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Abstract

Observational learning occurs when privately-informedividuals sequen-
tially choose among finitely many actions, after seeing @cedsors’ choices. We
summarize the general theory of this paradiddelief convergence forcesaction
convergence, specifically, copycat “herds” arise. Also, beliefs comeeto a point
mass on the truth exactly when the private information isumsformly bounded.

This subsumes two key findings of the original herding litiera: With multi-
nomial signalsgascades occur, where individuals rationally ignore their private
signals, and incorrect herds start with positive probghbilihe framework is flex-
ible — some individuals may be committed to an action, orvitlials may have
divergent cardinal or even ordinal preferences.
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Article

Observational Learning. Suppose that an infinite number of individuals each
must make an irreversible choice among finitely many actiengncumbered
solely by uncertainty about the state of the world. If prefexes are identical,
there are no congestion effects or network externalitied,iaformation is com-
plete and symmetric, then all ideally wish to make the sancéste.

Observational learning occurs specifically when the individuals must decide
sequentially, all in some preordained order. Each may ¢mmdnis decision both
on his endowed private signal about the state of the worldcemdll his prede-
cessors’ decisions, bubt their hidden private signals. This article summarizes

1



the general framework for the herding model that subsuniegyalals, and estab-
lishes the correct conclusions. The framework is flexible g—s®me individuals
may be committed to an action, or individuals may have deetgreferences.

Banerjee|(1992) and Bikhchandani, Hirshleifer, and Welk30@) (hereafter,
BHW) both introduced this framework. Ottaviani and Sgren@006) later noted
that the same mechanism drives expert herding behavioeiednier model of
Scharfstein and Stein (1990), after dropping their assiomphat private signals
are conditionally correlated. In BHW's logicascades eventually start, in which
individuals rationally ignore their private signals. Capy action herds therefore
ariseipso facto. Also, despite the surfeit of available information, a heegrelops
on an incorrect action with positive probability: After sempoint, everyone might
just settle on the identical less profitable decision. Teguitt sparked a welcome
renaissance in informational economics. Observatioaahlag explains correla-
tion of human behavior in environments without network exadities where one
might otherwise expect greater independence. Variousswisthe herding phe-
nomenon have been applied in a host of settings from finanoegtmizational
theory, and even lately into experimental and behaviorakwo

In this article, we develop and flesh out the general theoriiav? Bayes-
rational individuals sequentially learn from the actiofposterity, as developed
in'Smith and Sgrensen (2000). Our logical structure is taidedhat almost sure
belief convergence occurs, which in turn forceaction convergence, or the action
herds. Also, beliefs converge to a point mass on the cortate exactly when the
private signal likelihood ratios are not uniformly boundeebr instance, incor-
rect herds arose in the original herding papers since theynaed finite multino-
mial signals. We hereby correct a claim/ by BikhchandanisKgifer, and Welch
(2008), which unfortunately concludes “In other words, inatinuous signals
setting herds tend to form in which an individual follows thehaviour of his pre-
decessor with high probability, even though this actionasmecessarily correct.
Thus, the welfare inefficiencies of the discrete cascadatehare also present in
continuous settings.”



Multinomial signals also violate a log-concavity conditj@nd for this reason
yield the rather strong form of belief convergence that aads is. One recent
lesson is the extent to which cascades are the excepticar thgm rule.

The Model. Assume a completely ordered sequence of individuials. . ..
Each faces an identical binary-choice decision problerapsimg an actiom €
{1, 2}. Individualn’s payoffu(a,,w) depends on the realization of a state of the
world, w € {H, L}, common across. The high action pays more in the high
state: u(1,L) > wu(2,L) andu(l, H) < u(2,H). Individuals act as Bayesian
expected utility maximizers, choosing action= 2 above a threshold posterior
belief7, and otherwise actiom = 1. All share a common priofy = P(w=H),
and for simplicity,qo = 1/2.

The decision-making here is partially informed. For exagenreasons, each
individual n privately observes the realization of a noisy signalwhose distri-
bution depends on the state Conditional onw, signals are independently and
identically distributed. Observational learning is maatkevia the assumption that
individual i can observe the full history of actiotts = (a4, ...,a,_1). While
predecessors’ private signals cannot be observed dir¢lcdy may be partially
inferred. The interesting properties of observationairiewy follow because the
private signals are coarsely filtered by coarse public aailuservations.

