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Abstract

This paper explores how Bayes-rational individuals learn sequentially from
the discrete actions of others. Unlike earlier informational herding papers, we
admit heterogeneous preferences. Not only may type-speci�c `herds' eventually

arise, but a new robust possibility emerges: confounded learning. Beliefs may
converge to a limit point where history o�ers no decisive lessons for anyone,
and each type's actions forever nontrivially split between two actions.

To verify that our identi�ed limit outcomes do arise, we exploit the Markov-
martingale character of beliefs. Learning dynamics are stochastically stable

near a �xed point in many Bayesian learning models like this one.
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1. INTRODUCTION

Suppose that a countable number of individuals each must make a once-in-a-lifetime

binary decision | encumbered solely by uncertainty about the state of the world. If

preferences are identical, there are no congestion e�ects or network externalities, and

information is complete and symmetric, then all ideally wish to make the same decision.

But life is more complicated than that. Assume instead that the individuals must

decide sequentially, all in some preordained order. Suppose that each may condition his

decision both on his endowed private signal about the state of the world and on all his

predecessors' decisions, but not their hidden private signals. The above simple framework

was independently introduced in Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch

(1992) (hereafter, simply BHW). Their perhaps unexpected common conclusion was that

with positive probability an `incorrect herd' would arise: Despite the surfeit of available

information, after some point, everyone might just settle on the identical less pro�table

decision. This result has really sparked a welcome renaissance in the �eld of informational

economics, as various twists on the herding phenomenon have been woven into a host of

applications from �nance to organizational theory, and even lately into experimental work.

In this paper, we study more generally how Bayes-rational individuals sequentially

learn from the actions of others. This leads us to a greater understanding of herding, and

why and when it occurs. Crucially, it leads also to the discovery of a co-equal robust rival

phenomenon to herding that has so far been missed, and that is economically important.

To motivate our point of departure from Banerjee and BHW, consider the following

counterfactual. Assume that we are in a potential herd in which one million consecutive

individuals have acted alike, but suppose that the next individual deviates. What then

could Mr. one million and two conclude? First, he could decide that his predecessor had a

more powerful signal than everyone else. To capture this, we generalize the private infor-

mation beyond discrete signals, and admit the possibility that there is no uniformly most

powerful yet nonrevealing signal. Second, he might opine that the action was irrational or

an accident. We thus add noise to the herding model. Third, he possibly might decide that

di�erent preferences provoked the contrary choice. On this score, we consider the model

with multiple types. Here, we �nd that herding is not the only possible `pathological'

outcome: We may well converge to an informational pooling equilibrium where history

o�ers no decisive lessons for anyone, and everyone must forever rely on his private signal!

The paper is uni�ed by two natural questions: (1) What are the robust long-run

outcomes of observational learning? (2) Do we in fact settle on any one? Our inquiry is

focused through the two analytic lenses of convergence of beliefs (learning) and convergence
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of actions (in frequency or, more strongly, with herds). BHW introduced the colorful

terminology of a cascade for an in�nite train of individuals acting irrespective of the

content of their signals. With a single rational type and no noise (henceforth, the herding

model), individuals always eventually settle on an action (a herd). Yet the label `cascades

literature' is inappropriate outside the discrete signal world. Among our simplest �ndings

is that outside BHW's discrete signal world, cascades need not arise: No decision need

ever be a foregone conclusion even during a herd. With these two notions decoupled, the

analysis is much richer, and it suggests why we must admit a general signal space, and

adopt our general stochastic process approach. For instance, we show that learning is

incomplete exactly when private signals are uniformly bounded in strength (Theorem 1).

Then and only then can bad herds possibly arise in the herding model (Theorem 3).

The explanation we provide for herding is that (the standard) convergence of beliefs

implies action convergence: The action frequency settles down, and is consistent with

the limit belief. Perfect conformity arises in the pure herding model because contrary

actions radically swing beliefs; for any rational desire to deviate must then be shared by all

successors. But uniformly identical preferences is neither a realistic nor general assumption.

Adding `noise' (some individuals randomly committed to di�erent actions) to this model

is a useful interim step. Yet it is far short of our main contribution, being equivalent to

rational agents with di�erent dominant preference types and strategies. Not surprisingly,

this statistical noise washes out in the long run, and does not a�ect convergence.

In this paper, we more generally assume that individuals entertain possibly di�erent

preferences over actions; further, types are unobserved, so that only statistical inferences

may be drawn about any given individual. Taste diversity with hidden preferences aptly

describes numerous cited or motivating examples of herding in the literature, such as

restaurant choice, or �nancial decisions. This twist yields our most novel economic �ndings.

The standard herding outcome is robust to individuals having identical ordinal but di�ering

cardinal (vNM) preferences. With multiple rational preference types, not all ordinally

alike, an interior rational expectations dynamic steady-state non-degenerately emerges:

It may be impossible to draw any clear inference from history even while it continues

to accumulate privately-informed decisions. Further, this incomplete learning pooling

outcome exists even with unbounded beliefs, when an incorrect herd is impossible.

Let us �x ideas and illustrate this confounded learning possibility with a perhaps famil-

iar example. Suppose that on a highway under construction, depending on how the detours

are arranged, those going to Houston should take either the high or low o�-ramps (in states

H and L), with the opposite for those headed toward Dallas. If 70% are headed toward

Houston, then absent any strong signal to the contrary, Dallas-bound drivers should take
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the lane `less traveled by'. This yields two separating herding outcomes: 70% high or 70%

low, as predicted by armchair application of the herding logic. But another rather subtle

possibility may arise, revealed by a careful analysis. For as the chance q that observed

history accords state H rises from 0 to 1, the probability that a Houston driver takes the

high road gradually rises from 0 to 1, and conversely for Dallas drivers. Thus, the fractions

 H(q) and  L(q) in the right lane in states H;L each rises (perhaps nonmonotonically)

from 0.3 to 0.7. If for some q, a random car is equilikely in states H and L to go high, or

 H(q) =  L(q), then no inference can be drawn from additional decisions: Learning stops.

While existence of such a �xed point exists is not obvious, Theorems 1 and 2 prove that

for nondegenerate models, confounding outcomes co-exist with the cascade possibilities.

Our confounded learning outcome is generic when two types have opposed preferences,

assuming uniformly bounded private signals. With unbounded signals, it emerges for

suÆciently strongly opposed vNM preferences, and not too unequal population frequencies.

In either case,  H(q)> L(q) for small enough q, and  H(q)< L(q) for large enough q.

Two stochastic processes constitute the building blocks for our theory: the public

likelihood ratio is a conditional martingale, and the vector (action taken, likelihood ratio)

a Markov chain. Martingale and Markovian methods are standard methods for ruling

out potential limit outcomes of learning. But our major technical innovation concerns

their stability: Given multiple limit beliefs, must we converge upon any given one? How

can we rule in any limit? For instance, even if our earlier confounding outcome with

driving robustly exists, must we converge upon it? We have found a simple easily checked

condition for the local stochastic stability of a Markov-martingale process near a �xed

point (Theorem 4). This yields a general and new property of Bayesian learning dynamics.

In our context, assume that near any �xed point, posterior beliefs are not degenerately

equally responsive to priors for every action taken, but are monotonely so (a higher prior

yields a higher posterior belief). Then the belief process tends with positive chance and

exponentially fast to that �xed point if starts nearby. Thus, (i) an action which can be

herded upon, will then be herded upon for nearby beliefs, while (ii) convergence to our new

confounding outcome occurs with positive chance, and necessarily rapidly (Theorem 5).

Section 2 gives a common framework for the paper. Section 3 illustrates our �ndings

in three examples. We then proceed along two technical themes. Via Markov-martingale

means, section 4 describes the action and belief limits; the confounding outcome is our key

innovation here. Section 5 presents our new stability result, and shows when a long-run

outcome arises. Extension to �nitely many states is addressed in the conclusion; there we

also describe more substantial extensions of the paper, as well as related literature. More

detailed proofs and some essential new math results are appendicized.
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2. THE COMMON FRAMEWORK

2.1 The Model

States. There are S = 2 payo�-relevant states of the world, the high state s = H

and the low state s = L. As is standard, there is a common prior belief | WLOG, a 
at

prior Pr(H) = Pr(L) = 1=2. Our results extend to any �nite number S of states, but at

signi�cant algebraic cost, and so this extension is addressed in the conclusion (x6.1).

