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Abstract

This paper studies strategic communication by an expert who is concerned about
appearing to be well informed. The expert is assumed to observe a private signal with
a simple and particularly tractable (“multiplicative linear”) structure. The quality
of the expert’s information is evaluated on the basis of the advice given and the
realized state of the world. In equilibrium of this reputational cheap-talk game, no
more than two messages are effectively reported. The model is extended to consider
sequential communication by experts with conditionally independent signals. In the
long run, learning is incomplete and herd behavior arises.
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“Much has been written about the doubtful accuracy of economists’ predic-

tions. ...they are better at predicting the direction than the actual magnitude

of events. ...This is disappointing, but it does not mean that economics is not

a science.” (‘Economics’, Encyclopaedia Britannica Online).

1. Introduction

Professional advisers are often concerned with their reputation for being well informed,

rather than with the decisions made on the basis of their recommendations. For example,

business consultants care about the perceived quality of their information services, judges

intend to promote their career, and politicians are interested in being appointed. A number

of recent empirical studies have indeed argued that reputational concerns of this sort play

an important role in the financial industry.1 In this context, it is an open question whether

these implicit market incentives guarantee truthful reporting of information. If not, what

biases are induced? What form will communication assume? Will experts be driven to

engage in herd behavior?

This paper addresses these questions within a simple and tractable model of strate-

gic information transmission by a purely professional expert. We assume that the expert

privately observes a signal generated by a multiplicative linear experiment, a natural gen-

eralization of the binary signal experiment that allows for continuously varying intensity.

The expert’s unobserved ability parametrizes the amount of information about the state

of the world contained in the expert’s signal. After observing the signal, the expert is free

to publicly report any message. An evaluator then combines the expert’s message with

the ex-post realization of the state to update the belief regarding the expert’s ability. This

posterior belief about ability is the expert’s reputation and determines her payoff.

The first point we investigate is whether this reputational concern gives the right incen-

tives to truthfully report information. We show that this is not the case. The signal that

gives rise to the highest expected reputational payoff is typically different from the signal

actually observed. To check this, suppose that the evaluator conjectures that the expert

truthfully reports the signal. Consider a situation with a prior belief strongly in favor of a

high state. In this case, the expert will maximize the chance of being right by reporting a

high signal even when observing a low signal. If the prior belief is biased enough in favor

of high states, the expert wants to pretend to have received a higher signal than the one

1See e.g. Lamont [16] on macroeconomic forecasters, Ehrbeck and Waldmann [9] on three-month U.S.
Treasury Bills interest rate forecasters, Graham [11], Hong, Kubik and Solomon [15], Welch [36], and
Zitzewitz [37] on security analysts, and Chevalier and Ellison [6] on mutual fund managers.
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actually observed. Thus, truthtelling cannot be sustained. Similarly, if the prior belief is

biased in favor of low states, the adviser wants to pretend to have received a signal below

the actual one, again giving an incentive to deviate from truthtelling. Intuitively, in these

two cases more extreme signals (i.e., signals resulting in posterior beliefs about the state

that are more biased than the prior) are more likely to be associated with high ability and

so result in higher expected reputational payoff. If instead the prior belief on the state is

intermediate, the expert wishes to deviate to a more moderate signal, which lies between

an interior signal and the one actually received.

Secondly, we provide a complete characterization of the set of equilibria in this model.

We show that at most two messages can be transmitted in equilibrium. The most infor-

mative equilibrium is either binary or completely uninformative. Roughly speaking, the

expert can at best communicate the direction of her information, but cannot convey its

intensity. Further, if the prior is already very concentrated on any particular state, the

expert always wishes to bias her report in the same direction. The adviser is then unable

to communicate any information at all in equilibrium.

Thirdly, we extend this model to a dynamic setting, in which different experts give ad-

vice one after the other, holding fixed the state. Experts who report early in the sequence

are able to learn about the state by listening to the messages sent by the preceding ex-

perts. As more experts speak informatively, the beliefs of later experts become ever more

concentrated on the true state. However, in finite time the belief on the state becomes so

concentrated that experts stop being informative and learning ceases at an inconclusive

belief.2

1.1. Related Literature

We build on previous work in the area of reputation, cheap-talk communication, and herd

behavior. In our model, reputation is about the quality of the expert’s information. The

first model of this sort of reputation is contained in Section 3.2 of Holmström [13].3 In

his setting of delegated reputational signalling, the expert is directly acting (rather than

sending a message) and can affect whether the state of the world is observable or not. We

2As noted by Welch [36], if advisers have a continuous message space it should be possible to invert
their (supposedly separable) strategies, thereby uncovering their private signals. If reports are released
sequentially and fully incorporate previous reports, the most recently issued report should efficiently
aggregate the private information held by all advisers. For this reason, Welch studies financial analysts
with an exogenously coarse message space (consisting of recommendations like “sell”, “hold”, and “buy”)
in order to obtain herding. Since the message space is endogenously coarse in reputational cheap talk
equilibrium, there is no need to impose exogenous restrictions on the message space to obtain herding.

3Others have considered reputational concerns in settings in which ability adds directly to the value of
the project undertaken (e.g., Holmström and Ricart i Costa [14]).
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instead assume that the state is eventually observed by the evaluator, regardless of the

message sent.4 We directly formulate a static game with exogenously given reputational

concerns. As in [13], this reputational payoff can be easily derived from a second period

continuation game.5

Our model can be seen as one of reputational cheap talk, in which the expert is a

sender and the evaluator is a privately informed receiver. The message sent by the expert

is per se costless, and affects the reputational payoff only through the inference made by

the evaluator about the expert’s signal. While Crawford and Sobel [8] focused on strategic

information transmission by a partisan expert who is interested in biasing the action of a

decision maker, we consider the case of a professional expert concerned with her reputation

for ability. Note that our receiver observes not only the message sent, but also the ex-post

realization of the state. As a result, experts with different signals have different preferences

for different messages.6

More directly, we follow the lead of Scharfstein and Stein [29], who analyzed a repu-

tational cheap talk game with two experts giving sequential recommendations. In their

model, signals, states and ability types are all binary, and a high ability expert observes

a signal conditionally more correlated with the state than a low ability type. In order to

guarantee existence of an informative equilibrium for the first expert, [29] fixed the initial

prior and focused on the incentives of the second expert. We instead characterize the set of

equilibria in the static communication game as a function of the prior belief on the state.

The qualitative properties of the equilibrium uncovered in our continuous signal model

could not be detected in a binary signal model.

In our dynamic extension, we depart from Scharfstein and Stein by assuming that sig-

nals are conditionally independent across experts. Our reputational herding model can

then be solved forward, like the statistical herding models of Banerjee [2] and Bikhchan-

dani, Hirshleifer and Welch [3]. The herding result obtained in our reputational model

parallels that obtained in the context of statistical herding.

The paper is organized as follows: Section 2 sets up the model. Section 3 contains

4In Brandenburger and Polak’s [4] model, the state realization is never observed and the expert cares
about the stock market’s assessment of the quality of the decision made. In our model instead, the expert
does not care about the quality of the decision made.

5Others have considered fully-fledged repeated games in which players differ in preferences, rather than
in quality of information possessed (e.g., Sobel [33]).

6As noticed more generally by Seidmann [31] and Watson [35], information can sometimes be trans-
mitted even if all sender types share the same ordinal preferences, provided that the receiver’s decision is
based on some information not available to the sender. Olszewski [21] shows that honest reporting is the
unique equilibrium when the sender is exclusively motivated by the reputation concern for honesty, and
if the receiver observes a signal informative about the sender’s signal. His result does not apply to our
model, because our expert is concerned about her reputation for accuracy, not honesty.
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Fig. 1. Timeline for the model. The conditional density of the signal is
f(s|x, t).

some preliminary analysis. Section 4 characterizes the optimal deviation if the evaluator

expects truthful reporting. Section 5 analyzes the equilibrium and derives comparative

statics predictions. Section 6 considers the dynamic extension. Section 7 concludes. All

proofs are collected in the Appendix.