The private observation of signal realizatiep, with no other information,
yields an updategrivate belief p, € [0,1] in the state of the world = H.
The private belie,, is a sufficient statistic for the private signg| in the n’th
individual’s decision problem. Its cumulative distribani F'(p|w) in statew is
a key primitive of the model. Define the unconditional cuntiuiadistribution
F(p) = [F(p|H) + F(p|L)]/2. The theory is valid for arbitrary signal distribu-
tions, having a combination of discrete and continuousiguast But to simplify
the exposition, we assume a continuous distribution, withsity f. The state-
conditional densitieg (p|w) obey the Bayesian relation= (1/2)f(p|H)/f(p)
with f(p) = [f(p|H) + f(p|L)}/2, implying f(p|H) = 2pf(p) and f(p|L) =
2(1 —p)f(p). The equalityf(p|H)/f(p|L) = p/(1 — p) can be usefully reinter-
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Figure 1:Private Belief Distributions. At left are generic private belief distribu-
tions in the state$, H, illustrating the stochastic dominancelof-|H) > F(-|L).
The three other panels depict the specific densities forrthewnded and bounded
private belief signal distributions discussed in the text.

preted as o introspection condition: Understanding the model likelihood ratio
of one’s private beliep does not allow any further inference. This special ratio
ordering implies that the conditional distributions shidue@same support, but that
F(p|H) < F(p|L) for all private beliefs strictly inside the support (Fig(ie

Private beliefs are said to beunded if there exist’, p” € (0, 1) with F(p) =
0 andF'(p”) = 1, andunbounded if F'(p) € (0,1) forall p € (0, 1). For instance,
a uniform densityf(p) = 1 results in the unbounded private belief distributions
F(p|H) = p* < 2p — p* = F(p|L). Butif f(p) = 3 on the supporil/3,2/3],
then the bounded private belief distributions a@|H) = (3p —1)(1+3p)/3 <
(3p —1)(5—3p)/3 = F(p|L).

Analysis via Stochastic ProcessesBecause only the actions are publicly
observed with observational learning, thblic belief ¢, in stateH is based on
the observed history of the firgt- 1 actions alone. The associatédlihoodratio
of statel to stateH is then?,, = (1 — ¢,)/q.. And if so desired, we can recover
public beliefs from the likelihood ratios using = 1/(1 + ¢,,). Incorporating the
most recent private beligf, yields the posterior belief, = p,./(p, + £.(1 —px))
in stateH. So indifference prevails at thpgeivate belief threshold p(¢) defined by

pf)
p() +£(1 = p(0))
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Individualn chooses action = 1 for all private beliefg,, < p(¢), and otherwise



picksa = 2. Since higher public beliefs (i.e. lower likelihood rafj@®mpensate
for lower private beliefs in Bayes Rule, the threshold is wtonep’(¢) > 0.

We now construct the public stochastic process. Given Kediiood ratio/,
actiona = 1, 2 happens with chancga|(, w) in statew € {H, L}, where

p(1jt,w) = F(p(l)|w) =1 — p(2|¢,w) (2)
When individualn takes action,,, the updated public likelihood ratio is

an|ln, L
gn-i-l:@(anaf )—€ p( | )

plan| ) 3)

since Bayes’ Rule reduces to multiplication in likelihoadio space due to the
conditional independence of private signals. But in lightor stochastic order-
ing, the binary action choices are informative of the stéthe world:

Observe what has just happened. Choices have been autoraateavhat
remains is a stochastic procégs) that is amartingale, conditional on staté/.

plm|t,, L)

=Ly,
p(m|ty, H)

Ellpey | b1, .. 0n, H Zp (m|t,, H)¢,

Because the stochastic procéss) is a non-negative martingale in state the
Martingale Convergence Theorem applies. Namgly, converges almost surely
to the (random variable) limit,, = lim,,_., £,,, namely having (finite) values in
[0,00). The support of,,, contains all candidate limit likelihood ratios. Among
the most immediate of implicationkgarning cannot result in a fully erroneous
belief / = oo with positive probability. Just as well, this follows from Fatou’s
Lemma in measure theory, féf{liminf,, . ¢,|H] < liminf, . E[(,|H] = {.
Let’s continue to trace this logic, by next observing th& slkequence of pairs
of actions and likelihood ratiogu,,, ¢,,) is also aMarkov process on the domain



