market probabilities,

empiricists typically do not have access to the prior probabilities of di¤erent outcomes.

This lack of ex ante information about an outcome�s prior probability results in a mixing

e¤ect: an ex post favorite may have already been an ex ante favorite (having received

disappointingly few bets) or an ex ante longshot (with surprisingly many informed bets).

As a result, the empirical methodology used to compute expected returns induces the

expected returns for intermediate market probabilities to be relatively �at with respect to

changes in market probabilities.

Using the prior belief distribution and the equilibrium conditional probabilities � (mjl),
the expected return associated with any given realized market probability can be computed

as follows:
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Figure 4: expected return as a function of market probability, depending
on symmetry in prior beliefs

Proposition 8 With N active bettors, the expected return corresponding to market prob-

ability � is

�R� =
1� �
�

PK
k=1 qk� (kjk)

N� (1� � (kjk))N(1��)PK
m=1

PK
l=1 ql� (mjl)

N� (1� � (mjl))N(1��)
� 1: (7)

We illustrate the e¤ect of ex ante asymmetries on expected returns in the context of

the uniform signal example introduced in Appendix B. For the numerical illustration, let

� = 0 and set u su¢ ciently large to ensure full participation.

Lemma 3 In the uniform signal example, given W1; : : : ;WK, the best response of each

bettor implies for every l 6= k,

� (kjk) =
K�1X
j=0

X
A�f1;:::;Kgnk;jAj=j

(�1)j�
1 +

P
m2A

qkWk

qmWm

�2 ; (8)

� (ljk) =
K�1X
j=0

X
A�f1;:::;Kgnk;jAj=j

(�1)j

1 +
P

m2A
qkWk

qmWm

+

K�2X
j=0

X
A�f1;:::;Kgnfk;lg;jAj=j

(�1)j qkWk

qlWl

�
1 + qkWk

qlWl
+
P

m2A
qkWk

qmWm

�2 : (9)

From Proposition 1, with full participation we haveWk =
h
1� (1� � (kjk))N

i
=� (kjk).

This equation and (8) reduces �nding the equilibrium to a matter of solving equations.
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Once the equilibrium values of W1; : : : ;WK have been determined as a solution to these

equations, (8) and (9) allow us to calculate the equilibrium betting probabilities, which

are then used to compute the expected return (7).

To visualize the e¤ect of race asymmetry, Figure 4 displays how the expected return (7)

for di¤erent market probabilities varies with the prior probability distribution for an ex-

ample with N = 10 bettors and K = 9 outcomes. The solid line refers to the symmetric

case with qk = 1=9 for every outcome k, while the dashed line refers to the asymmet-

ric prior q = (0:29; 0:21; 0:17; 0:13; 0:09; 0:05; 0:03; 0:02; 0:01), a speci�cation proposed by

Chadha and Quandt (1996).27 For the asymmetric race, the return tends to be closer to

zero for most odds, as empirically observed. Intuitively, intermediate market probabilities

can arise in two ways in an asymmetric race. Either the ex ante favorite has received

relatively few bets, and therefore yields a negative return by the informational FLB, or

the ex ante longshot has received relatively many bets, and thus yields a positive return.

These two e¤ects counteract each other and tend to �atten the expected return curve in

the intermediate range. This observation improves our model�s �t to the main qualitative

features of expected returns observed in horse races, as documented by Erik Snowberg and

Wolfers (2005).

6 Comparison with Other Explanations

In this section, we compare the performance of our theory with the main alternative

explanations for the FLB in parimutuel betting markets.28 The most notable alternative

theories that have been proposed in the literature are the following: (1) Gri¢ th (1949)

suggested that the FLB is due to a tendency of individual bettors to overestimate low

probability events; (2) Isaacs (1953) noted that an informed monopolist bettor who can

place multiple bets does not set the expected return on his marginal bet at zero, because

this destroys the return on inframarginal bets; (3) Weitzman (1965) hypothesized that

individual bettors are risk loving, and thus willing to accept a lower expected payo¤when

they bet on riskier longshots;29 (4) Ali (1977) showed that if bettors have heterogeneous

27We have veri�ed in simulations that the properties displayed in this picture hold more generally.
28We refer to Ottaviani and Sørensen (2008) for a more detailed presentation of the theoretical expla-

nations for the FLB that have been proposed in the literature.
29See also Richard N. Rosett (1965), Quandt (1976), and Ali (1977) on the risk-loving explanation.