2. Model

Setup. We consider the following reputational cheap talk game between an expert and an

evaluator. The expert’s ability t ∈ T = [0, 1] and the state of the world x ∈ X = [−1, 1] are
given exogenously and so are not affected by the strategic choices of the players. Ability

and state are assumed to be statistically independent, with non-degenerate probability

density functions (p.d.f.) p (t) and q (x). These common prior beliefs on state and ability

are updated by the players during the game. The timing of the model is summarized in

Fig. 1.

First, the expert observes a signal s ∈ S = [−1, 1] about the state of the world x. This
signal is drawn from the conditional probability density f (s|x, t) specified below. The
expert’s ability t parametrizes the amount of information about the state contained in this

signal. We assume that the expert does not know her own ability type t (cf. the discussion

in Section 5.5).

Second, the expert decides which message m ∈M to send. The messages that can be

sent do not depend on the signal observed by the expert. As explained below, the message

space is determined only as part of an equilibrium. A strategy for the expert prescribes a

probability distribution µ(·|s) over messages m for each signal s.

Third, the evaluator observes the message m and the realization of the state x and

forms the posterior belief p (t|m,x) about ability. This belief affects the expert’s payoff.

4



-

6

s−1 0 1

0.25

0.75

Fig. 2. Graphs of the conditional densities f (s|x, t) = (1 + stx) /2 for
fixed t = 1/2 and three values of x = −1, 0, 1. The downward sloping
line corresponds to the case with x = −1, the flat one to x = 0, and the
increasing one to x = 1. Intermediate values of x would give intermediate
lines. Each line (other than the one corresponding to x = 0) becomes
steeper as t increases.

Expert’s Information. The expert’s signal has conditional probability density function

f(s|x, t) = tg(s|x) + (1− t)h(s) = t
1 + sx

2
+ (1− t)

1

2
=
1

2
(1 + stx), (2.1)

as illustrated in Fig. 2. This multiplicative linear experiment is a mixture between an

informative and an uninformative experiment.7 It satisfies the monotone likelihood ratio

property (MLRP) in s, x for any value of t > 0: the likelihood ratio f(s|x, t)/f(s|x0, t) is in-
creasing in s for x > x0. Clearly, also g(s|x) = f (s|x, 1) and f(s|x) = R

T
f(s|x, t)p (t) dt =

f(s|x,Et) satisfy the MLRP.
Better experts are more likely to receive a signal drawn from the informative g(s|x) =

(1 + sx) /2 rather than the uninformative h(s) = 1/2. Naturally, a more talented expert

receives better information in the sense of Blackwell. To see this, consider the garbling of

s into es whereby es = s with probability τ < 1, and otherwise es is independently redrawn
from h(s). Then es has conditional p.d.f. τf(es|x, t) + (1− τ)h(es) = f(es|x, τt), so that the
garbled signal to an expert of ability t > 0 is distributed as the non-garbled signal to an

expert of ability τt < t.

7Note the similarity of our linear model tg (s|x) + (1− t)h (s) with Green and Stokey’s [12] success-
enhancing model. In the success-enhancing model, the experiment fails with positive probability, in which
case the signal is uninformative about the state. While in the success-enhancing model the expert observes
whether the experiment failed or not, in our linear model the expert only knows the probability with which
the experiment is contaminated.
Special versions of our multiplicative linear model have been extensively used in economics. See e.g.

Lohmann’s [19] generalization of the binary model and Piccione and Tan’s [25] example of a signal structure
with an uninformative signal (page 504).
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The widely used symmetric binary model has the same generalized p.d.f. (2.1), with

S = X = {−1, 1} and T =
©
t, t
ª
, where 0 ≤ t < t ≤ 1 (see e.g. Scharfstein and

Stein [29]). It is thus useful to think of a signal satisfying (2.1) as being binary, but of a

continuously varying intensity level. The multiplicative linear experiment is then a natural

generalization of the binary experiment to allow for a continuum of states, signals, and

ability types in a tractable way. By normalizing the support of S and X to the unit

interval and taking the prior on the state to be uniform, it is easily verified that this is the

Farlie-Gumbel-Morgenstern distribution with uniform marginals (cf. Conway [7]).

Evaluation. The evaluator is rewarded for predicting as accurately as possible (in prob-

ability distributions) the ability t of the expert, based on the message m and the ex-post

realization of the state x. The evaluator forms a conjecture µ̂ on the strategy used by the

expert, and computes the chances of the evidence, f̂ (m|x, t) = R
S
µ̂(m|s)f(s|x, t) ds and

f̂(m|x) = R
T
f̂(m|x, t)p(t) dt. The posterior reputation is then calculated by Bayes’ rule,

p (t|m,x) = p (t) f̂ (m|x, t) /f̂(m|x).

Expert’s Preferences. The expert’s preferences over posterior reputations are assumed

to be represented by the strictly increasing von Neumann-Morgenstern utility function v(t).

The expert aims at maximizing her expected reputational value, where the expectation

is taken with respect to the posterior reputation p(t|m,x). The reputational payoff of

message m in state x is

W (m|x) ≡
Z
T

v(t)p(t|m,x) dt, (2.2)

so that the expected payoff for an expert with signal s who sends message m is

V (m|s) =
Z
X

W (m|x)q(x|s) dx, (2.3)

where the expert’s posterior belief about the state x conditional on receiving signal s is

given by Bayes’ rule as q (x|s) = f(s|x)q(x)/f (s), with f (s|x) = R
T
f(s|x, t)p (t) dt and

f (s) =
R
X
f(s|x)q (x) dx.

This reduced-form formulation of the reputational payoff captures the fact that ex-

perts with better information tend to be more valuable to future decision makers. This

reputational payoff can be derived from the value of the services provided in a second

and last period by the expert, as in Holmström [13]. In the second period, there are no

strict incentives and so truthful revelation can be supported as an equilibrium outcome.

Since experts with higher ability have more informative signals, they provide information

services of higher value in the second period and so should receive higher rewards. In
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addition, if information about ability has no value in the second period, the reputational

payoff is linear in the posterior belief about ability, as specified in (2.3).8

Equilibrium. By definition, a weak perfect Bayesian Nash equilibrium (henceforth, equi-

librium) consists of a message space M , an expert’s strategy µ, and an evaluator’s conjec-

ture µ̂, such that µ̂ = µ and µ (·|s)-almost all m maximize V (·|s) defined through µ̂. This
equilibrium is weak because no restrictions are imposed on the evaluator’s beliefs when

observing off-path messages.

3. Preliminary Analysis

Regardless of the privately observed signal, the expert wishes to induce the evaluator to

have the most favorable posterior beliefs about ability. But these beliefs depend on the

realization of the state, which is not known to the expert when the message is sent. Each

message then induces a lottery over posterior reputations, with final payoffs that depend

on realized states. Holding fixed the evaluator’s rule for computing posterior reputations,

different messages result in different lotteries over these posterior reputations. An ex-

pert can then find the lotteries corresponding to different messages differently appealing

depending on her posterior beliefs about the state, as determined by the signal observed.

In order to address whether full sorting of experts with different signals into different

messages is possible and compatible with rationality of the evaluator, it is worth noting

some properties of the expert’s signal (2.1). First, the likelihood ratio f(s|x, t0)/ f(s|x, t)
depends on s and x only through g (s|x), and it is strictly increasing in g (s|x) for t0 > t.

This means that it is good news for the expert’s reputation to receive a combination

of signal and state that corresponds to a higher density conditional on the signal being

informative. Since the uninformative part h (s) is uniform, there is no concern about

biasing the report away from signals more typically associated with the uninformed expert.