Private Beliefs. An in�nite sequence of individuals n = 1; 2; : : : enters in an

exogenous order. Individual n receives a random private signal about the state of the

world, and then, computes via Bayes' rule his private belief pn 2 (0; 1) that the state is

H. Given the state s 2 fH;Lg, the private belief stochastic process hpni is i.i.d., with

conditional c.d.f. F s. These distributions are suÆcient for the state signal distribution,

and obey a joint restriction implicit below. The curious reader may jump immediately to

Appendix A, which summarizes this development, and explores the results we need.

We assume that no private signal, and thus no private belief, perfectly reveals the state

of the world: This ensures that FH ; FL are mutually absolutely continuous, with common

support, say supp(F ). Thus, there exists a positive, �nite Radon-Nikodym derivative

f = dFL=dFH : (0; 1) ! (0;1). And to avoid trivialities, we assume that some signals

are informative: This rules out f = 1 almost surely, so that FH and FL do not coincide.

When F s is di�erentiable (s = L;H), we shall denote its derivative by f s.

The convex hull co(supp(F )) � [b;�b] � [0; 1] plays a major role in the paper. Note

that b < 1=2 < �b as some signals are informative. We call the private beliefs bounded if

0 < b < �b < 1, and unbounded if co(supp(F )) = [0; 1].

Individual Types and Actions. Every individual makes one choice from a

�nite action menu M = f1; : : : ;Mg, with M � 2 actions. We allow for heterogeneous

preferences of successive individuals | the only other random element. A model with

multiple but observable types is informationally equivalent to a single preference world.

So assume instead that all types are private information. There are �nitely many rational

types t = 1; : : : ; T with di�erent preferences. Let �t be the known proportion of type t.

We also introduce M crazy types. Crazy type m arrives with chance �m � 0, and

always chooses action m. One could view these as rational types with state independent

preferences, and unlike everyone else, a single dominant action. We assume a positive

fraction � = 1� (�1+ � � �+�M) > 0 of payo�-motivated rational individuals. Rational and

crazy types are spread i.i.d. in sequence, and independently of the belief sequence hpni.

4



hhhhhhhhhhhhhh

��
��
��
��
��
��
��HHHHHHHHHHHHHHuLt (3)

uLt (2)

uLt (1) uHt (3)

uHt (2)

uHt (1)

r1 r2r0=0 r3=1

Figure 1: Expected Payo� Frontier. The diagram depicts the expected payo� of each of three
actions as a function of the posterior belief r that the state is H . A rational individual simply chooses the
action yielding the highest payo�. Here 2 is an insurance action, and 1 and 3 are extreme actions.

Payo�s. In state s 2 fH;Lg, each rational type t earns payo� ust(m) from action

m (for precision, sometimes atm), and seeks to maximize his expected payo�. For each

rational type, (M �)Mt � 2 actions are not weakly dominated, and generically no one

action is optimal at just one belief, and no two actions provide identical payo�s in all

states. Each type t thus has (S=) 2 extreme actions, each strictly optimal in some state.

The otherMt�2 insurance actions are each taken at distinct intervals of unfocused beliefs.

Given a posterior belief r 2 [0; 1] that the state is H, the expected payo� to type t of

choosing action m is ruHt (m) + (1� r)uLt (m). Figure 1 depicts the next summary result.

Lemma 1 For each rational type t, [0; 1] partitions into subintervals I t1; : : : ; I
t
Mt

touching

at endpoints only, with undominated action m2Mt�M optimal exactly for beliefs r 2 I tm.

With multiple types, we must introduce T labels for every action. Permuting Mt, we

order rational type t's actions at1; : : : ; a
t
Mt

by relative preference in state H, with atM most

preferred. So to be clear, if we order actions from least to most preferred by type t in

state H, then action m has rank � = �tm if m = at�. By Lemma 1, type t's mth action

basin is I tm � [rtm�1; r
t
m], with ordered boundaries 0 = rt0 < rt1 < � � � < rtMt

= 1; thus,

extreme actions at1 and a
t
Mt

are optimal for type t in states L and H, and insurance actions

at2; : : : ; a
t
Mt�1

are each best for some interior beliefs. The tie-breaking rule is WLOG that

type t chooses atm over atm+1 at belief r
t
m. Type t has a stronger preference for action atm

the larger is the basin I tm. Rational types t and t
0 have opposed preferences over actions m

and m0 if (�tm��
t
m0)(�t

0

m��
t0

m0) < 0 | i.e. their ordinal preferences for them in state H, and

thus in state L, are reversed. With just a single rational type, we suppress t-superscripts,

and likewise strictly order belief thresholds as 0 = r0 < r1 < � � � < rM = 1.

2.2 The Individual Bayesian Decision Problem

Before acting, every rational individual observes his type t, his private belief p, and

the entire ordered action history h. His decision rule then maps p and h into an action.

We look for a Bayesian equilibrium, where everyone knows all decision rules, and can
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compute the chance �s(h) of any history h in each state s. This yields a public belief

q(h) = �H(h)=(�H(h)+�L(h)) that the state is H, i.e. the posterior given h and a neutral

private belief p = 1=2. Applying Bayes rule again yields the posterior belief r in terms of

q and p:

r = r(p; q) =
p �H(h)

p �H(h) + (1� p) �L(h)
=

pq

pq + (1� p)(1� q)
(1)

As belief q is informationally suÆcient for the underlying history data h, we now suppress h.

Since the RHS of (1) is increasing in p, there are private belief thresholds 0 = pt0(q) �

pt1(q) � : : : � ptM(q) = 1, such that type t optimally chooses action atm i� his private

belief satis�es p 2 (ptm�1(q); p
t
m(q)], given the earlier tie-break rule. Furthermore, each

threshold ptm(q) is decreasing in q. A type-t cascade set is the set of public beliefs J tm =

fq j supp(F ) � [ptm�1(q); p
t
m(q)]g. So type t a.s. takes action atm for any q 2 int (J tm),

since the posterior r(p; q) 2 I tm for all p. It follows that any cascade set lies inside the

corresponding action basin, so that J tm � int (I tm). For if all private beliefs yield action

atm, then so must the neutral belief.

As is standard, call a property generic (resp. nondegenerate or robust) if the subset of

parameters for which it holds is open and dense (resp. open and nonempty).

Lemma 2 For each action atm and type t, J tm is a possibly empty interval. Also,

(a) With bounded private beliefs, J t1 = [0; qt] and J tMt
= [�qt; 1] for some 0 < qt < �qt < 1.

(b) With unbounded private beliefs, J t1 = f0g, J tMt
= f1g, and all other J tm are empty.

(c) For generic payo�s us, no interior cascade set J tm is a single point.

(d) Each J tm is larger the smaller is the support [b;�b], and the larger is the action basin

[rtm�1; r
t
m]. Only extreme cascade sets J t1 and J

t
Mt

are nonempty for large enough [b;�b].

The appendicized proofs of Lemma 2-a; b are also intuitive: With bounded private beliefs,

posteriors are not far from the public belief q; so for q near enough 0 or 1, or well inside

an insurance action basin, all private beliefs lead to the same action. With unbounded

beliefs, every public belief q 2 (0; 1) is swamped by some private beliefs. Next, given the

continuous map from payo�s to thresholds hust(m)i 7! hrtmi, Lemma 2-c; d follows from (1):

q 2 J tm i� rtm�1 �
bq

bq + (1� b)(1� q)
and

�bq
�bq + (1� �b)(1� q)

� rtm (2)

The paper requires some more notation. De�ne J t = J t1 [J
t
2 [ � � �[J

t
Mt
. A type t is active

when choosing at least two actions with positive probability. A cascade arises | each

type's action choice is independent of private beliefs | for public beliefs strictly inside

J = J1 \ J2 \ � � � \ JT ; however, with unbounded beliefs, there are two cascade beliefs:

q 2 J = f0g[ f1g. We put JH � \tJ
t
Mt
, namely where each type t cascades on the action

atMt
, which is optimal in state H. Similarly, we de�ne JL for state L.
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atm = optimal action if

`(1� p)=p 2 �I tm

t takes action atm with chance

�t(mjs; `) in state s 2 fH;Lg

`
 (1jL; `)

 (1jH; `)
� '(1; `)

`
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Figure 2: Individual Black Box. Everyone bases his decision on both the public likelihood ratio
` and his private belief p, resulting in his action choice at

m
with chance  (at

m
jL; `), and a likelihood ratio

'(at
m
; `) to confront successors. Type t takes action at

m
i� his posterior likelihood `(1 � p)=p lies in the

interval �Itm, where �It
1
; : : : ; �It

Mt
partition [0;1].