According to Joseph Golec and Maurry Tamarkin (1998), the bias is compatible with preferences for
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(prior) beliefs, then the market probability of the favorite is lower than the median bettor�s

belief. The FLB then results if the belief of the median bettor is correct; (5) William Hurley

and Lawrence McDonough (1995) and Dek Terrell and Amy Farmer (1996) showed that

the FLB can result because the amount of arbitrage is limited by the track take.

While we believe that all of these theories can contribute to explain the evidence, the

information-based theory developed in this paper has a number of merits:

� Our theory builds on the realistic assumption that the di¤erences in beliefs among
bettors are generated by private information (see e.g. Nicholas F.R. Crafts 1985).

Only by modeling the informational determinants of beliefs explicitly, can we address

the natural question of information aggregation.30

� Our theory o¤ers a parsimonious explanation for the FLB and its reverse. Our

theory also predicts that the FLB is lower, or reversed, when the number of bettors

is low (relative to the number of outcomes), as Russell S. Sobel and S. Travis Raines

(2003) and Marshall Gramm and Douglas H. Owens (2005) verify empirically.31

� Our theory is compatible with the reduced level of FLB that Asch and Quandt

(1987 and 1988) document in exotic bets, such as exactas and trifectas (see also

footnote 14).32 Asch and Quandt (1988) conclude in favor of private information

because the payo¤s on winners tend to be more depressed in the exacta than in the

win pool.33

� Our explanation can account for the pattern of expected returns that Snowberg and
Wolfers (2005) document. Asymmetries in the prior probabilities of the di¤erent

outcomes and common errors in the bettors� beliefs tend to �atten the expected

skewness rather than risk. Jullien and Salanié (2000) use data from �xed-odds markets to argue in favor
of non-expected utility models.
30See Ottaviani and Sørensen (2005a) on the interplay of heterogeneous priors and private information

in prediction markets.
31The preponderance of noise might also account for some of Andrew Metrick�s (1996) �ndings in

basketball betting.
32Risk loving does not seem compatible with arbitrage across exacta and win pools. As Snowberg and

Wolfers (2005) stress, probability weighting would need to be combined with additional misperceptions to
be compatible with arbitrage across betting pools.
33Asch and Quandt (1988) observe that the market probabilities recovered from the win pool overes-

timate the market probabilities on the exacta pool by a much larger margin for winning than for losing
horses.
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returns for intermediate market probabilities.34

� Our theory is compatible with the fact that late bets tend to contain more information
about the horses� �nishing order than earlier bets, as Asch, Burton G. Malkiel,

and Quandt (1982) observe. Ottaviani and Sørensen (2006) demonstrate that late

informed betting will result in equilibrium when (many small) bettors are allowed to

optimally time their bets.

� Theories based on private information can explain the occurrence of the FLB in

both �xed-odds and parimutuel markets, as well as the lower level of bias observed in

parimutuel markets, as Alistair C. Bruce and Johnnie E.V. Johnson (2001) among

others document (see footnote 13 above).

7 Conclusion

This paper investigates the information aggregation properties of parimutuel markets. The

sign and the extent of the FLB depend on the amount of information relative to noise that

is present in the market. When there is little private information, posterior odds are close

to prior odds, even when the market odds are extreme. In this case, deviations of market

odds from prior odds are mostly due to the noise contained in the signal. Systematically,

market odds are more extreme than posterior odds, and the reverse FLB results.

As the number of bettors increases, the realized market odds contain more information

and less noise. Holding �xed the level of market odds, the corresponding posterior odds

are then more extreme, increasing the extent of the FLB. Note that the FLB always arises

with a large number of bettors, provided that they have some private information. This

is con�rmed by Ottaviani and Sørensen (2006) in a model with a continuum of privately

informed bettors. In that setting there is no noise, so that the FLB always results.

Our theory delivers a number of comparative statics predictions. The FLB is more

pronounced when the number of (informed) bettors increases, bettors have more private

information, the number of outcomes decreases, the recreational value of the event de-

34The observed �at segment is theoretically compatible with risk loving or probability weighting, but
would imply a very speci�c preference pattern. For example, if bettors had mean-variance preferences, as
posited by Quandt (1986), then the expected return would be strictly increasing in the market probabil-
ity. Limited arbitrage à la Hurley and McDonough (1995) can explain the �at segment for horses with
probability above a certain threshold, but not the decreasing segment for strong favorites.
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creases, or the takeout rate increases. In addition, the �at segment in expected returns for

intermediate odds can be explained by introducing a realistic level of asymmetry in the

prior belief distribution or a common error component in the information of bettors.