Second, g (s|x) is a strictly increasing function of sx. This implies that it is good for the
expert’s reputation to convey the impression that s is high whenever the state is known

to be x > 0, while lower signals are more attractive when x < 0. As established in the

8Here are two scenarios in which information about ability has no value. First, this is the case if in the
second period the decision marker’s mapping from signal to action does not depend on the expert’s ability
(e.g., if the decision maker’s objective function is u (a, x) = ax, with a ∈ {0, 1} and the prior is uniform,
q (x) = 1/2). Second, suppose alternatively that the expert’s ability is publicly revealed in the second
period after the expert is hired, but before the decision is taken. When hired, the expert is rewarded on
the basis of the expected reputational value (2.3).
More generally, information about ability can have positive value, as noticed by Li [18].
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next section, these facts have implications for the signal that experts would like to convey

depending on their posterior belief about the state.

These key features of the signal structure allow us to greatly simplify the expert’s

preferences and to show that they satisfy the following properties:

Proposition 1. It is without loss of generality to represent the expert’s preferences by

W (m|x) = mx

1 +mxEt
, (3.1)

where each message m is identified with the corresponding expected signal E[s|m] =R
S
sµ̂(m|s) ds/ R

S
µ̂(m|s) ds, calculated using the evaluator’s conjecture µ̂. W (m|x) is

strictly supermodular in (m,x), and strictly concave in m when x 6= 0. In turn, V (m|s) is
(i) strictly concave in m, and (ii) strictly supermodular in (m, s). Finally, (iii) Vm(s|s) is
continuous in s, and Vm(s|s) = 0 implies that Vm(s0|s0) < 0 < Vm(s

00|s00) for all s0 > s > s00.

The expert’s payoff from message m thus depends only on the evaluator’s beliefs about

the average signal E[s|m] of an expert sending messagem. Intuitively, this property derives
from the fact that the expert’s reputation is an increasing function of sx, which is linear

in s. Of course, W (m|x) inherits the property of being an increasing function of mx.

Note that it is technically possible that two separate messages m and m0 result in

E[s|m] = E[s|m0]. According to Proposition 1, in this case the expert must be indifferent

between these two messages. Moreover, the two messages convey identical information,

not only about t, but also about x, since they give the same interaction term E[s|m]tx. It
is then without loss of generality to regard them as one. Of course, the “merged” message

m00 = m ∨m0 retains the common E[s|m00] = E[s|m] = E[s|m0].

Note that W (m|x) in (3.1), and thus V (m|s), depend on the prior reputation p (t)

only through the expected value Et. This is a consequence of the linearity in t of the

signal’s density. Moreover, in our model (2.1) higher mx is better news about t, so that

the posterior reputations p (t|x,m) are unambiguously ranked in the first-order stochastic
order, depending on the pair (x,m). Our results then hold for any strictly increasing utility

function v(t).

Proposition 1 allows us to identify the message m with the evaluator’s conjectured

E[s|m]. Our game can then be seen as a version of Crawford and Sobel’s [8] sender-receiver
game, in which s is the sender’s private information, m is the receiver’s decision, and

the receiver has quadratic payoff − (m− s)2. The payoff function V (m|s) endogenously
derived for our sender is fairly simple and satisfies some of the properties (strict concavity

and increasing differences) assumed by [8]. Differently from their setting, we show below
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that the sender does not always want to bias the receiver’s decision in one particular

direction.

4. Optimal Deviation from Truthtelling

In order to check for the existence of fully revealing equilibria in cheap talk games, it is

without loss of generality to restrict the expert to send truthful signals. This is because

in cheap talk games the language is arbitrary and incentives are driven by the evaluator’s

understanding of the meaning of the messages sent in equilibrium. The evaluator uncovers

correctly the expert’s signal from the message by inverting the expert’s strategy. By ruling

out the existence of a truthtelling equilibrium, we will conclude that our cheap talk game

does not admit any fully revealing equilibrium.

We now show that if the evaluator conjectures that the expert is truthfully reporting

the signal, the expert gains from deviating in certain directions:9

Proposition 2. Assume that the evaluator conjectures truthful reporting of all s. Then
there are three mutually exclusive cases: (a) If

R
X
(x/ (1− xEt)) q(x) dx ≤ 0, all experts

with s > −1 have Vm (s|s) < 0 and wish to deviate to a lower signal s0 ∈ [−1, s). (b) IfR
X
(x/ (1 + xEt)) q(x) dx ≥ 0, all experts with s < 1 have Vm (s|s) > 0 and wish to deviate

from truthtelling to a higher signal s0 ∈ (s, 1]. (c) Otherwise, there exists a unique signal
ŝ ∈ (−1, 1) such that all experts with s 6= ŝ have Vm (s|s) 6= 0 and wish to deviate from
truthtelling to a signal s0 strictly between s and ŝ.

This result provides a complete characterization of the direction of the expert’s bias.

Since x/ (1− xEt) and x/ (1 + xEt) are both increasing functions of x, the conditionR
X
(x/ (1− xEt)) q(x) dx ≤ 0 for case (a) arises when the prior q (x) puts enough weight

on low realizations of x, while case (b) results when high states are likely. In order to

uncover the logic of the model, we now discuss the different deviation incentives in the

three cases defined by this proposition.

In both cases (a) and (b), the expert desires messages m which are ex-ante likely to be

of the same sign as the state x and therefore result in high reputations. The condition for

case (a),
R
X
(x/ (1− xEt)) q(x) dx ≤ 0, is equivalent to Vm (−1|− 1) ≤ 0, meaning that

even at the left-most signal realization there is a weak desire to bias the report downwards.

The proof employs the properties of V established in Proposition 1 to show that this bias

then holds strictly at all higher signals. The result derives from the fact that the expert

9For another similar but independently derived result see Campbell’s [5] Proposition 3.1.
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desires a high value of mx. When high states are sufficiently likely, the expert wishes to

convey a signal m higher than the s actually possessed.

Case (c) arises for a middle range of prior beliefs. When the prior on the state x is

not too biased in either direction, any given message m is likely to result in both positive

and negative values of mx. In this case, the expert has an incentive to bias the report

in a different direction depending on the signal observed. From Vm (−1|− 1) > 0 and

Vm (1|1) < 0, the bias is towards the middle.10
Due to these incentives to deviate, the expert’s behavior is not compatible with the

evaluator’s conjecture that the expert is telling the truth. Rationality of the evaluator

makes this incentive self defeating. This is a generic property of the reputational cheap

talk model, well beyond the specification of f (s|x, t) imposed in (2.1). As shown by

Ottaviani and Sørensen [24], truthtelling cannot be an equilibrium in any generic smooth

model in which the combined observation of the signal and the state contains information

about the expert’s ability. With the signal structure considered in this paper, we show

below that equilibria with partial revelation arise only when the bias is towards the middle

(case (c) above).

5. Equilibrium

We now derive our main characterization results. As is typical of cheap-talk games, there

is always a pooling (or “babbling”) equilibrium in which no information is transmitted.

If the evaluator expects all messages to be uninformative, the experts have no choice

but to babble. Rather than discussing equilibrium selection, we investigate all equilibria.

Informative equilibria must be binary (Section 5.1), and there is no informative equilibrium

at all when the prior belief on the state is sufficiently concentrated (Section 5.2). After

presenting an extended example with binary state (Section 5.3), we briefly discuss some

comparative statics results (Section 5.4). Finally, we outline some broader implications

and discuss the importance of our assumptions (Section 5.5).