2.3 Learning Dynamics

Let qn be the public belief after Mr. n chooses action mn. It is well-known that hqni
1
n=1

obeys an unconditional martingale, E(qn+1jqn) = qn, and hence almost surely converges to

a limit random variable. While we could in principle employ this posterior belief process,

we care about the conditional stochastic properties in a given state H. Thus, the public

likelihood ratio `n � (1 � qn)=qn that the state is L versus H o�ers distinct conceptual

advantages, and saves time, as it conditions on the assumed true state. The likelihood

process h`ni similarly will be a convergent conditional martingale on state H.

We then have likelihood analogues of previous notation, now barred: private belief

thresholds �ptm((1�q)=q) � ptm(q); action basins �I tm, where r 2 I tm i� (1�r)=r 2 �I tm; and

cascade sets �J tm, where q 2 J
t
m i� (1�q)=q 2 �J tm; as well as (

�J t; �J; �JH) for (J t; J; JH). With

bounded private beliefs, �J t1 = [�̀t;1] and �J tMt
= [0; `t] for some 0 < `t < �̀t < 1. (Note:

this natural notation implies a reverse correspondence: �̀t = (1�qt)=qt and `t = (1��qt)=�qt.)

With unbounded private beliefs, �J t1=f1g, �J tMt
=f0g, and all other cascade sets are empty.

Likelihood ratios h`ni
1
n=1 are a stochastic process, described by `0 = 1 (as q0 = 1=2)

and transitions
�t(atmjs; `) = F s(�ptm(`))� F s(�ptm�1(`)) (3)

 (mjs; `) = �m + �
PT

t=1 �
t�t(mjs; `) (4)

'(m; `) = ` (mjL; `)= (mjH; `) (5)

Here, �t(mjs; `) is the chance that a rational type t takes action m, given `, and the

true state s 2 fH;Lg. So the cascade set �J tm is the interval of likelihoods ` yielding

�t(atmjH; `)=�
t(atmjL; `)=1. Faced with `n, Mr. n takes actionmn with chance  (mnjs; `n)

in state s, whereupon we move to `n+1='(mn; `n). Figure 2 summarizes (3){(5).

Our insights are best expressed by considering the pair hmn; `ni as a discrete-time,

time-homogeneous Markov process on the state space M� [0;1). Given hmn; `ni, the

next state is hmn+1; '(mn+1; `n)i with probability  (mn+1js; `n) in state s. Since h`ni is

a martingale, convergence to any dead wrong belief almost surely cannot occur, since the

odds against the truth cannot explode. In summary:
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Lemma 3 (a) The likelihood ratio process h`ni is a martingale conditional on state H.

(b) Assume state H. The process h`ni converges almost surely to a r.v., `1 = limn!1 `n,

with supp(`1) � [0;1). So fully incorrect learning (`n !1) almost surely cannot occur.

Proof: See Doob (1953) for the martingale character of h`ni. Convergence follows from the

Martingale Convergence Theorem for non-negative, perhaps unbounded, random variables

(Breiman (1968), Theorem 5.14); Bray and Kreps (1987) prove this with public beliefs.}

Learning is complete if `beliefs' (likelihoods) converge to the truth: `n ! 0 in state H.

Otherwise, learning is incomplete: Beliefs are not eventually focused on the true state H.

Belief convergence then forces action convergence: hmni settles down in frequency, or

limn!1Nn(m)=n a.s. exists for all m, where Nn(m) � #fmk=m; k � ng.

Corollary Action convergence almost surely obtains, if F s has no atoms.

Proof: Let " > 0. Given belief convergence (Lemma 3), continuity of  (mjs; `), and the

law (4), the chance �m(n) that action m is chosen almost surely converges, say �m(n)!

�m. Thus, �m(n) � �m + " for large n, and so lim supn!1Nm(n)=n � �m + ". Similarly,

lim infn!1Nm(n)=n � �m � ". Since " > 0 is arbitrary, limn!1Nm(n)=n = �m. }

The literature has so far focused on two more powerful convergence notions. As noted,

a cascade means `n 2 �J , or �nite time belief convergence. Since every later rational type's

action is dictated by history, this forces a herd , where rational individuals of the same type

all act alike. By corollary, the weaker action convergence obtains. We also need the weaker

notion of a limit cascade, or eventual belief convergence to the cascade set: `1 2 J .

3. EXAMPLES

3.1 Single Rational Type

Consider a simple example, with individuals deciding whether to `invest' in or `decline'

an investment project of uncertain value. Investing (action m = 2) is risky, paying o�

u > 0 in state H and �1 in state L; declining (action m = 1) is a neutral action with zero

payo� in both states. Indi�erence prevails when 0 = ru� (1� r), so that r = 1=(1 + u).

Thus, equation (1) de�nes the private belief threshold �p(`) = `=(u+ `).

A. Unbounded Beliefs Example. Let the private signal � 2 (0; 1) have state-

contingent densities gH(�) = 2� and gL(�) = 2(1� �) | as in the left panel of Figure 3.

With a 
at prior, the private belief p = p(�) then satis�es (1 � p)=p = gL(�)=gH(�) =

(1� �)=� by Bayes' rule, and has the same conditional densities fH(p) � 2p and fL(p) �

2(1 � p), and c.d.f.'s FH(p) = p2 and FL(p) = 2p � p2. So supp(F ) = [0; 1], and private

beliefs are unbounded; the cascade sets collapse to the extreme points, �J1 = f1g, �J2 = f0g.
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Figure 3: Signal Densities. Graphs for the unbounded (left) and bounded (right) beliefs examples.
Observe how, in the left panel, signals near 0 are very strongly in favor of state L.

Given private belief c.d.f's FH ; FL and threshold �p(`) = `=(u + `), transition chances

are �(1jH; `) = `2=(u + `)2 and �(1jL; `) = `(` + 2u)=(u + `)2 by (3). Continuations are

'(1; `) = `+2u and '(2; `) = u`=(u+2`) by (4), (5). As in Figure 4 (left panel), the only

stationary �nite likelihood ratio in state H is 0; the limit `1 of Lemma 3 is focused on the

truth. As the suboptimal action 1 lifts `n � 2u, an in�nite subsequence of such choices

would preclude belief convergence: Hence, there must be action convergence (i.e. a herd).

B. Bounded Beliefs Example. Let private signals have density gL(�) = 3=2��

on (0; 1) in state L, and uniform on (0; 1) in state H. Given a 
at prior, Bayes' rule yields

the private belief p(�) = 1=(gL(�) + 1) = 2=(5� 2�), i.e. p(�) � p , 2=(5� 2�) � p ,

(5p� 2)=2p � �. Thus, FH(p) = (5p� 2)=2p in state H and FL(p) =
R
p(�)�p

gL(�) d� =

(5p� 2)(p+ 2)=(8p2) in state L. Each thus has bounded support [b;�b] = [2=5; 2=3].

Since �p(`) = `=(u+ `), active dynamics occur when ` 2 (2u=3; 2u), where equations for

FH , FL, and (3){(5) yield �(1jH; `) = (3`� 2u)=2` and �(1jL; `) = (3`� 2u)(3`+2u)=8`2,

as well as '(1; `) = u=2 + 3`=4 and '(2; `) = u=2 + `=4. The likelihood ratio converges by

Lemma 3, so that �J1[ �J2 contains all possible stationary limits, as in Figure 4 (right panel).