{1,2} x [0, 00). For we can see that each new pair only depends on the last:
(any Cn) = (ans1, ©(ani1, o)) with chance  p(a,11|¢n, H)

The big gun for Markov processes is the stationarity coaditiWhile our two-
dimensional proces&,, ¢,,) is clearly nonstandard, Smith and Sgrensen (2000)
prove the following version of the Markov stationarity canah: If the transition
functions p and ¢ are continuousin /¢, then for any ¢ in the support of /., and for

all m, we have either p(m|H, ) = 0 or ¢(m, ) = (. In other words, either an
action does not occur, or it yields no new information, otbot

The stationary points of théu,, ¢,,) process are therefore tlvascade sets,
namely, those sets of likelihood ratiésndexed by actions: that almost surely
repeat actionn, namely,.J,, = {¢|p(m|¢, H) = 1}. With bounded private be-
liefs, there must exist some high (low) enough likelihood ratiakat pull all
private beliefs below (above) the threshold posteriordieli In this case, the
cascade set$;, .J, for the two actions are both non-empty. When private beliefs
are unbounded, the cascade sets collapse to the extrents, ppis= {cc} and
Jo = {0}. And since we have seen that= co cannot arise with positive proba-
bility, we must converge to a point mass on the truth/(er 0).

Next, we claim that convergence of beliefs implies convecgeof actions.
Whenever someone optimally chooses actionany successor must optimally
follow suit if he bases his decision just on public inforneati For individual
n — 1 solves the same decision problemrataces, but with more information,
(aq,...,a,_o)ando,_;. Contrary actions completely “overturn” the weight of the
entire action history, howsoever long. By tl@serturning Principle, an infinite
subsequence of contrary actions precludes belief correegdy the Martingale
Convergence Theorem, this almost surely cannot happenhdlast paragraph,
we conclude thawith unbounded private beliefs, a correct herd eventually arises.

When Only Correct Herds Arise. Consider an illustrative example, with
individuals deciding whether to ‘invest’ in or ‘decline’ anvestment project of



uncertain value. Investing (acti@d) is risky, payingu > 1 in stateH and—1
in stateL; declining (actionl) is a neutral action with zero payoff in both states.
Indifference prevails at the posterior belief= 1/(1 + ). Then equation[{1)
yields the private belief threshofd/) = ¢/(u + ¢).

Assume first the earlier unbounded private beliefs examphen transition
chances are(1|¢, H) = ¢?/(u + ¢)*> andp(2|¢, L) = ¢(¢ + 2u)/(u + £)?, and
continuations

ul
1 = 2u = (2
w(1,4) u+2€<€<f+u v(2,0)

by equations[(2)£(3). In other words, the likelihood ratmgence constitutes a
stochastic difference equation. Figlfe 2 shows bgw {0} is the only stationary
finite likelihood ratio in statéd: The limit /., is thus concentrated dh the truth.

Whenever action is taken, the new likelihood ratio % > 2u. This can only
happen finitely many times. So belief convergence impli¢®aconvergence,
namely, a herd. This example precisely illustrates theclégi one main result:
Interestingly, a herd arises despite the fact that a caswad does, since at each
and every stage, a contrary action was possible. Since g@vee occurs towards
the cascade set but forever lies outside, this is calléaliacascade.

When Incorrect Herds Must Sometimes Arise. When private beliefs are
bounded, public beliefs still converge, and they resultdpycat herds. The main
difference now is the positive probability of incorrect ter Indeed, adjust the
last example for the bounded beliefs family. Given the pgavaelief threshold
p(l) = £/(u+ {), the laws of motion[(2)£(3) yield transitions

{4+ 4u cl< 2€+5u:
50 4+ 2u 40+u

o(l,0) =74 ¢(2,0)

with probabilities

(40 + u) (20 — u)
3(u+0)?

(04 4u)(2u — 0)
3(u+0)?

p(11H, () = and  p(2|L,0) =

for likelihood ratios? € (u/2,2u). As seen in Figurg]2 (left panel), a cascade can
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Figure 2: Transitions and Cascade SetsTransition functions for the examples:
unbounded private beliefs (left), and bounded privategieliright). By the mar-
tingale property, the expected continuation in stdtéies on the diagonal. The
stationary points are where both arms hit the diagonal, @revbne arm is taken
with zero chance/(= 0 in the left panely < 2u/3 or ¢ > 2u in the right panel).

never start after the first individual decides. But sincelikelihood ratio must
converge, a limit cascade starts, towards one of the casedsl® or J,. A herd
on the corresponding action must then start eventuallyhkdefs fail to converge.