10Although driven by different forces, this last case is reminiscent of the “yes-men” effect analyzed by
Prendergast [27]. He considers an agent with access to two private signals, one on the state of the world
and the other on the principal’s private signal on the state. The principal commits to a reward scheme
based on the difference between the agent’s report and the principal’s signal. As a result, the agent
honestly reports her best estimate of the principal’s signal. But the principal cannot fully infer the agent’s
direct signal about the state, so information transmission is inefficient. Ewerhart and Schmitz [10] have
argued that efficiency can be restored by asking the agent to also report her private information.
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5.1. Binary Equilibria

Equilibria have a partition structure whereby connected sets of signals are pooled. We

noticed in (ii) of Proposition 1 that V (m|s) is strictly supermodular in the pair (m, s),

i.e., V (m0|s)−V (m|s) is strictly increasing in s wheneverm0 > m. Incentive compatibility

implies that all expert types sending messagem0 have higher signals than those sendingm.

This implies that each message m sent in equilibrium corresponds to signals that belong

to some interval subset of S. By Proposition 2 we know that there cannot be truthful

reporting in any subinterval of S, for this would imply Vm (s|s) = 0 on that interval.

Hence, the typical message interval has a non-empty interior, although there might be

occasional isolated one-point intervals:11

Proposition 3. All equilibria have interval messages.

We now establish that all informative equilibria are binary: at most two messages are

sent, one for s ≥ a and the other for s < a, where a ∈ (−1, 1).12

Proposition 4. All informative equilibria are binary.

Some intuition for this result can be gained by considering the special case with Ex =

0. In this case, simple algebra yields V (m|s) = (m− s) k (m) where the function k

is continuously differentiable, strictly decreasing, and satisfies k (0) = 0. Suppose that

m0 > m form an arbitrary pair of equilibriummessages. Any equilibriummessage expresses

the average signal in the interval where it is optimal. By continuity of V , we can then

find some signal a ∈ (m,m0) with V (m|a) = V (m0|a). This indifference equation implies
that a = (mk (m)−m0k (m0)) / (k (m)− k (m0)). The fact that a < m0 then reduces to

k (m) > 0, which implies m < 0. We have concluded that the lower message must be

negative. Symmetrically, the higher message must be positive. Since the message pair was

arbitrarily selected, we cannot have three or more messages in equilibrium. The proof of

Proposition 4 shows that this logic extends beyond the case with Ex = 0.

11It is technically possible to construct non-interval equilibria in which two messages m and m0 sent in
equilibrium have E[s|m] = E[s|m0]. As explained above in the discussion of Proposition 1, without loss of
generality we collapse such messages into one with the same expected signal and the same informational
content.
12When Ex = 0, there exists an equilibrium with messages −1, 0, and 1. We consider this equilibrium

uninformative, since messages −1 and 1 are only sent with probability zero (i.e., when the realized signals
are −1 and 1).
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5.2. Further Characterization of Equilibria

We now characterize more precisely the conditions for the existence of binary equilibria.

Let m denote the message sent for s ∈ [−1, a] and m0 the message sent for s ∈ (a, 1],
with −1 < a < 1. The low message has average signal E[s|m] = (a− 1) /2, the high
has E[s|m0] = (a+ 1) /2. Notice that the distance between those averages is always

1 = (a+ 1) /2− (a− 1) /2. The indifference condition V (m|a) = V (m0|a) isZ
X

x (1 + axEt)

[2 + (a− 1)xEt] [2 + (a+ 1)xEt]q(x) dx = 0. (5.1)

Messages [−1, a] and (a, 1] constitute a binary equilibrium if and only if a ∈ (−1, 1) solves
this equation.

Proposition 5. If a binary equilibrium exists, then
R
X
(x/ (1 + xEt)) q(x) dx < 0 <R

X
(x/ (1− xEt)) q(x) dx.

Combining Propositions 2 and 5, we observe that the binary equilibrium exists only

when the bias from truthtelling is towards the middle. In Crawford and Sobel’s [8] model,

informative equilibria can instead arise when the sender wants to bias the report in a

uniform direction regardless of his signal realization (i.e., with Vm (s|s) of constant sign).13
We now investigate three properties of the equilibria of this game that are particularly

useful for the dynamic extension contained in Section 6. First, we obtain a sufficient

condition for the existence of informative equilibria. Second, we characterize whether

there are multiple informative equilibria. Third, we consider what happens when the prior

belief is concentrated on a particular state.

First, we identify a prominent instance in which a binary equilibrium exists:

Proposition 6. If the prior on x is symmetric around 0, there exists a symmetric binary

equilibrium with messages [−1, 0] and (0, 1].

The expert learns nothing about the state when receiving the signal s = 0, and with

the symmetric prior (and posterior) on the state it is equally attractive to send either the

high or the low message.

13Admati and Pfleiderer [1] consider a cheap talk game where the receiver has utility − (m− s)
2 and the

sender has utility − (m− λs)2 where λ > 0. They focus on the case of an overconfident sender with λ ≥ 1,
in which case the sender has a bias away from the middle, since Vm (s|s) has the same sign as s. It follows
from their analysis that there exist equilibria with any finite number of messages. It can be proved that
at most two messages can be sent in equilibrium in a version of their model with λ ≤ 1/2, representing
strong underconfidence of the sender. The bias towards the middle induced by underconfidence has a
similar effect to the reputational bias resulting in our model.

12



Second, if there is an informative equilibrium in this model, then there is typically

another informative equilibrium:

Proposition 7. For a generic prior belief on the state, the number of binary equilibria is
even.

This multiplicity can be better understood by considering the equilibrium condition,

V (m0 (a) |a)− V (m (a) |a) = 0, where m0 (a) denotes the high message m0 (a) = (1 + a)/2

and m (a) = (a− 1)/2 the low message. On the one hand, supermodularity of V implies

that V (m0 (a) |s)− V (m (a) |s) is increasing in s for any a. This means that holding fixed

the evaluator’s beliefs, the expert’s preference for the high message increases with the

level of the signal. On the other hand, V (m0 (a) |s) − V (m (a) |s) decreases in a for any

s. This means that holding fixed the expert’s signal, the higher message becomes less

appealing when the evaluator’s belief increases. The balance between these two opposite

effects determines whether V (m0 (a) |a)−V (m (a) |a) is increasing or decreasing in a. The
multiplicity of equilibria is due to the fact that V (m0 (a) |a)− V (m (a) |a) is equal to zero
for several values of a.

Third, if the prior is highly concentrated on some particular state x > 0, the posterior

q(x|s) is still concentrated around x, due to the fact that the signal s is of bounded

informativeness about the state. Whenever the state turns out positive, it is favorable

to the expert’s reputation to report a message with m > 0. Thus, in this case, if there

exists a message with E[s|m] > 0, the expert would want to send this message given any
realization of the signal s. This cannot hold in equilibrium, since signals are equal to zero

on average.

Proposition 8. If the prior distribution on the state is sufficiently concentrated on any
x 6= 0, there exists no informative equilibrium.

Note that this result does not hold for x = 0, since Proposition 6 guarantees the

existence of an informative equilibrium for any (symmetric) prior arbitrarily concentrated

on 0.

5.3. Binary State Example

The equilibria of this game are well illustrated in a variation of the model with prior q (x)

concentrated on states −1 and +1. Denote the prior probability of state +1 by q. In this
example, the continuous private signal implies a continuously varying posterior probability

13
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Fig. 3. Graph of the right-hand side of (5.2) when Et = 1/2.

of state +1. Our game then concerns communication of this posterior probability. In this

special case, (5.1) can be re-written as

q

1− q
=
1− aEt

1 + aEt

2 + (a− 1)Et
2− (a− 1)Et

2 + (a+ 1)Et

2− (a+ 1)Et, (5.2)

a third-order polynomial equation in a. Denote the right-hand side of (5.2) by ρ(a,Et),

plotted in Fig. 3 for Et = 1/2. For q = 1/2 the equation has one solution in (−1, 1), so
that a = 0 is an equilibrium. The equation has two solutions in (−1, 1) when q ∈ (1− q̄, q̄)

with q̄ > 1/2, one solution when q is equal to 1 − q̄ and q̄, and no solution in (−1, 1)
whenever q > q̄ and q < 1− q̄. For the special case with Et = 1/2 illustrated in the figure,

we have q̄ = 1
2
+
³
4−√11
60

´q¡
7− 2√11¢ = . 5069. It is easy to show that there can be no

solution to (5.2) for q < 1/3 or q > 2/3, no matter how good is the prior reputation Et.