A herd on action 1 or 2 must then start eventually | again, lest beliefs not converge. If

`0 � 2u=3, then �(1jH; `) = �(1jL; `) = 0, i.e. action 2 is always taken, and thus h`ni is

absorbed in the set �J2 = [0; 2u=3]. For `0 � 2u, we similarly �nd �J1 = [2u;1].

Here, we may strongly conclude that each limit outcome 2u=3 and 2u arises with posi-

tive chance for any `0 2 (2u=3; 2u). As in Figure 4 (right), dynamics are forever trapped in

(2u=3; 2u). Since j`nj � 2u, the Dominated Convergence Theorem yields E[`1 jH] = `0.

Since `0 = �(2u=3)+(1��)(2u) for some 0 < � < 1 whenever 2u=3 < `0 < 2u, in state H,

a herd on action 2 arises with chance �, and one on action 1 with chance 1� �.

In contrast to BHW, if public beliefs are not initially in a cascade set, they never enter

one. This holds even though a herd always eventually starts. Visually, it is clear that

`n2 (2u=3; 2u) for all n if `0 2 (2u=3; 2u). This also follows analytically: If `n < 2u, then

`n+1 = '(1; `n) = u=2+3`=4 < u=2+3u=2 = 2u too. So herds must arise even though a

contrarian is never ruled out. This result obtains whenever continuation functions '(i; �)

are always increasing. For then h`ni never jumps into the closed set �J1 [ �J2, starting a

cascade. Monotonicity is crucially violated in BHW's discrete signal world.
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Figure 4: Continuations and Cascade Sets. Continuation functions for the examples: un-
bounded private beliefs (left), and bounded private beliefs (right) with (�1 = �2 = 1=10) and without
noise (dashed and solid lines). The stationary points are where both arms hit the diagonal (as with noise),
or where one arm is taken with zero chance (` = 0 or ` =1 in the left panel; ` � 2u=3 or ` � u in the right
panel without noise). With crazy types the discontinuity vanishes, and isolated deviations no longer have
drastic consequences. Graphs here and in �gure 5 were generated analytically with PostScript.

C. Bounded Beliefs Example with Noise. Suppose that a fraction of indi-

viduals randomly chooses actions. This introduction of a small amount of noise radically

a�ects dynamics, as seen in the right panel of Figure 4. For since all actions are expected

to occur, none can have drastic e�ects. Namely, each '(i; �) is now continuous near the

cascade sets at ` = 2u=3 and �̀ = 2u. Yet, the limit beliefs are una�ected by the noise,

contrary actions being deemed irrational (and ignored) inside the cascade sets.

3.2 Multiple Rational Types

With multiple types, one can still learn from history by comparing proportions choosing

each action with the known type frequencies. This inference intuitively should be fruitful,

barring nongenericities. A new twist arises: Dynamics may lead to each action being taken

with the same positive chance in all states, choking o� learning. This incomplete learning

outcome is economically di�erent than herding | informational pooling, where actions

do not reveal types, rather than the perfect separation that occurs with a type speci�c

informational herd. Mathematically it is a robust interior sink to the dynamics.

Let us consider the driving example from the introduction. Posit that Houston (type U ,

our `usual' preferences) drivers should go high (action 2) in state H, low (action 1) in state

L, with the reverse true for Dallas (type V ) drivers. Going to the wrong city always yields

zero, WLOG. The payo� vector of the Houston-bound is (0; u) in state H and (1; 0) in state

L; for Dallas drivers, it is (1; 0) and (0; v), where WLOG v � u > 0. So the preferences

are opposed, but not exact mirror images if v > u. Types U; V then respectively choose

action 1 for private beliefs below �pU(`) = `=(u+ `), and above �pV (`) = `=(v + `).

Assume the same bounded beliefs structure introduced earlier. Assume we start at

`0 2 (2v=3; 2u). The transition probabilities for type U are then just as in section 3.1.B:

10
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Figure 5: Confounded Learning. Based on our Bounded Beliefs Example, with �U = 4=5,
u = v=2. In the left graph, the curves  (1jH; `) and  (1jL; `) cross at the confounding outcome `� = 8v=9,
where no additional decisions are informative. At `�, 7=8 choose action 1, and strangely 7=8 lies outside
the convex hull of �V and �U | eg. in the introductory driving example, more than 70% of cars may take
the high ramp in a confounding outcome. The right graph depicts continuation likelihood dynamics.

�U(1jH; `) = (3`� 2u)=2` and �U (1jL; `) = (3`� 2u)(3`+ 2u)=8`2, where ` 2 (2u=3; 2u);

for type V , we likewise have �V (1jH; `) = (2v� `)=2` and �V (1jL; `) = (2v+ `)(2v� `)=8`2

by applying (3). The two types take action 2 with certainty in the intervals �JU2 = [0; 2u=3]

and �JV2 = [2v;1], respectively. If either these sets or �JU1 = [2u;1] and �JV1 = [0; 2v=3]

overlap, as happens with 2v=3 < 2u or 2u=3 < 2v, then only one type ever makes an

informative choice for any `, and the resulting analysis for the other type is similar to the

single rational type model: just limit cascades, and therefore herds, arise.

Assume no cascade sets overlap. Consider dynamics for ` 2 (2v=3; 2u) given by (4):

 (1jH; `) = �U
3`�2u

2`
+�V

2v�`

2`
&  (1jL; `) = �U

(3`�2u)(3`+2u)

8`2
+�V

(2v�`)(2v+`)

8`2

We are interested in a di�erent �xed point depicted in Figure 5, where neither rational

type takes any action for sure, and decisions always critically depend on private signals.

The two continuations (5) then coincide:  (1jH; `�) =  (1jL; `�) 2 (0; 1), and actions

convey no information:
�U

�V
=

(2v � `)(3`� 2v)

(2u� `)(3`� 2u)
� h(`)

If v > u then h maps (2v=3; 2u) onto (0;1), and h(`�) = �U=�V is solvable for any �U ; �V .

For this example, we can argue that with positive chance, the process h`ni tends to

`� if it does not start in a cascade, i.e. in [0; 2u=3] or [2v;1]. Since each likelihood

continuation '(i; �) is increasing, if dynamics start in [2u=3; `�] or [`�; 2v], they are forever

trapped there. Assume `0 2 (2u=3; `�). Then h`ni is a bounded martingale that tends to

the end-points; therefore, the limit `1 places positive probability weight on both a limit

cascade on ` = 2u=3 and convergence to ` = `�. This example veri�es that the latter �xed

point robustly exists and is stable, but does not yet explain why.
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4. LONG RUN LEARNING

4.1 Belief Convergence: Limit Cascades and Confounded Learning

A. Characterization of Limit Beliefs. That h`ni is a martingale in stateH rules

out non-stationary limit beliefs (such as cycles), and convergence to incorrect point beliefs.

Markovian methods then prove that with a single rational type, as in section 3.1, limit

cascades arise, or `n ! �J . But with multiple rational types, the example in section 3.2

exhibits another possibility: h`ni may converge to where each action is equilikely in all

states. Then de�ne the set �K of confounding outcomes as those likelihood ratios `� =2 �J

satisfying
 (mjs; `�) =  (mjH; `�) for all actions m and states s (6)

Observe that since `� =2 �J , decisions generically depend on private beliefs. Yet decisions

are not informative of beliefs, given the pooling across types. Also, history is still of

consequence, for otherwise decisions would then generically be informative. Rather history

is precisely so informative as to choke o� any new inferences. The distinction with a cascade

is compelling: Decisions re
ect own private beliefs and history at a confounding outcome,

whereas in a limit cascade, history becomes totally decisive, and private beliefs irrelevant.

Markovian and martingale methods together imply that with bounded private beliefs,

fully correct learning is impossible. Only a confounding outcome or limit cascade on the

wrong action are possible incomplete learning outcomes. Summarizing:

Theorem 1 Suppose WLOG that the state is H.

(a)With a single rational type, a not fully wrong limit cascade occurs: supp(`1) � �Jnf1g.

(b) With a single rational type, and unbounded private beliefs, `n ! 0 almost surely.

(c) With T � 2 rational types with di�erent preferences, only a limit cascade that is not

fully wrong or a confounding outcome may arise: supp(`1) � �J [ �K n f1g.