We now explore the easy logic for wian incorrect herd occurs with strictly
positive probability given bounded beliefs. Again, we appeal to a big gun from
measure theory. For if we start at some public likelihootbrét € (u/2, 2u), then
by Figurel2, dynamics are trapped(in/2, 2u). Since0 < /¢,, < 2u, Lebesgue’s
Dominated Convergence Theorem allows us to swap the exjmecind limit
operations, and thus conclude thalt . | H] = lim, o E[(, | H] = {o. Write
by =m(u/2)+ (1 —m)(2u), where0 < = < 1 wheneven/2 < ¢, < 2u. Then the
random variablé,, places weightr on«/2 and weightl — 7 on 2u. So in state
H, a herd arises with chaneeon action2, and with chancé — 7 on actionl.

Herds Without Cascades. For an interesting contrast to the discrete signal
world of BHW, observe that in Figuié 2 (right panel), if we datibegin in a cas-
cade, we never enter one — even though a herd eventually.dtagieed, visually,
it is clear that/,, € (u/2,2u) for all n, provided that initially/, € (u/2,2u). So
while the analysis in BHW explicitly depended on cascadesrgnthe dynamics



in finite time, a somewhat subtler dynamic story emerges: hdesds must arise
even though a contrarian has positive probability at every stage.

This no-cascades result is robust to changes both in thalsitigtribution
and payoffs. For it arises whenever the continuation femstp(1, (), ¢(2, () are
monotone increasing ifi Monotonicity asserts the seemingly plausible condition
that a higher prior public belief implies a higher postepablic belief after every
action. Yet, despite how intuitive this property may seems wviolated by any
multinomial signal distribution (loosely, because it iarfipy”).

We have shown in Smith and Sgrensen (2008) that the contimuainctions
are monotone under an easily verifiable regularity conditie namely, that the
unconditional density of the log-likelihood ratiog(p/(1 — p)) be log-concave.
Most popular continuous distributions satisfy this coiwi for instance, the
Gaussian, uniform, or generalized exponential. But thdyarsain BHW and a
vast number of successor papers was based on the multinfamidf — namely,
the one main signal family for which the regularity conditfails. This discussion
hereby corrects the claim by Bikhchandani, Hirshleifed 8velch (2008), that
“In some continuous signal settings cascades do not formt{Sid Sgrensen,
2000)”. On the contrary, one really must view cascades asfobemationally
rare outcome, a case where a tractable example class prasieadding. The true
touchstone of this literature is simply the observed phezram of action herding.

Cascades with Smooth SignalsTo fully flesh out this picture, we offer an
example of a continuous signal distribution that violates tonotonicity result.
(This example is based on one included in the original warlpaper of Smith
and Sgrensen (2000) found.in Sgrensen (1996)). To this endpmstruct a suf-
ficiently heroic violation our log-concavity condition. oose that private be-
liefs p have a quadratic densitf(p) = 324(p — 1/2)? over the bounded support
[1/3,2/3]. Then the conditional private belief densities gfe|H) = 2pf(p) and
f(p|L) = 2(1 — p)f(p), as depicted in the right panel of Figure 1. Integration
yields the (suppressed) polynomial expressiongfgn L), F'(p|H).

Returning to the running investment payoff example, folikélihood ratios
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Figure 3:Modified Transitions. Transition functions for bounded beliefs with a
guadratic density (left panel) and uniform bounded bekéfh and without 20%
crazy types (solid and dashed lines in right panel). The monetonicities of
transition functions (left panel) imply that a cascadeaastarts wheru is taken
wherel,, is sufficiently close toJ,. The transition function discontinuity vanishes
with the addition of crazy types (right panel), correspagdio the failure of the
overturning principle.