These predictions shed light on the available evidence and could be tested by exploiting

the variation across betting environments. The amount of private information tends to vary

consistently depending on the prominence of the underlying event. Similarly, the amount

of noise present depends on the number of outcomes, as well as on the observability of past

bets. For example, there is a sizeable amount of noise in lotteries and exotic bets, because

the number of outcomes is high relative to the number of tickets sold and the opponents�

bets are not observed.
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Appendix A: Proofs of Propositions

Proof of Proposition 1. Suppose �rst that � (kjk) = 0 so no opponent bets on k. A bet
on k then returns the expected pool net of the takeout, (1� �)

h
1 + (N � 1)

P
l 6=k � (ljk)

i
.

In the following, assume � (kjk) > 0. If the realized number of opponent bets is n and

outcome k is realized, the conditional chance for an active opponent to bet on outcome k

is � (kjk) =
P

l � (ljk). The conditional expected payment is then

(1� �)
nX

b̂k=0

n+ 1

b̂k + 1

�
n

b̂k

��
� (kjk)P
l � (ljk)

�b̂k �
1� � (kjk)P

l � (ljk)

�n�b̂k

=
(1� �)

� (kjk) =
P

l � (ljk)

n+1X
bk=1

�
n+ 1

bk

��
� (kjk)P
l � (ljk)

�bk �
1� � (kjk)P

l � (ljk)

�n+1�bk
= (1� �) 1� [1� � (kjk) =

P
l � (ljk)]

n+1

� (kjk) =
P

l � (ljk)
:

Because n is binomially distributed with parameter
P

l � (ljk), the desired expression for
Wk= (1� �) is

N�1X
n=0

1� [1� � (kjk) =
P

l � (ljk)]
n+1

� (kjk) =
P

l � (ljk)

�
N � 1
n

� X
l

� (ljk)
!n 

1�
X
l

� (ljk)
!N�1�n

=

P
l � (ljk)
� (kjk) �

P
l 6=k � (ljk)
� (kjk)

N�1X
n=0

�
N � 1
n

� X
l 6=k

� (ljk)
!n 

1�
X
l

� (ljk)
!N�1�n

=

P
l � (ljk)�

hP
l 6=k � (ljk)

i
[1� � (kjk)]N�1

� (kjk) :

Proof of Proposition 2. First, suppose that u > � , but no one is betting. Individuals

with private beliefs pk su¢ ciently close to 1 gain from deviating to a bet on outcome k,

because the expected utility from doing so is arbitrarily close to (1� �)� 1 + u > 0.
Existence of a symmetric equilibrium follows from a standard �xed point argument.

Note that the winner�s payo¤s (W1; : : : ;WK) lie in the compact, convex box [1; N ]
K . Given

any vectorW from this box, the best response of a bettor consists (up to a set of probability

zero) in betting on the outcome k with the greatest corresponding pkWk, or abstaining if

this greatest value is negative. Given the strategy of the bettor, we can deduce the positive

probability with which bets on each outcome are placed, and then calculate the expected

payo¤s. This uniquely de�ned map from [1; N ]K into itself is continuous, and hence has a
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�xed point by Brouwer�s theorem. The strategy associated with the �xed point constitutes

a symmetric equilibrium strategy.

In any symmetric equilibrium where everyone is betting, we can �nd a belief p̂ at

which the interim expected utility is at the lowest level. By upper hemi-continuity of

the equilibrium correspondence and compactness of the strategy space, there exists an

equilibrium where this lowest interim utility U is, in turn, minimal. Holding �xed these

equilibrium strategies, the critical value u�(N) is de�ned as the solution to U = 0.

Finally, suppose that u � � . Any bet is reduced to 1 � � before being placed in the
pool. By the logic of the no-trade theorem, it is impossible that all active bettors expect

a return in excess of 1 � � . If there is a positive chance of betting, some active bettors
expect a return less than 1� � � 1� u and are better o¤ abstaining. This contradiction
implies that there can be no active bettors at all.