(d) With bounded private beliefs, `1 2 �J n �JH with positive chance provided `0 62 �JH.

Likewise, if `0 6= `�, no single confounding outcome `� arises almost surely.

(e) Fix payo� functions for all types, and a sequence of private belief distributions with

supports [bk;
�bk] (k = 1; 2; : : :). If �bk ! 1 (or bk ! 0 in state L), then the chance of an

incorrect limit cascade `1 2 �J n �JH vanishes as k !1.

Proof: First, Lemma 3 asserts supp(`1) � [0;1) in state H, i.e. `1 <1 a.s.

Theorems B.1,2 tightly prescribe `1: Any ^̀2 supp(`1) is stationary for the Markov

process, i.e. either an action doesn't occur, or it teaches us nothing: Absent signal atoms,

with continuous transitions, this means that  (mjs; ^̀) = 0 or '(m; ^̀) = ^̀ for all m 2 M.

Proof of (a): Assume ' continuous in `. A single rational type must take some actionm

12



with positive chance in the limit ^̀, and thus '(m; ^̀) = ^̀. Since  (mjs; `) = �m+��(mjs; `),

^̀= '(m; ^̀) = ^̀�m + ��(mjL; ^̀)

�m + ��(mjH; ^̀)

and so �(mjH; ^̀) = �(mjL; ^̀) > 0. Intuitively, statistically constant noisy behavior does

not a�ect long run learning by rational individuals, as it is �ltered out. Next, pick the least

action m taken in the limit by the rational type with positive chance (i.e. for low enough

private beliefs). Since private beliefs are informative (Lemma A.1(c)), m is strictly more

likely in state L than H, and is thus informative | unless �(mjH; ^̀) = �(mjL; ^̀) = 1.

Hence, ^̀2 �Jm. The appendix analyzes the case of a discontinuous function '. �

Proof of (b): �J = f0;1g by Lemma 2 with unbounded beliefs. So supp(`1)� �J and

`1<1 a.s. together jointly imply `1 = 0 a.s. �

Proof of (c): With T � 2 types, we now have  (mjs; ^̀) = �m + ��(mjs; ^̀), and the

previous complete learning deduction fails:  (mjH; ^̀) =  (mjL; ^̀) for all m need not

imply �t(mjH; ^̀) = �t(mjL; ^̀) = 1 for all t. Instead, we can only assert ^̀2 �J or ^̀2 �K. �

Proof of (d): Recall that �JH = [0; `] where ` = mint `
t, and [�̀;1] � �J where �̀ =

maxt �̀
t, across t = 1; : : : ; T . If `1 2 [�̀;1] with positive chance, then we are done.

Otherwise `n � �̀<1 a.s. for all n. By the Dominated Convergence Theorem, the mean

of the bounded martingale h`ni is preserved in the limit: E[`1] = `0. So supp(`1) � �JH �

[0; `] fails if `0 > `. Similarly, `1 = `� with probability 1 cannot obtain if `0 6= `�. �

Proof of (e): By Lemma 2-a; d, only the extreme cascade sets �Jk = [0; `k][ [
�̀
k;1] exist

for co(supp(Fk)) close enough to [0; 1] (i.e. large k). If �k is the chance of an incorrect limit

cascade | namely, on action 1 | then E`1 � �k �̀k. But E`1 � `0 by Fatou's Lemma, so

that �k � `0=�̀k. By (2), the knife-edge cascade public likelihood ratio �̀t
k and the highest

private belief �btk yield the posterior rt1, by Bayes rule: (1 � rt1)=r
t
1 = �̀t

k(1 �
�btk)=

�btk. So

�̀
k !1 as �bk ! 1, and thus �k ! 0. (In state L, �k ! 0 as bk ! 0, and `k ! 0.) �

Observe how part (e) makes sense of the bounded versus unbounded beliefs knife-edge,

since there is a continuous transition from incomplete to complete learning.1

B. Robustness of Confounding Outcomes. Lemma 2 establishes the robust-

ness of cascade sets. However, unlike cascade sets, the existence of confounding outcomes

is not foretold by the Bayesian decision problem. They are only inferred ex post, and

are nondegenerate phenomena. Fleshing this out, the model parameters are the prefer-

ences and type/noise proportions hust(m); �m; �
ti, elements of the Euclidean normed space

R
SMT+M+T . Genericity and robustness are de�ned with respect to this parameter set.

1We think it noteworthy that Milgrom's (1979) auction convergence theorem, which also concerns
information aggregation but in an unrelated context, turns on a bounded-unbounded signal knife-edge too.
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Theorem 2 Assume there are T � 2 rational types.

(a) Confounding outcomes robustly exist, and are invariant to noise.

(b) At any confounding outcome, at least two rational types are not in a cascade set.

(c) For generic parameters, at a confounding outcome, at most two actions are taken by

active rational types (i.e. those who are not in a cascade).

(d) If belief distributions are discrete, confounded learning is non-generic.

(e) With M > 2 actions and unbounded beliefs, generically no confounding outcome exists.

(f) At any confounding outcome, some pair of types has opposed preferences.

(g) AssumeM = 2 and some types with opposed preferences. With atomless bounded beliefs

and T = 2, a confounded learning point exists generically, provided the two types are both

active over some public belief range. With atomless unbounded beliefs and fH(1); fL(0)>0,

a confounding point exists if the opposed types have suÆciently di�erent preferences.

Before the proofs, observe that while generically only two actions are active at any given

confounding outcome (part (c)), nondegenerate models with M > 2 actions still have

confounding outcomes. For with bounded beliefs, only two actions may well be taken over

a range of possible likelihoods `. Second, note that a confounding outcome is in one sense

a more robust failure of complete learning than is an incorrect limit cascade, since it arises

even with unbounded private beliefs (part (g)).

Proof of (a): This has almost been completely addressed by the third example in

section 3, which is nondegenerate in the speci�ed sense. Invariance to noise follows because

shifting �m identically aÆnely transforms both sides of (6), given (4). �

Proof of (b): By the proof of Theorem 1-a, if all but one rational type is in a cascade

in the limit, then so is that type, given (6). So at least two rational types are active. �

Proof of (c): Consider the equations that a confounding outcome `� must solve. First,

with bounded beliefs, some actions may never occur at `�. Assume that M0 � M

actions are taken with positive probability at `�. Next, given the adding-up identityPM0

i=1  (mijH; `) =
PM0

i=1  (mijL; `) = 1, (6) reduces to M0 � 1 equations of the form

 (mjH; `) =  (mjL; `), in a single unknown `. As the equations generically di�er for

active rational types, they can only be solved when M0 = 2. �

Proof of (d): Rewrite (6) as
P

t �
t�t(mjH; `) =

P
t �

t�t(mjL; `). For FH ; FL discrete,

each side assumes only countably many values. As �t(mjH; `)��t(mjL; `) generically varies

in t, the solution of (6) generically vanishes as the �t weights are perturbed. �

Proof of (e): With unbounded private beliefs, for any ` 2 (0;1), all M actions are

taken with positive chance. By part (c), confounding outcomes generically can't exist. �

14



Proof of (f): If actions 1 and 2 are taken at `�, and all types prefer m = 2 in state H,

then m = 2 is good news for state H, whence `� could not be a confounding outcome. �

Proof of (g): Consider an interval [`; �̀] between any two consecutive portions of the cas-

cade set �J . The appendix proves that under our assumptions,  (1jH; `) exceeds  (1jL; `)

near ` i�  (1jL; `) exceeds  (1jH; `) near �̀. Without signal atoms, both are continuous

functions, and therefore must cross at some interior point `� 2 (`; �̀). �

For an intuition of why confounding points exist (Theorem 2-g), consider our binary

action Texas driving example depicted in Figure 5. By continuity, it suÆces to explain

when one should expect the antisymmetric ordering  (1jL; `) ?  (1jH; `), respectively,

for ` small (near `) and large (near �̀). The critical idea here is that barring a cascade, a

partially-informed individual is more likely to choose a given course of action when he is

right than when he is wrong (Lemma A.1).