¢ € (u/2,2u), we find the likelihood ratio transitions (left panel of Fig(B):

23(u+£)% — 930(u + £)? + 1260 (u + £) — 5403
3(u+0)3 +90(u+ 0)2 — 5402(u + () + 5463

12(u+ €)% — 630(u + £)? + 1080%(u + £) — 54¢3
2(u+0)3 + 30(u+ €)% — 360%(u + £) + 5403

e(1,0)

p(2,0) = ¢

A More General Observational Learning Framework. The Overturning
Principle may not sound very realistic, a priori. Should w@ext that a sin-
gle deviator from an action herd of one million individualgtieely can by him-
self change the course of subsequent play? Is the exces$imece on the as-
sumption of common knowledge of rationality implicit in tleerturning prin-
ciple reasonable? Experimental results on the informatibarding model, e.qg.,
Celen and Kariv.(2004), has cast doubt on this. (The reviedrimerson and Holt
(2008) speaks more broadly to such experimental evidence.)

It turns out that our reduction of the model to a stochasffedince equation
in the likelihood ratio obeying a martingale property isuebto a wide array of
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economically-inspired modifications that can accommodateations from the
overturning principle. For instance, suppose that a foactif ‘crazy’ individuals
randomly choose actions. Figlire 3 depicts the modified roation functions in
the right panel, for a case where 10% of individuals are cabechto actionl and
10% are committed to actidh The remaining population is rational. Since all ac-
tions occur with a non-vanishing frequency, none can haastureffects. Yet, the
limit beliefs are unaffected by the noise, contrary actibemg deemed irrational
(and ignored) inside the cascade sets. Of course, thedailuthe overturning
principle invalidates the argument that limit cascadesddrerds. But because
actions are still informative of beliefs, social learnisgroductive.

We show more strongly in Smith and Sgrensen (2000) that mendstheless
do arise among all rational (non-crazy) individuals, whehdjfs are bounded and
have non-zero density near the bounds. Essentially, thicgikelihood ratios
(¢,) converges so fast that the chance of an infinite string obmaticontrarians
is zero. (Of course, an outside observer of the action histould hardly be able
to detect infrequent rational non-herders, should theyiokc

Alternatively, we may relax the assumption that all indiveds solve the same
decision problem. Individuals may well have different oagl preference types.
First, if ordinal preferences are aligned, so that everyakes actior2 for stronger
beliefs in stated, then the limit likelihood ratid,, is focused on the intersection
of their respective cascade sets.

Suppose instead that the ordinal preferences differ forespair of types.
Then there arises the possibility ofcanfounded learning point. This is a non-
cascade likelihood ratig* such that if/,_; = ¢*, then individualn’s obser-
vation of actiona,, is non-informative — the probabilities satispf1|H, (*) =
p(1|L, £*). In this case{,.; = ¢, following either action of individuak. If such
a confounding outcomé" exists, then it idocally stochastically stable: there is
positive probability that., = ¢* provided somé,, is ever sufficiently close td¢".

Conclusion. This model of observational learning explores a modeliagi-
work to analyze imitation of observed behavior. The modejuge tractable.
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Public beliefs based on the ever lengthening action histaugt converge to a
limit, which is among the fixed points of a stochastic diffeze equation. As long
as all ordinal preferences coincide, we eventually settlam action herd, even
though beliefs might never settle down. When private sigsafficiently violate
a log-concavity condition, a cascade can arise.

Lee (1993) noted that beliefs can be perfectly revealed ihemaction space
is continuous just like the belief space. The social leayrparadigm instead
by and large explores when a coarse action set communidetgsivate beliefs
of decision makers. It may sufficiently frustrates the l@agndynamics that an
incorrect action herd occurs. If individuals seek to helgheather by taking more
informative actions, and if this signaling is understooddogcessors, then any
cascade sets shrink, and the welfare of later individuateiggly rises. As we
show in.Smith and Sgrensen (2008), the analysis is quastatsimilar to that
outlined here, although solving for the new, forward-loukiransition chances
requires dynamic programming.

A greater message of social learning is the self-defeatatgra of learning
from others. Moving outside the finite action, sequentialyemodel into a Gaus-
sian world, Vives|(1993) found that social learning is slo#an private learning
in a market setting where individual decisions are obschye@aussian noise.

If observations are not made of an ever expanding histogh 13 simply
knowing the number but not order of past action choices, thenapproach is
less useful. The survey by Gale and Kariv (2008) discusstribiglgm of learning
in networks. In_Smith and Sgrensen (1994), and chapter 3 @&@nSen|(1996),
we identified a case where the stochastic difference equist useful tool, even
when public beliefs do not follow a martingale.
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