Proof of Proposition 3. By symmetry of the betting strategy and the belief distrib-

ution, we have � (1j1) = � � � = � (KjK) and hence W1 = � � � = WK > 0. The expected

utility from a bet on k is pkWk + u � 1, thus the best response is to bet on the outcome
with the greatest pk, as claimed. Again, by symmetry, � (kjl) assumes the same value for
every pair k 6= l. Given that the probabilities sum to one, the proof is complete once we

show that � (1j1) > 1=K. The prior chance of outcome 1 is 1=K, so Bayes�rule implies
that the density of beliefs satis�es g (pj1) = Kp1g (p). When p1 is greatest, almost surely
p1 > 1=K. Finally, symmetry implies that with ex ante probability 1=K, p1 is greatest.

Hence,

� (1j1) =
Z
pjp1 greatest

g (pj1) dp =
Z
pjp1 greatest

Kp1g (p) dp >

Z
pjp1 greatest

g (p) dp =
1

K
:

Proof of Proposition 4. Let �k < �� be given. The desired inequality is

1� �k
�k

< (K � 1)
�
� (kjl)
� (kjk)

�n�
1� � (kjl)
1� � (kjk)

�N�n
(10)

where l 6= k. Take the natural logarithm, use n=N = �k, and re-arrange (10) to arrive at

1

N
log

�
1� �k

�k (K � 1)

�
< �k log

�
� (kjl)
� (kjk)

�
+ (1� �k) log

�
1� � (kjl)
1� � (kjk)

�
: (11)

The left-hand side tends to 0 as N !1. The right-hand side is positive, precisely because
�k < �

�.
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Proof of Proposition 5. (i) Note that

� (1j1) =
Z 1

1=2

g (p1j1) dp1 =
Z 1

1=2

2p1g (p1) dp1 =

Z 1=2

0

(1� p1) g (p1) dp1 +
Z 1

1=2

p1g (p1) dp1

where the second equality follows from Bayes�rule, and the third equality from the sym-

metry assumption. Given that the right-hand side is the expectation of a convex function

of p1, we conclude that � (1j1) increases with a mean-preserving spread of the belief dis-
tribution. As is well known, Blackwell-better information is equivalent to such a mean-

preserving spread, because in Bayesian decision problems the value function is convex in

the posterior belief. Finally, � (1j2) = � (2j1) = 1�� (1j1) falls, so that the likelihood ratio
� (1j1) =� (1j2) increases, as desired.
(ii) With two outcomes, � (2j1) = 1 � � (1j1). Let �k be given, and note that �k is a

strictly decreasing transformation of the odds ratio

1� �k
�k

=

�
� (1j1)
� (1j2)

�N(1�2�k)
:

If �k < 1=2; the odds ratio is a strictly increasing function of � (1j1) =� (1j2). Taking the
natural logarithm, inequality (10) reduces to (4). Because �k < 1=2 and � (1j1) > � (1j2),
all terms in (4) are positive. The right-hand side of (4) increases without bound when

� (1j1) =� (1j2) rises. The inequality is reversed if �k > 1=2.

Proof of Proposition 6. Proceeding as in (11), the natural logarithm of the odds ratio

is

log

�
1� �k
�k

�
= log (K � 1) +N

�
�k log

�
� (kjl)
� (kjk)

�
+ (1� �k) log

�
1� � (kjl)
1� � (kjk)

��
;

which is monotone in N . It rises (respectively, falls) in N when �k < �� (respectively,

�k > �
�).

Proof of Proposition 7. (i) Suppose that all opponents use a symmetric strategy

de�ned by the threshold p̂1 2 (1=2; 1), with p̂2 = 1 � p̂1. By symmetry of the belief
distribution and the thresholds, � (1j1) = � (2j2) and � (1j2) = � (2j1). Hence, W1 = W2.

The best response of an abstaining player is, by monotonicity of the expected payo¤

functions, de�ned by the thresholds 0 < �p2 < �p1 < 1 satisfying the indi¤erence conditions

�p1W1 = 1 � u = (1� �p2)W2. Because W1 = W2, the best response satis�es �p1 = 1 � �p2.
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Now, p̂1 de�nes a symmetric equilibrium if the best response satis�es �p1 = p̂1, i.e., if

p̂1 2 (1=2; 1) solves p̂1W1 = 1 � u. We argue that this equation has a solution because
u 2

�
� ; u�(N)

�
. At p̂1 = 1=2 there would be no abstention, but then u < u�(N) implies

p̂1W1 < 1 � u. At p̂1 = 1 we would obtain p̂1W1 = W1 � 1 � � > 1 � u by u > � .