Since Houston drivers wish to go high in state H, uniformly across public beliefs, more

Houston drivers will go high in state H than in state L. The reverse is true for Dallas

drivers. The required antisymmetric ordering clearly occurs if and only if most contrarians

are of a di�erent type near ` than near �̀. With bounded beliefs, as in the example of x3.1B,

this is true simply because a di�erent type is active at each extreme, for generic preferences.

With unbounded beliefs, the above shortcut logic fails, as both types are active for all

unfocused beliefs. The key economic ingredients for the existence of a confounding point

are then (i) not too unequal population type frequencies, and (ii) suÆciently strongly

opposed preferences by the rational types. To see (i), assume the extreme case with

rather disparate type frequencies, and nearly everyone Houston-bound. No antisymmetric

ordering can then occur, as  (1jL; `) <  (1jH; `) for all ` 2 (`; �̀). Next, condition (ii)

ensures that the two types' action basins for opposing actions grow, and contrarians of

each type | those whose private beliefs oppose the public belief | increase as we approach

one extreme, and decrease as we approach the other, in opposition.

To illustrate the intuition in an unbounded beliefs variant of the driving example (from

the appendix proof of Theorem 2 (g)), a confounding point exists for u=v ? �U=�V ? v=u.

In words, type frequencies are not too far apart (�U=�V not too big or small) | and given

their disparity, preferences are suÆciently strongly opposed (u=v big or small enough).

4.2 The Traditional Case: Herds with a Single Rational Type and No Noise

We have already argued that actions converge in frequency. Without noise, this can be

easily strengthened. After any deviation from a potential herd, or �nite string of identical

actions, an uninformed successors will necessarily follow suit. In other words, the public

belief has radically shifted. As in section 3, this logic proves that herds arise.
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Theorem 3 Assume a single rational type and no noise.

(a) A herd on some action will almost surely arise in �nite time.

(b) With unbounded private beliefs, individuals almost surely settle on the optimal action.

(c) With bounded private beliefs, absent a cascade on the most pro�table action from the

outset, a herd arises on another action with positive probability.

Proof: Part (a) follows from the convergence result of Theorem 1(a) and the following

Overturning Principle: If Mr. n chooses any action m, then before n+ 1 observes his own

private signal, he should �nd it optimal follow suit because he knows no more than n, who

rationally chose m. To wit, `n+1 2 �Im after n's action, and a single individual can overturn

any given herd. The appendix analytically veri�es this fact. From Lemma 2, �Jm � int (�Im),

so that when supp(`1) � �Jm, eventually `n 2 int (�Im), precluding further overturns.

Finally, parts (b) and (c) are corollaries of part (a) and Theorem 1 (b) and (d). }

This characterization result extends the major herding �nding in BHW to general

signals and noise. (BHW also handled several states, addressed here in x6.1). The analysis

of BHW | which did not appeal to martingale methods | only succeeded because their

stochastic process necessarily settled down in some stochastic �nite time. Strictly bounded

beliefs so happens to be the mainstay for their bad herds �nding. Full learning doesn't

require the perfectly revealing signals in BHW, ruled out here.

5. STABLE OUTCOMES AND CONVERGENCE

Above, we have identi�ed the candidate limit outcomes. But one question remains:

Are these limits merely possibilities, or probabilities? We address this with local stability

results. Convergence is rapid, and this a�ords insights into why herding occurs.

5.1 Local Stability of Markov-Martingale Processes

We state this theoretical �nding in some generality. Let h(mn; xn)i be a discrete-time

Markov process on M� R, for some �nite set M = f1; 2; : : : ;Mg, with transitions given

by
xn = '(m; xn�1) with probability  (mjxn�1) (m 2 M) (7)

Further assume that hxni is a martingale: that is, x �
PM

m=1  (mjx)'(m; x). Let x̂ be a

�xed point of (7), so that for all m: either x̂ = '(m; x̂) or  (mjx̂) = 0. Our focus will

be on functions ' and  that are C1 (once continuously di�erentiable) at x̂. If xn ! x̂,

then � is a convergence rate provided �̂�n(xn � x̂)! 0 at all �̂ > �. Observe that if � is a

convergence rate of hxni, then so is any �0 > �. Also, if xn0 = x̂ for some n0, then � = 0.
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Appendix C develops a local stability theory for such Markov processes. For an intu-

itive overview, recall that near the �xed point x̂, hxni is well approximated by the follow-

ing linearized stochastic di�erence equation: starting at (mn; xn � x̂), the continuation is

(mn+1; xn+1 � x̂) = (m;'x(m; x̂)(xn � x̂)) with chance  (mjx̂). Now, for a linear process

hyni, where yn+1 = amyn with chance pm (m = 1; : : : ;M), we have yn = a
�1(n)
1 � � �a

�M (n)

M y0,

where �m(n) counts the m-continuations in the �rst n steps. Since �m(n)=n! pm almost

surely by the Strong Law of Large Numbers, the product a
p1
1 � � �a

pM
M �xes the long-run sta-

bility of the stochastic system hyni near 0. Accordingly, the product
QM

m=1 'x(m; x̂)
 (mjx̂)

determines the local stability of the original non-linear system (7) near x̂. Rigorously,

Theorem 4 Assume that at a �xed point x̂ of the Markov-martingale process (7),  (mj�)

and '(m; �) are C1 (resp. left or right C1), for all m. Assume '(m; �) is weakly increasing

near x̂ for all m, and 'x(m; x̂) 6= 1 for some m with  (mjx̂) > 0. Then x̂ is locally stable:

with positive chance, xn ! x̂ (resp. xn " x̂ or xn # x̂) for x0 near x̂ (resp. below or above x̂).

Whenever xn ! x̂, convergence is almost surely at the rate � �
QM

m=1 'x(m; x̂)
 (mjx̂)<1.

Proof: For the in-text proof here, we make the simplifying assumption that x̂ = '(m; x̂)

for all m. By Corollary C.1, given a frequency-weighted geometric mean � < 1 of the

continuation derivatives, xn ! x̂ with positive chance, and at rate �.

Di�erentiate the martingale identity x �
PM

m=1  (mjx)'(m; x) to get:

1 =
PM

m=1  (mjx)'x(m; x) +
PM

m=1  x(mjx)'(m; x) (8)

Di�erentiating the probability sum
PM

m=1  (mjx) � 1 yields implies
PM

m=1  x(mjx) = 0.

Because '(m; x̂) = x̂ for all m at the �xed point x̂, the second sum in (8) vanishes at x̂,

and we are left with
PM

m=1  (mjx)'x(m; x) = 1. The continuation slopes 'x(m; x) � 0

are not all equal since we have assumed 'x(m; x̂) 6= 1 for some m. Hence, the arithmetic

mean - geometric mean (AM-GM) inequality holds strictly. This yields � < 1.

The proof admitting the event that '(m; x̂) 6= x̂ and  (m; x̂) = 0 is appendicized. }

5.2 Cascade Sets Attract Herds, and Confounded Learning Arises

We now apply Theorem 4 to h`n; mni, and prove that both incomplete learning out-

comes do arise. Theorem 5-a; b below shows that a limit cascade develops with positive

chance if beliefs initially lie near a cascade set. Absent belief atoms, and with mono-

tonic continuation functions '(m; �), this follows from Theorem 4 provided '`(m1; `
�) 6=

'`(m2; `
�), some m1 6= m2. A positive private belief tail density guarantees this inequality.

The details, as well as consideration of nonmonotonic '(m; �), are appendicized.
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Next, part (c) proves that h`ni tends with positive chance to the confounding out-

come `�, even though it is an isolated interior point. The reason for this is that `� can be

locally stochastically stable. This occurs provided '`(m1; `
�) 6= '`(m2; `

�), where actions

m1 and m2 are taken with positive probability at `�. Not being an identity, this inequality

is generically satis�ed. For nondegenerate parameters, both derivatives are positive, as the

example shows. We let confounded learning denote convergence to the confounding point,

namely the event where `n ! `�.

Theorem 5 (a) Assume bounded private beliefs and let FH ; FL have C1 tails, with

fH(b); fL(�b) > 0. If `0 is close enough to the cascade set component Ĵ = �J1m1
\� � �\ �JTmT

�

�J, and Ĵ is not a single point, then `n ! ^̀ 2 Ĵ with positive chance, and at some rate

� < 1. Whenever `1 2 Ĵ, a herd develops: eventually type t takes atmt
.