No expert can speak credibly for these prior beliefs.

5.4. Comparative Statics

We now perform two natural comparative statics exercises.

Do Better Reputed Experts Send More Informative Messages? By assumption,

ex-ante better experts are Blackwell-better informed about x. We now show that bet-

ter experts’ messages need not be Blackwell-more informative. This effect is due to the

equilibrium garbling of the signal. Take q = .505 in the binary-state illustration above

and consider two experts, the first with Et = .49 and the second with Et = .5. Assume

that the informative equilibrium with a threshold nearest to 0 has been selected. When

message s ∈ [−1, a] is observed, the posterior belief is

q(x = 1|m = [−1, a]) = [2 + (a− 1)Et] q
[2 + (a− 1)Et] q + [2− (a− 1)Et] (1− q)

.

14



A similar expression defines q(x = 1|m = (a, 1]). The following is based on numerical

solution of equation (5.2). The expert with Et = .5 has an equilibrium with a = .329

yielding q(x = 1|m = [−1, a]) = .42101 and q(x = 1|m = (a, 1]) = .67058. The expert

with Et = .49 has an equilibrium with a = .357 resulting in q(x = 1|m = [−1, a]) = .42617

and q(x = 1|m = (a, 1]) = .67072. In a decision problem with two actions and indifference

at a belief in the interval (.67058, .67072), the expert with Et = .5 is of no value while the

expert with Et = .49 transmits valuable information.

According to this counter-example, the message reported by a more informed expert

need not be more informative. Note that this result does not invalidate our assumption

that experts who are believed to be better informed have higher rewards. As explained in

Section 2, an increasing reputational payoff function can be derived from the truthtelling

equilibrium resulting in a second and last period in which the expert is consulted. Nev-

ertheless, this perverse comparative statics result suggests that it would be difficult to

endogenously derive a monotonic reputational payoff in a dynamic version of the model

with more than two periods.

Are Better Reputed Experts Credible for a Larger Set of Priors? Consider an

expert B with a prior reputation p(t) which is higher than the prior reputation of expert

A in the sense of first-order stochastic dominance (FSD). Is B credible for a wider set of

priors on the state of the world than A? As seen from equation (5.1), credibility depends

on the prior reputation only through Et. With two states of the world, the right-hand side

of (5.2) is increasing in Et for any a ∈ (0, 1). In this binary state example, the credibility
region increases in the prior reputation.

5.5. Discussion

We have found that the most informative equilibrium is either binary or completely unin-

formative. Since reported messages pool many signals, they are far less precise than the

expert’s true signal. The expert can communicate at most the direction of her information,

but is unable to credibly convey its intensity. The equilibrium loss of information typically

results in a welfare loss for those who listen to the expert’s advice (decision makers), com-

pared to the case of truthful revelation.14 In addition, future decision makers will have less

information about the expert’s true ability. If they value information about the expert’s

14If the utility function v(t) is linear, the expert’s ex-ante expected reputational value of sending any
message profile is equal to its prior value. In this case, the expert is therefore indifferent in ex-ante terms
between the different equilibria.
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ability, they would prefer the signal not to be garbled.15 Overall, the loss of information

resulting in equilibrium is typically undesirable.

We now report on some robustness checks. First, our results extend to cases in which

the expert also cares about the accuracy of the decision made on the basis of the message

reported. This can be done by adding a second receiver who uses the expert’s message

to make a decision under uncertainty about the state of the world. The expert’s payoff

is assumed to depend on the reputational payoff as well as on the payoff of this second

receiver. It can be shown that all informative equilibria are binary, provided that the

expert puts enough weight on the reputational payoff.

Second, the result that all informative equilibria must be binary (Proposition 4) is

striking, but also quite special to the multiplicative linear experiment (2.1). To see this,

we now construct an example of a signal structure resulting in an informative equilibrium

with three messages. Let f (s|x, t) = tg (s|x) + (1− t)h (s), with g (s|x) = (1 + sx) /2

and h (s) = γ + δs2, where γ = 5/12, δ = 1/4. Compared to (2.1), we have made the

middle message more attractive by requiring the uninformed h (s) to put greater weight

on extreme signals. Setting the priors to Pr (x = 1) = Pr (x = −1) = 1/2 and Et = 1/2,

it is possible to verify numerically that the three messages {[−1,−a] , (−a, a], (a, 1]} with
a ≈ .80218 constitute an equilibrium.

Third, Proposition 8 relies on the fact that the multiplicative linear signal is boundedly

informative about the state. This result does not hold in the normal learning model, for

which Ottaviani and Sørensen [23] have shown that there is always a binary equilibrium.

Finally, since experts specialize in giving information, it is natural to consider what

happens when the same expert repeatedly reports information about different states of

the world. Since the equilibrium message contains only part of the expert’s information,

the expert typically acquires private information about her own ability over time. In

order to check the robustness of our results, the model can be extended to allow for the

expert to have private information about her own ability, as first posited by Trueman [34]

in a discrete signal model. It can be shown that there is then an additional exaggeration

incentive, akin to the one discussed by Prendergast and Stole [28] in a context in which the

evaluator does not observe ex post the state realization. The coarseness result is robust,

but with perfect knowledge on own ability there is always an informative equilibrium and

so Proposition 8 does not hold.

15This would clearly result if future employers are short-run players. Given that information is valuable
to these employers, information on the quality of information received is also valuable, because it allows
them to make better decisions. This information is also valuable in some dynamic settings with competi-
tion. For example, Prat [26] develops two simple two-period settings in which future employers necessarily
benefit from information about ability.
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6. Reputational Herding

We now turn to the analysis of sequential reporting by different experts about the same

state of the world. The model of Section 2 is extended as follows. Experts are indexed by

i ∈ N and arrive in an exogenously given sequence. Let h1 = ∅ and hi = {m1, ...,mi−1}
for i > 1 denote the public history of messages reported. Expert i of unknown ability

ti ∈ [0, 1] observes the private signal si ∈ [−1, 1] with conditional p.d.f. f (si|x, ti) given
by (2.1) as well as the public history hi, and then publicly sends a message mi. After

all experts have spoken, the evaluator observes the state of the world x ∈ [−1, 1] and
computes the posterior reputation. There is a common prior distribution on state and

abilities, such that {x, t1, t2, . . .} are independent.
We make the natural assumption that the experts’ private signals are independent

conditionally on {x, t1, t2, . . .}. Scharfstein and Stein [29] instead assumed that more able
experts received signals more positively correlated, conditionally on the state of the world.

Conditional independence implies that once x has been observed, signal si is informative

about ti but independent of tj for all j 6= i. Each expert’s message therefore carries

information about the expert’s own ability, but not about the ability of others. This

greatly simplifies the dynamic strategic analysis, because expert i has no incentive to

manipulate the reports of experts who speak later. A contingent strategy for expert i is

a random map from si to mi (as before), with the added feature that it depends on the

public history of messages.

Since the history is common knowledge among the expert and the evaluator, in any

contingency, the expert and evaluator face the same problem as in our static analysis. Our

characterization of the single expert problem directly carries over to this dynamic setting.

The only difference is that the prior belief q (x) about the state of the world depends on

the public history of messages reported.