Finally, p̂1W1 is a continuous function of p̂1, so there must exist some p̂1 2 (1=2; 1) with
p̂1W1 = 1� u.
(ii) For the limit result, we �rst derive a bound onW1. From (1),W1 � (1� �) [� (1j1)+

� (2j1)]=� (1j1). Next, we consider an implication of the assumption that the belief dis-
tribution has full support. The private belief p = Pr (k = 1js) is distributed according
to a density g on [0; 1]. Bayesian updating implies that g (pj1) = 2pg (p) and g (pj2) =
2 (1� p) g (p). Hence, g (pj1) =g (pj2) = p= (1� p). The informativeness of the private
signals implies

� (1j2)
� (1j1) =

R 1
p̂1
g (pj2) dpR 1

p̂1
g (pj1) dp

=

R 1
p̂1

1�p
p
g (pj2) dpR 1

p̂1
g (pj2) dp

<
1� p̂1
p̂1

: (12)

Given that � (2j1) = � (1j2) by symmetry, these observations imply
1� u
1� � =

p̂1W1

1� � � p̂1
�
1 +

� (2j1)
� (1j1)

�
< p̂1

1

p̂1
= 1: (13)

Suppose that u! � . It follows that the inequality in (13) must vanish, from which it also

follows that the inequality in (12) vanishes. It follows from inspection of inequality (12),

that with full support of p over [0; 1], this inequality can only vanish if p̂1 ! 1.

Suppose now that the realized bet amounts are b2; b1 > 0. The implied market proba-

bility for outcome 1 is �1 = b1= (b1 + b2). The bet distribution for outcome 1 is

p (b2; b1j1) =
N !

b2!b1! (N � b2 � b1)!
� (2j1)b2 � (1j1)b1 [1� � (1j1)� � (2j1)]N�b2�b1 ;

and likewise for k = 2. Hence, (1��1) =�1 = p(b2; b1j2)=p(b2; b1j1) = [� (1j2) =� (1j1)]
b1�b2 .

If �1 < 1=2, or b2 > b1, the desired FLB inequality is (1� �1) =�1 < (1� �1) =�1, i.e.,
[�1= [b1 (1� 2�1)]] log [(1� �1) =�1] < log [� (1j1) =� (1j2)]. This inequality holds for �xed
b2 and b1 once the ratio � (1j1) =� (1j2) is su¢ ciently large. From before, when u! � then

p̂1 ! 1. It follows from (12) that � (1j1) =� (1j2) tends to in�nity.

Proof of Proposition 8. Conditional on outcome l, the chance that bk = n is

Pr (bk = njl) =
�
N

n

�
� (kjl)n [1� � (kjl)]N�n :

30



Conditional on bk = n, the chance that k wins is then

Pr (kjbk = n) =
qk� (kjk)n [1� � (kjk)]N�nPK
j=1 qj� (kjj)

n [1� � (kjj)]N�n
: (14)

Given that the sampled outcome z has market probability � = n=N , the relative chance

that this outcome is k is

Pr (k = zjbz = n) =
Pr (bk = n)

Pr (bz = n)
=

PK
j=1 qj� (kjj)

n [1� � (kjj)]N�nPK
m=1

PK
l=1 ql� (mjl)

n [1� � (mjl)]N�n
: (15)

Combining (14) and (15) we obtain the desired posterior probability that the sampled

outcome with market probability � = n=N is also the winning outcome:

KX
k=1

Pr (k winsjbk = n) Pr (k = zjbz = n) =
PK

k=1 qk� (kjk)
n [1� � (kjk)]N�nPK

m=1

PK
l=1 ql� (mjl)

n [1� � (mjl)]N�n
:

We conclude that (7) is the expected return to a bet with market probability �.
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Appendix B: Dirichlet Signal Structure
This appendix introduces the Dirichlet signal structure, a tractable example that we

use throughout the paper to illustrate our results. Suppose that the prior is symmetric,

qk = 1=K, and that signals unconditionally have the symmetric Dirichlet density

g (s1; : : : ; sK) =
� (K�)

(� (�))K

KY
k=1

s��1k ;

with full support on the simplex
n
s 2 RK+ j

PK
k=1 sk = 1

o
, where the parameter � > 0 mea-

sures the inverse amount of private information and � (�) =
R1
0
t��1e�tdt = (� � 1) � (� � 1)

denotes the Gamma function. The conditional distribution has density Kskg (s). Given

symmetry in the prior, Bayes�rule implies posterior belief p = s, so that the the posterior

belief p follows the same Dirichlet distribution. The smaller is �, the more spread out is

the distribution of p, verifying that � is an inverse measure of information.