(b) Assume unbounded private beliefs. If inf �K > 0, then Pr(`1 = 0)! 1 as `0 ! 0.

(c) Confounded learning occurs: For nondegenerate data, points `� 2 K are locally stable.

With atomic tails of the private belief distributions | as in BHW's analysis with discrete

private signals | each active continuation '(m; �) is discontinuous near its associated

cascade set �Jm; therefore, h`ni might well leap over a small enough cascade set �Jm. By

graphical reasoning, when FH ; FL have C1 tails, dynamics can jump into the cascade set

[2u;1) in Figure 4 with a left derivative '`�(1; 2u) < 0. More generally, a single action can

toss everyone into a cascade with a nonmonotonic continuation; and a confounding outcome

need not be stable. While we know of no simple suÆcient conditions that guarantee

monotonic continuation functions, we can show how a nonmonotonicity may arise: Since

'(1; `) = `FL(�p(`))=FH(�p(`)), the private belief odds FL(�p(`))=FH(�p(`)), decreasing by

Lemma A.1-e, might be more than unit-elastic in the prior likelihood ratio `. This arises

with near-atomic private beliefs (see our MIT working paper with the same title).

Finally, part (a) provides a direct explanation as to why herds arise with a single type.

Our current logic is indirect: Martingale methods force belief convergence, and a failure to

herd precludes belief convergence. Yet a herd arises i� eventually the public belief swamps

all private beliefs. Here we see more directly that belief convergence is exponentially fast,

and ipso facto the sequence of contrarian chances is summable. Namely, if Ak denotes the

event that Mr. k deviates once a herd has begun, then on almost surely all approach paths

to the �xed point, Pr(Ak) vanishes geometrically fast given the exponential stability, so

that
P

Pr(Ak) < 1. By the �rst Borel-Cantelli Lemma, Pr(Ak in�nitely often) = 0 |

even though the events fAkg are not independent. In other words, an in�nite sequence of

contrarians is impossible, and a herd must eventually start.
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6. CONCLUSION AND EXTENSIONS

6.1 Multiple States

(a) The Revised Model. We can admit any �nite number S of states. Rather than partition

[0; 1] into closed subintervals, optimal decision rules instead slice the unit simplex in RS�1

into closed convex polytopes. Belief thresholds become hyperplanes. Fixing a reference

state, the likelihood ratios `1; : : : ; `S�1 are each a convergent conditional martingale.

(b) Revised Convergence Notions. The extreme interval cascade sets for each rational type

generalize to convex sets around each corner of the belief simplex. With unbounded beliefs,

all cascade sets lie on the boundary of the simplex; with bounded beliefs, interior public

beliefs near the corners lie in cascade sets, and there can exist insurance action cascade

sets away from the boundary. Limit cascades must arise with a single rational type.

Long-run ties where two or more actions are optimal in a given state may non-generically

occur, as BHW note. Barring this possibility, a herd occurs eventually with probability

one with a single rational type and no noise. If some action is optimal in several states of

the world, then its cascade set will contain the simplex face spanned by these states. Even

with unbounded beliefs, complete learning need not obtain, as the limit belief may lie on

this simplex face but not at a corner. Yet there is adequate learning, in the terminology

of Aghion, Bolton, Harris, and Jullien (1991): Eventually an optimal action is chosen.

(c) Robustness of Confounding Outcomes. At a confounding outcome, for each ratio `s,

all M possible continuations must coincide. This produces (M � 1)(S � 1) generically

independent equations to be solved in the S � 1 likelihood ratios; this is possible for

nondegenerate data if M = 2, while M > 2 yields an over-identi�ed system. Thus, the

existence of confounding outcomes is robust: Theorem 2 reads exactly as before.

(d) Robustness of Local Stability. The extension of Theorem 5-a (stable interior cascade

sets) eludes us as it is unclear which limit point to focus on as we near the hyperplane-

frontier. The proof of Theorem 5-b (stable extreme cascade sets) is robust to several states,

since we may simply consider the likelihood ratio of all other states to the reference state.

For Theorem 5-c (stable confounding outcomes), we assume the generic property that

in a neighborhood of the confounding outcome ^̀, only two actions m1; m2 are active (taken

by rational types with positive chance). For each inactive action m, we have '(m; `) = `,

and thus the Jacobian D`'(m; `) = I. Di�erentiating the martingale property yieldsPM
m=1  (mjS; `)D`'(m; `) = I. Since inactive actions leave ` unchanged in this neigh-

borhood, we may as well focus entirely on the occurrences of m1 and m2, now with

chances  ̂(mijS; `) =  (mijS; `)=( (m1jS; `) +  (m2jS; `)). Then  ̂(m1jS; `)D`'(m1; ^̀) +
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 ̂(m2jS; `)D`'(m2; ^̀) = I. By Theorem C.2, ^̀ is locally stable under the weak condition

that the Jacobians D`'(mi; ^̀) both have real, distinct, positive, and non-unit eigenvalues.

Since eigenvalues are zeros of the characteristic polynomial, this requirement is nondegen-

erate. It is the natural generalization of non-negative derivatives of '.

6.2 Links to the Experimentation Literature

Our (1998) companion paper draws a formal parallel between bad herds and the well-

known phenomenon of incomplete learning in optimal experimentation. It also shows that

even a patient social planner (unable to observe private signals) who controls action choices

will with positive probability succumb to bad herds, assuming bounded private beliefs. The

confounded learning that we �nd is formally similar to McLennan's (1984) confounded

learning in experimentation, in the precise sense that probability density functions of the

observables coincide across all states at an interior belief. McLennan's �nding is not robust

to more than two observable signals, nor is ours to more than two active actions. Thus,

if his buyers desire to buy more than one unit of the good, confounded learning is a

nondegenerate outcome. However, as noted, there may be three or more actions in our

informational herding setting, even though only two are active at some public belief.

APPENDICES

A. ON BAYESIAN UPDATING OF DIVERSE SIGNALS

To justify the private belief structure of x2, let (�; �) be an arbitrary probability

measure space. Partition the signal measure as � = (�H + �L)=2, the average of two

state-speci�c signal measures. Conditional on the state, signals f�ng are i.i.d., and drawn

according to the probability measure �s in state s 2 fH;Lg. Assume �H ; �L are mutually

absolutely continuous, so that there is a Radon-Nikodym derivative g = d�L=d�H : � !

(0;1). Given signal � 2 �, Bayes' rule yields the private belief p(�) = 1=(g(�)+1) 2 (0; 1)

that the state isH. The private belief c.d.f. F s is the distribution of p(�) under the measure

�s. Then FH and FL are mutually absolutely continuous, as �H and �L are.

Lemma A.1 Consider the c.d.f.'s FH ; FL resulting from (�; �) and a fair prior on H;L.

(a) The derivative f � dFL=dFH of private belief c.d.f.s FH ; FL satis�es f(p) = (1�p)=p

almost surely in p 2 (0; 1). Conversely, if f(p) = (1 � p)=p then FH ; FL arise from

updating a common prior with some signal measures �H ; �L.

(b) FL(p)� FH(p) is nondecreasing or nonincreasing as p 7 1=2.
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(c) FH(p) < FL(p) except when both terms are 0 or 1.

(d) FL(p)=FH(p) � (1� p)=p for p 2 (0; 1), strictly so if FH(p) > 0.

(e) The likelihood ratio FH=FL is weakly increasing, and strictly so on supp(F ).

Proof: If the individual further updates his private belief p by asking of its likelihood in

the two states of the world, he must learn nothing more. So, p = 1=[1 + f(p)], as desired.

Conversely, given f(p) = (1� p)=p, let � have distribution F s in state s, s 2 fH;Lg.

Part (a) implies part (b), and is strict when p 2 supp(F ) n f1=2g. Hence (c) follows.