Specifically, when an expert of expected ability Eti issues message mi, identified as

before with the average of his signals leading to this report, the belief on the state is

updated from the prior qi (x) to the posterior

qi+1 (x) =
f̂ (mi|x)
f̂ (mi)

qi (x) =
1 +mixEti
1 +miEixEti

qi (x) ,

where Eix denotes the expectation of x under the belief qi. The possible message valuesmi

depend on the static equilibrium played with the i-th expert. If the expert is uninformative

(mi = 0), the posterior qi+1 is equal to the prior qi. If the equilibrium is binary, then the

high message is some m ∈ (0, 1) and the low message is m−1. By the MLRP of f (si|x, ti)
in (si, x), the high message is good news about x, while the low message is bad news.
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Thus, when the high message is observed, qi+1 is FSD-higher than qi, while the opposite

conclusion holds after the low message.

Proposition 8 is crucial for the outcomes of this herding model. Experts learn about

the state by listening to the messages reported by the previous experts. As long as experts

speak informatively, the law of large numbers implies that the beliefs of later experts

become ever more concentrated on the true state x. According to Proposition 8, once

the belief becomes sufficiently concentrated, experts can no longer be informative, and so

learning stops completely before the true state is revealed (except if beliefs are concentrated

on x = 0). All later experts engage in herd behavior, as in the statistical herding model

(Banerjee [2], Bikhchandani, Hirshleifer and Welch [3], and Smith and Sørensen [32]).16

Proposition 9. Suppose that there exists an ε > 0 such that (i) all experts satisfy Eti >
ε, and (ii) whenever expert i speaks informatively, the high equilibrium message satisfies

mi ∈ (ε, 1− ε). Contingent on any x 6= 0, with probability one there is only a finite

number of experts who speak informatively in equilibrium.

Assumptions (i) and (ii) require that an expert who speaks informatively reports an

amount of information bounded away from zero. The first assumption imposes a lower

bound on the exogenous expected talent of the experts, while the second assumption is

about the amount of information contained in the (endogenously determined) equilibrium

messages sent by each expert.17 This proposition leaves open the possibility that all experts

speak informatively forever, but in this case the amount of information revealed in each

round must necessarily converge to zero. According to this result, reputational herding

results with conditionally independent signals.

6.1. Binary State Example

As a more detailed illustration of the working of the dynamic model, consider the case

of two experts with prior expectations on abilities Et1 = Et2 = 1/2. Assume that the

state is binary, with initial fair prior q1 (1) = q1 (−1) = 1/2, so that the prior expectation
is E1x = 0. It follows from the analysis of the one-period problem that in the most

informative equilibrium the first expert reports the high message 1/2 when observing

s1 ∈ (0, 1] and the low message −1/2 when observing s1 ∈ [−1, 0].
16As observed by Lee [17] in the context of statistical herding, for herding to arise it is necessary that

equilibrium actions do not perfectly reveal signals. See Ottaviani and Sørensen [22] for more on the
connection between statistical and reputational herding models.
17The binary state example illustrated in Figure 3 provides us with an example of an informative

equilibrium close to pooling that contains increasingly less information as q converges to 1/2.
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In the second period, the belief on the state upon observation of message 1/2 is q2 (1) =

Pr (x = 1|m1 = 1/2) = (1 + 1/4) /2 = 5/8. The equilibrium for the second expert is then

determined by Fig. 3. Herding results since q2 (1) = 5/8 > q̄ = . 5069 for Et2 = 1/2.

When expert 1 sends a high message, so does expert 2. Similarly, when 1 sends the low

message, 2 also sends a low message.

In conclusion, the fact that differential conditional correlation is necessary to obtain

herding is not a robust finding of the binary signal model, even when Scharfstein and

Stein’s [30] strong definition is used: here “2 always ignores his own information and

follows agent 1” under conditional independence.18

7. Conclusion

Increasing specialization of labor suggests that information should be collected by profes-

sional experts. These experts are interested in their reputation for being well informed. In

our model, experts are evaluated on the basis of all ex-post available information, in the

absence of explicit monetary rewards.

Compared to the partisan expert case, the analysis is complicated by the necessary

presence of simultaneous learning on state and ability. We have managed to make the

problem tractable by focusing on a special but natural information structure, which extends

the binary signal model to allow for varying intensity.

When the signal and the state can be cross-checked to update beliefs about the expert’s

ability, the equilibrium cannot be fully separating. In a putative fully separating equilib-

rium, the signal and the realized state are informative about ability, giving an incentive to

the expert to manipulate the report of the signal in order to generate a better reputation.

If the evaluator naively believes that the expert is telling the truth, the expert has an

incentive to deviate towards an intermediate signal, provided that the prior on the state

is not too extreme. If the prior on the state is strongly biased in one direction, the expert

has an incentive to report even more extreme posteriors. These deviation incentives are

clearly incompatible with equilibrium behavior.

Equilibria can be taken to have a partition structure. In this model, the most in-

formative equilibria are typically multiple and do not involve more than two messages.

When the prior is sufficiently concentrated on any state, the only equilibrium is pooling.

These results could not be easily foreseen in a two-signal model, but hold in this natural

18Note that this conclusion is valid regardless of whether Scharfstein and Stein’s [29] non-informativeness
condition is satisfied or not. The non-informativeness condition is satisfied in this example, but would fail
for a slightly different prior on the state.
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generalization.

These results have implications for dynamic extensions of the model in which experts

sequentially report information for fixed state. If experts have conditionally independent

signals, the model can be solved forward. Reputational herding results eventually provided

that experts do not have perfect knowledge about their own ability, even in the absence

of differential conditional correlation.
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Appendix A: Proofs

Proof of Proposition 1. Using µ̂, we first compute ĝ(m|x) = R
S
µ̂(m|s)g(s|x) ds,

ĥ(m)=
R
S
µ̂(m|s)h(s) ds, f̂(m|x, t)=tĝ(m|x)+(1−t)ĥ(m) and f̂(m|x)=R

T
f̂(m|x, t)p(t) dt.

Substitution in (2.3) gives, after simple algebraic manipulation,

V (m|s) =

Z
X

Z
T

v(t)
tĝ(m|x) + (1− t)ĥ(m)

E[t]ĝ(m|x) + (1−E[t])ĥ(m)
p(t) dt q(x|s) dx

= E[v(t)] + (E[tv(t)]−E[t]E[v(t)])

Z
X

ĝ(m|x)− ĥ(m)

f̂(m|x) q(x|s) dx, (A.1)

Notice that the constant E[tv(t)] − E [t]E[v(t)] is strictly positive when v is strictly in-

creasing and t does not have a degenerate prior distribution. Applying a positive affine

transformation to (A.1), the expert’s payoff (2.3) can therefore be rewritten as

V (m|s) =
Z
X

ĝ(m|x)− ĥ(m)

f̂(m|x) q(x|s) dx.

Using again (2.1), we have f̂(m|x, t) = (1 +E[s|m]tx) R
S
µ̂(m|s)ds/2, and we arrive at (3.1),

W (m|x) = ĝ(m|x)− ĥ(m)

f̂(m|x) =
E[s|m]x

1 +E[s|m]xEt ≡
mx

1 +mxEt
.

Notice that Et < 1 since the distribution of t is non-degenerate, so the denominator is

bounded away from zero.

Differentiation of W (m|x) gives Wm(m|x) = x
(1+mxEt)2

. Then we have Wmx(m|x) =
1−mxEt
(1+mxEt)3

> 0, verifying strict supermodularity. Also Wmm(m|x) = − 2x2Et
(1+mxEt)3

< 0 for

x 6= 0, verifying strict concavity.
Using (2.3) we have Vm(m|s) =

R
X
Wm(m|x)q(x|s) dx. Property (i) then follows from

Vmm(m|s) =
R
X
Wmm(m|x)q(x|s) dx < 0, which holds because Wmm(m|x) < 0 except

at x = 0 and the posterior q (x|s) is not degenerate at x = 0, since the prior q (x) is

non-degenerate and the signal cannot reveal x = 0.