A particularly tractable special case of the Dirichlet example is obtained by setting

� = 1. This is the uniform signal example with conditional density f (sjk) = csk where c
is a constant of integration. If the race is symmetric, qk = 1=K, by Bayes�rule signal s

results in private belief p = s. Moreover, symmetric also ensures that the ex ante density

of p = s is uniform, f (s) =
PK

k=1 qkf (sjk) = c=K.

Proof of Lemma 1. When K = 2, � (1j1) is equal to the probability that p1 > 1=2.

Using integration by parts and �(�+1)�(�)
�(2�+1)

=
R 1
0
p�1 (1� p1)

��1 dp1, this probability satis�es

� (� + 1)� (�)

� (2� + 1)
� (1j1) =

Z 1

1=2

p�1 (1� p1)
��1 dp1 =

4��

�
+

Z 1

1=2

p��11 (1� p1)� dp1.

Substitution of p2 = 1� p1 givesZ 1

1=2

p��11 (1� p1)� dp1 =
Z 1=2

0

p�2 (1� p2)
��1 dp2 =

� (� + 1)� (�)

� (2� + 1)
�
Z 1

1=2

p�1 (1� p1)
��1 dp1.

Collecting terms, we obtain

2

Z 1

1=2

p�1 (1� p1)
��1 dp1 =

4��

�
+
� (� + 1)� (�)

� (2� + 1)

and hence (5).
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Proof of Lemma 2. By symmetry, it su¢ ces to derive � (1j1). Using f (sj1) = cs1, s
is Dirichlet distributed with parameters (2; 1; : : : ; 1). By Proposition 3, a bettor bets on

outcome 1 when s1 = p1 > pk = sk for all k > 1.

Let X1; : : : ; XK be independent �2 distributed random variables, with degrees of free-

dom 4 for X1 and 2 for X2; : : : ; XK . The distribution function for Xk when k > 1 is

H (x) = 1� e�x=2: (16)

Letting rk = Xk=
PK

l=1Xl, Norman L. Johnson and Samuel Kotz (1972, Section 40.5) note

that r = (r1; : : : ; rK) follows the same Dirichlet distribution as s. The chance that s1 > sk

for all k > 1 is then equal to the chance that X1 > Xk for all k > 1. Given X1, this chance

is H (X1)
K�1. Using the expression for the density of the �2 distribution, we obtain

� (1j1) =
1

4

Z 1

0

�
1�e�x=2

�K�1
xe�x=2dx =

1

4

Z 1

0

"
K�1X
j=0

�
K�1
j

�
(�1)j e�jx=2

#
xe�x=2dx

=
1

4

K�1X
j=0

�
K � 1
j

�
(�1)j

Z 1

0

xe�(j+1)x=2dx =
K�1X
j=0

�
K � 1
j

�
(�1)j 1

(j + 1)2
;

proving (6).

Proof of Lemma 3. Consider the case k = 1, and let X1; : : : ; XK and r1; : : : ; rK be the

same random variables as in the proof of Lemma 2. With full participation, outcome 1 is

the best response when all l 6= 1 satisfy Xl � X1q1W1=qlWl. Hence we obtain

� (1j1) = 1

4

Z 1

0

Y
l 6=1

�
1�e�

x
2

qkWk
qlWl

�
xe�x=2dx:

Expanding the product, we have

Y
l 6=1

�
1�e�

x
2

qkWk
qlWl

�
=

K�1X
j=0

X
A�f2;:::;Kg;jAj=j

(�1)j e�
x
2

�P
m2A

qkWk
qmWm

�
:

Equation (8) follows by integration. Recalling the di¤erent distribution of X1 and Xl, a

similar consideration gives

� (lj1) = 1

2

Z 1

0

�
1�

�
1 +

x

2

q1W1

qlWl

�
e
�x
2
q1W1
qlWl

� Y
m6=k;l

�
1� e�

x
2

qkWk
qmWm

�
e�

x
2 dx:

Again, expansion of the product and integration yields (9).
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