To obtain (ii), note that Vms(m|s) > 0 follows by Milgrom’s [20] Proposition 1 from

the facts that Wmx(m|x) > 0 and f(s|x) satisfies the MLRP.
To obtain (iii), observe that

Vm(s|s) = 1

1 + sExEt

Z
X

x

1 + sxEt
q(x) dx. (A.2)

Thus Vm(s0|s0) ≷ 0 if and only if
R
X
(x/ (1 + s0xEt)) q(x) dx ≷ 0. Note that this expression

is strictly decreasing in s0 since the derivative is
R
X
− ¡x2Et/ (1 + s0xEt)2

¢
q(x) dx < 0.

Using the assumption that
R
X
(x/ (1 + sxEt)) q(x) dx = 0, we obtain the desired signs of

Vm(s
0|s0) and Vm(s

00|s00). ¤
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Proof of Proposition 2. We apply the properties (i)—(iii) from Proposition 1. By (iii),

if Vm(−1| − 1) ≤ 0, then any s > −1 satisfy Vm(s|s) < 0. By (i), V (m|s) is concave
in m, so the optimal message at s is in the interval [−1, s). Likewise, if Vm(1|1) ≥ 0

then all s < 1 have Vm(s|s) > 0 and an optimal response in (s, 1]. Finally, if Vm(1|1) <
0 < Vm(−1| − 1), the continuity of Vm (s|s) guarantees the existence of ŝ ∈ (−1, 1) such
that Vm(ŝ|ŝ) = 0. By (iii), ŝ is unique, and now Vm(s

0|s0) < 0 < Vm(s
00|s00) for all

s0 > ŝ > s00. By (ii), Vm(ŝ|ŝ) = 0 implies that Vm(ŝ|s00) < 0 < Vm(ŝ|s0). Since Vm(s0|s0) <
0 < Vm(ŝ|s0), the concavity of V in m implies that the optimal response to s0 is in (ŝ, s0).

A similar argument applies to s00. Finally, insertion into (A.2) shows that Vm(−1| −
1) ≤ 0 if and only if R

X
(x/ (1− xEt)) q(x) dx ≤ 0, and that Vm(1|1) ≥ 0 if and only ifR

X
(x/ (1 + xEt)) q(x) dx ≥ 0.
Cases (a) and (b) are mutually exclusive as a consequence of Proposition 1, (iii). Indeed,

it can also be verified directly that
R
X
(x/ (1− xEt)) q(x) dx−R

X
(x/ (1 + xEt)) q(x) dx =R

X

¡
x2Et/

¡
1− x2 (Et)2

¢¢
q(x) dx > 0. ¤

Proof of Proposition 3. Assume to the contrary, that message m is sent at signal s

while message m0 6= m is sent at signals s0, s00 where s0 < s < s00. Optimizing behavior

of the expert implies that V (m|s) ≥ V (m0|s) and V (m0|s0) ≥ V (m|s0) and V (m0|s00) ≥
V (m|s00). In case m0 > m, the relation V (m0|s0) − V (m|s0) ≥ 0 ≥ V (m0|s) − V (m|s)
implies with strict supermodularity of V that s0 ≥ s, a contradiction. In case m0 < m,

the relation V (m|s) − V (m0|s) ≥ 0 ≥ V (m|s00) − V (m0|s00) likewise implies that s00 ≤ s,

another contradiction. In any case, a contradiction arises, so the contrary assumption

must be false. ¤

Proof of Proposition 4. Suppose that three or more distinct messages were sent in equi-

librium. Propositions 2 and 3 imply that there must be at least twomessage intervals with a

non-empty interior, except if the equilibrium has message intervals [−1,−1], (−1, 1), [1, 1],
but this latter strategy is almost surely equivalent to a one-message strategy. For the re-

mainder of the proof we can therefore assume that three signal intervals [a, b), [b, c], (c, d]

define adjacent equilibrium messages, with a < b ≤ c < d. Letting m = E [s|s ∈ [a, b)],
m0 = E [s|s ∈ [b, c]], and m00 = E [s|s ∈ (c, d]], we have then m < b ≤ m0 ≤ c < m00.

By incentive compatibility and payoff continuity, an individual with signal s = b must

satisfy indifference V (m|b) = V (m0|b). Using (3.1), the difference V (m0|b)− V (m|b) isZ
X

µ
m0x

1+m0xEt
− mx

1+mxEt

¶
q (x|b) dx = (m0 −m)

1+bExEt

Z
X

x (1 + bxEt)

(1+m0xEt) (1+mxEt)
q (x) dx.
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Eliminating the strictly positive factors m0−m and (1 + bExEt), the condition V (m|b) =
V (m0|b) reduces to Z

X

x (1 + bxEt)

(1 +mxEt) (1 +m0xEt)
q (x) dx = 0. (A.3)

Proceeding similarly, we have that V (m00|c) Q V (m0|c) wheneverZ
X

x (1 + cxEt)

(1 +m0xEt) (1 +m00xEt)
q (x) dx Q 0. (A.4)

Subtracting this condition (A.4) from (A.3), V (m00|c) Q V (m0|c) and V (m|b) = V (m0|b)
hold whenever Z

X

·
1 + bxEt

1 +mxEt
− 1 + cxEt

1 +m00xEt

¸
x

1 +m0xEt
q(x) dx R 0. (A.5)

We now verify that the integral on the left-hand side of (A.5) is necessarily positive,

showing that the expert with s = c has a strict incentive to deviate to messagem0, implying

the failure of this putative equilibrium. This verification relies on three steps. First, we

show that the factor in square brackets has the same sign as x. It certainly vanishes

at x = 0. The MLRP of f (s|x, t) = (1 + stx) /2 implies that (1 + bxEt) / (1 +mxEt)

is strictly increasing in x since b > m. Likewise, (1 + cxEt) / (1 +m00xEt) is strictly

decreasing in x since c > m00. We conclude that the difference is strictly increasing, and

therefore has the same sign as x. Second, the other integrand factor x/ (1 +m0xEt) is

immediately seen to have the same sign as x. Finally, since both factors in the integrand

have the same sign as x, the integrand must be strictly positive at x 6= 0. Since q is not
degenerate by assumption, the integral in (A.5) is strictly positive. ¤

Proof of Proposition 5. We have noticed that the distance between the messages is 1.

Using (3.1), observe that for all m ∈ [−1, 0],

V (m+ 1|s)− V (m|s) =

Z
X

x

[1 + (m+ 1)xEt] [1 +mxEt]
q(x|s) dx

=
1

1 + sExEt

Z
X

x (1 + sxEt)

[1 + (m+ 1)xEt] [1 +mxEt]
q(x) dx.

At s=m, we find V (m+1|m)−V (m|m)>0 if and only if R
X
(x/ [1+(m+1) xEt]) q(x) dx >

0. The latter expression is a strictly decreasing function of m, since its derivative isR
X
−¡x2Et/ [1+(m+1)xEt]2¢ q(x) dx < 0. Likewise, at s = m+1we find V (m+1|m+1)−

V (m|m+ 1) < 0 if and only if
R
X
(x/ [1 +mxEt]) q(x) dx < 0, which is again a strictly

decreasing function of m.
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Assume now that
R
X
(x/ (1− xEt)) q(x) dx ≤ 0. The monotonicity in m implies thatR

X
(x/ [1 +mxEt]) q(x) dx < 0 for allm > −1. Thus, V (m+ 1|m+ 1)−V (m|m+ 1) < 0.

Supermodularity implies that V (m+ 1|s)−V (m|s) < V (m+ 1|m+ 1)−V (m|m+ 1) < 0

whenever s < m + 1. We can conclude that there exists no solution a ∈ (−1, 1) to the
necessary arbitrage equation V ((a+ 1) /2|a)− V ((a− 1) /2|a) = 0.
Analogously, if

R
X
(x/ (1 + xEt)) q(x) dx ≥ 0 then R

X
(x/ [1 + (m+ 1)xEt]) q(x) dx >

0 for all m < 0, which in turn implies V (m+ 1|m) − V (m|m) > 0 and therefore

V (m+ 1|s) − V (m|s) > 0 for all s > m. Again, there is no solution to the necessary

arbitrage equation. ¤

Proof of Proposition 6. Inserting a = 0 in (5.1) we findZ
X

x

(2− xEt) (2 + xEt)
q(x) dx = 0.

As the function x/ [4− x2(Et)2] is anti-symmetric around x = 0, we conclude that the

symmetric equilibrium exists when the distribution of x is symmetric around 0. ¤

Proof of Proposition 7. At the ends of the interval, a = −1 and a = 1, the left-hand

side of (5.1) is equal to Ex/4. The integral varies continuously with a, showing that the

number of binary equilibria must be generically even. ¤

Proof of Proposition 8. Consider any x̂ < 0. Since x̂/ (1− x̂Et) < 0, by continuity

we have
R
X
(x/ (1− xEt)) q(x) dx < 0 once q is sufficiently concentrated around x̂. By

Proposition 5 no binary equilibrium exists. A symmetric argument applies to any x̂ > 0.¤

Proof of Proposition 9. Since beliefs cannot eventually be concentrated on a false

outcome, when x 6= 0 there exists some δ > 0 such that with probability one the state

interval (−δ, δ) is assigned a mass less than 1− δ infinitely often.

Assume now that the history has resulted in a belief q (x) according to which the state

interval [δ, 1] has chance at least δ/2. We show that then there is an N ∈ N such that if N
credible experts in a row send the high message, all subsequent experts are unable to speak

credibly. To see this, note that these high messages satisfy miEti > ε2 by assumption,

and so the state posterior will be FSD-higher than if the message ε of strength ε were

observed N times. But, as N → ∞, we have (1 + ε2x)
N → 0, 1,+∞ as respectively

x < 0, x = 0, x > 0. Thus, eventually all weight is concentrated on states x > 0. In

that limit, we have
R
X
(x/ (1 + x)) q(x) dx > 0 with this strict inequality holding already

when N is sufficiently large. By Proposition 5, the subsequent expert is not credible and
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leaves the belief unchanged. By induction, we conclude that no subsequent expert can be

credible.

A symmetric argument applies to the case where the state interval [−1,−δ] has chance
at least δ/2. ForN sufficiently large, afterN lowmessages in a row credible communication

is halted. With a slight abuse of notation, let N be so large as to work in both this and

the previous paragraph.

We conclude that infinitely often there exists a continuation history of N identical

messages leading to a termination of communication. Moreover, the chance of such termi-

nation is bounded below because the required messages (high or low) are issued for private

signals in a range of at least 2ε. With a lower bound on the infinitely recurring termination

chance, termination must occur almost surely in finite time. ¤

25



References

[1] A.R. Admati, P. Pfleiderer, Broadcasting opinions with an overconfident sender, Int.
Econ. Rev. 45 (2004), 467—498.

[2] A.V. Banerjee, A simple model of herd behavior, Quart. J. Econ. 107 (1992), 797—817.

[3] S. Bikhchandani, D. Hirshleifer, I. Welch, A theory of fads, fashion, custom, and
cultural change as informational cascades, J. Pol. Econ. 100 (1992), 992—1026.

[4] A. Brandenburger, B. Polak, When managers cover their posteriors: Making the
decisions the market wants to see, RAND J. Econ. 27 (1996), 523—541.

[5] C. Campbell, Learning and the market for information, Mimeo, Ohio State University,
1998.

[6] J. Chevalier, G. Ellison, Career concerns of mutual fund managers, Quart. J. Econ.
114 (1999), 389—432.

[7] D. Conway, Farlie-Gumbel-Morgenstern distributions, in “Encyclopedia of Statistical
Sciences” (S. Kotz, N.L. Johnson, Eds.), pp. 28—31, Wiley-Interscience, New York,
1983.

[8] V. Crawford, J. Sobel, Strategic information transmission, Econometrica 50 (1982),
1431—1452.

[9] T. Ehrbeck, R. Waldmann, Why are professional forecasters biased? Agency versus
behavioral explanations, Quart. J. Econ. 111 (1996), 21—40.

[10] C. Ewerhart, P.W. Schmitz, “Yes men,” integrity, and the optimal design of incentive
contracts, J. Econ. Behav. Organ. 43 (2000), 115—125.

[11] J. Graham, Herding among investment newsletters: Theory and evidence, J. Finance
54 (1999), 231—268.

[12] J.R. Green, N.L. Stokey, A two-person game of information transmission, Harvard
Institute of Economic Research, Discussion Paper 751, 1980.

[13] B. Holmström, Managerial incentive problems: A dynamic perspective, Rev. Econ.
Stud. 66 (1999), 169—182.

[14] B. Holmström, J. Ricart i Costa, Managerial incentives and capital management,
Quart. J. Econ. 101 (1986), 835—860.

[15] H. Hong, J.D. Kubik, A. Solomon, Security analysts’ career concerns and herding of
earning forecasts, RAND J. Econ. 31 (2000), 121—144.

[16] O. Lamont, Macroeconomic forecasts and microeconomic forecasters, J. Econ. Behav.
Organ. 48 (2002), 265—280.

[17] I.H. Lee, On the convergence of informational cascades, J. of Econ. Theory 61 (1993),
395—411.

26



[18] W. Li, Mind changes and the design of reporting protocols, Mimeo, University of
California at Riverside, 2004.

[19] S. Lohmann, Information aggregation through costly political action, Amer. Econ.
Rev. 84 (1994), 518—530.

[20] P. Milgrom, Good news and bad news: Representation theorems and applications,
Bell J. Econ. 12 (1981), 380—391.

[21] W. Olszewski, Informal communication, J. Econ. Theory 117 (2004), 180-200.

[22] M. Ottaviani, P. Sørensen, Herd behavior and investment: Comment, Amer. Econ.
Rev. 99 (2000), 695—704.

[23] M. Ottaviani, P. Sørensen, The strategy of professional forecasting, Mimeo, London
Business School, 2004.

[24] M. Ottaviani, P. Sørensen, Reputational cheap talk, Mimeo, London Business School,
2004.

[25] M. Piccione, G. Tan, A simple model of expert and non-expert bidding in first-price
auctions, J. Econ. Theory 70 (1996), 501—515.

[26] A. Prat, The wrong kind of transparency, Mimeo, London School of Economics, 2003.

[27] C. Prendergast, A theory of “yes men,” Amer. Econ. Rev. 83 (1993), 757—770.

[28] C. Prendergast, L. Stole, Impetuous youngsters and jaded oldtimers: Acquiring a
reputation for learning, J. Pol. Econ. 104 (1996), 1105—1134.

[29] D. Scharfstein, J. Stein, Herd behavior and investment, Amer. Econ. Rev. 80 (1990),
465—479.

[30] D. Scharfstein, J. Stein, Herd behavior and investment: Reply, Amer. Econ. Rev. 90
(2000), 705—706.

[31] D. Seidmann, Effective cheap talk with conflicting interests, J. Econ. Theory 50
(1990), 445—458.

[32] L. Smith, P. Sørensen, Pathological outcomes of observational learning, Econometrica
68 (2000), 371—398.

[33] J. Sobel, A theory of credibility, Rev. Econ. Stud. 52 (1985), 557—573.

[34] B. Trueman, Analyst forecasts and herding behavior, Rev. Finan. Stud. 7 (1994),
97—124.

[35] J. Watson, Information transmission when the informed party is confused, Games
Econ. Behav. 12 (1996), 143—161.

[36] I. Welch, Herding among security analysts, J. Finan. Econ. 58 (2000), 369—396.

[37] E. Zitzewitz, Measuring herding and exaggeration by equity analysts, Mimeo, Stan-
ford GSB, 2001.

27