Since f = dFL=dFH is a strictly decreasing function, we can prove part (d):

FL(p) =
R
r�p

f(r) dFH(r) > f(p)
R
r�p

dFH(r) = FH(p)f(p) = FH(p)(1� p)=p (9)

for any p with FH(p) > 0. For (e), whenever FL(p) > FL(q) > 0, (9) implies

FL(p)� FL(q) =
R p
q
f(r) dFH(r) < [FH(p)� FH(q)]f(q) < [FH(p)� FH(q)]FL(q)=FH(q)

Expanding the RHS above, it immediately follows that FH(p)=FL(p) > FH(q)=FL(q). }

B. FIXED POINTS OF MARKOV-MARTINGALE SYSTEMS

This appendix establishes results needed to understand limiting behavior of the Markov-

martingale process of beliefs and actions. Despite a countable state space, standard con-

vergence results for discrete Markov chains have no bite, as states are in general transitory.

Given is a �nite set M, and Borel measurable functions '(� ; �) :M� R+ ! R+ , and

 (� j �) :M� R+ ! [0; 1] satisfying:

�  (� j x) is a probability measure on M for all x 2 R+ , or
P

m2M  (mjx) = 1.

� � and  jointly satisfy the following `martingale property' for all x 2 R+ :

P
m2M  (mjx) '(m; x) = x (10)

For any set B in the Borel �-algebra B on R+ = [0;1), de�ne a transition probability

P : R+ � B ! [0; 1]:

P (x;B) =
P

m j'(m;x)2B  (mjx)

Let hxni
1
n=1 be a Markov process with transition from xn 7! xn+1 governed by P , and

Ex1 <1. Then hxni is a martingale, true to the above casual label of (10):

E[xn+1jx1; : : : ; xn] = E[xn+1jxn] =
R
R+
tP (xn; dt) =

P
m2M  (mjxn)'(m; xn) = xn
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By the Martingale Convergence Theorem, there exists a real, non-negative stochastic vari-

able x1 such that xn ! x1 a.s. Since hxni is a Markov chain, the distribution of x1 is

intuitively invariant for the transition P , as in Futia (1982). The a.s. convergence then

suggests that the invariant limit must be pointwise invariant. While Theorem B.2 below

can be proved along these lines, some continuity assumptions will be used. Doing away

with continuity, we establish an even stronger result.

Theorem B.1 Assume that the open interval I � R+ satis�es

9" > 0 8x 2 I 9m 2 M :  (mjx) > " and j'(m; x)� xj > " (11)

Then I cannot contain any point from the support of the limit x1.

Proof: Let I be an open interval satisfying (11) for " > 0, and suppose for a contradiction

that there exists �x 2 I \ supp(x1). Let J = (�x� "=2; �x+ "=2)\ I. By (11), for all x 2 J ,

there exists m 2 M with  (mjx) > " and '(m; x) 62 J . Since �x 2 supp(x1), xn 2 J

eventually with positive probability. But whenever xn 2 J , xn+1 62 J with chance at least

". That is, the conditional chance that the process stays in J in the next period is at most

1 � ". So the process hxni almost surely eventually exits J . This contradicts the claim

that with positive chance hxni is eventually in J . Hence, �x cannot exist. }

Theorem B.2 If x 7! '(m; x) and x 7!  (mjx) are continuous for all m 2 M, then for

all �x 2 supp(x1), stationarity P (�x; f�xg) = 1 obtains, i.e.

 (mj�x) = 0 or '(m; �x) = �x for all m 2 M (12)

Proof: If there is an m such that �x does not satisfy (12), and both x 7! '(m; x) and

x 7!  (mj x) are continuous, then there is an open interval I around �x in which  (mjx)

and '(m; x) � x are both bounded away from 0. This implies that (11) obtains, and so

Theorem B.1 yields an immediate contradiction. }

C. STABLE STOCHASTIC DIFFERENCE EQUATIONS

This appendix derives results on the local stability of nonlinear stochastic di�erence

equations. There is a very abstract related literature (see Kifer (1986)), but appendix 1 of

Ellison and Fudenberg (1995) treats a model closer to ours. We generalize their stability

result to cover state-dependent transition chances (below,  may depend on x), and multi-

dimensional states (x is (S � 1)-dimensional), and analyze convergence rates.

Given is a �nite set M = f1; : : : ;Mg, and Borel measurable functions '(� ; �) : M�

R+ ! R, and  (� j �) :M� R+ ! [0; 1] satisfying
P

m2M  (mjx) = 1. Let x0 2 R. Then
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(7) de�nes a Markov process hxni. This can be recast as: Let h�ni be a sequence of i.i.d.

uniform-(0; 1) random variables. Let hyni with values in M be de�ned by yn = m when

�n 2 (
Pm�1

i=1  (i; xn�1);
Pm

i=1  (i; xn�1)]. Then xn � '(yn; xn�1).

Stability of Linear Equations. Consider this special case of (7):  (mjxn) = pm

and '(m; xn) = amxn. Here a1; : : : ; aM 2 R and p1; : : : ; pM 2 [0; 1] satisfy
P

m2M pm = 1.

Lemma C.1 De�ne �� =
QM

m=1 jamj
pm.

(a) Almost surely, ��nxn ! 0 for all � > ��. In particular, xn ! 0 almost surely if �� < 1.

(b) If �� < 1 and N0 is any open ball around 0, then there is a positive probability that

xn 2 N0 for all n, provided x0 2 N0.

(c) With � > �� and N0 an open ball around 0, Pr(8n 2 N : ��nxn 2 N0 j x0 2 N0) > 0.

Proof: (a) Let Y m
n �

Pn
k=1 1fyk=mg, so jxnj =

�QM
m=1 jamj

Y
m
n

n

�n
jx0j. Since Y

m
n =n ! pm

a.s. by the Strong Law of Large Numbers, the result follows from
QM

m=1 jamj
Y
m
n

n ! �� a.s.

(b) Since xn ! 0 a.s., Pr
�S

k2N

T
n�kfxn 2 N0g

�
= 1. So Pr (8n � k; xn 2 N0) > 0 for

some k. So with positive chance, hxni stays inside N0 starting at that xk. WLOG k = 0

since dynamics are time invariant. With linear dynamics, any x0 2 N0 will do.

(c) Use the result in (b) on the modi�cation of (7) with constants am=�. }

Local Stability of Nonlinear Equations. We care about the �xed points x̂

of (7): namely, where '(m; x̂) = x̂ for all m 2 M.

Theorem C.1 At a �xed point x̂ of (7), assume that each  (mj�) > 0 is continuous

and '(m; �) has a Lipschitz constant2 Lm. If the stability criterion �� �
QM

m=1 L
 (mjx̂)
m < 1

holds, then for all �2(��; 1) there exists an open ball N0 around 0, such that x0� x̂ 2 N0 )

Pr(xn ! x̂) � Pr (8n 2 N : ��njxn� x̂j 2 N0) > 0. If xn ! x̂, then it converges at rate ��.

Proof: First, we majorize (7) locally around x̂ by a linear system, and then argue that

Lemma C.1's conclusion applies to our original non-linear system.

WLOG, assume that 0 � L1 � � � � � LM . By continuity of  (m; �) we may choose N0

small enough and constants pm close enough to  (mjx̂) so that,

MY
m=1

Lpmm < �;

mX
i=1

 (ijx) �

mX
i=1

pi; and j'(m; x)� '(m; x̂)j � Lmjx� x̂j; 8 m 2 M

for all x� x̂ 2 N0. Fix x0 with x0� x̂ 2 N0. De�ne a new process h~xni with ~x0 = x0 given,

and ~xn � x̂ = Lm(~xn�1 � x̂) when �n 2 (
Pm�1

i=1 pi;
Pm

i=1 pi] where h�ni is our earlier i.i.d.

uniform sequence. Lemma C.1 then asserts ��n(~xn�x̂) 2 N0 for all n with positive chance.

2f : Rm ! R
k is Lipschitz at x̂ with Lipschitz constant L � 0 if 8x 2 N (x̂) : kf(x)�f(x̂)k � Lkx� x̂k

for some neighborhood N (x̂). If f is C1 at x̂, then it is Lipschitz with any constant L > kDf(x̂)k.
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In any realization of h�ni yielding �
�n(~xn � x̂) 2 N0 for all n, the resulting deterministic

linear process h~xni majorizes the non-linear one hxni: On N0 we have inductively in n,

�n 2

 
m�1X
i=1

pi;

mX
i=1

pi

#
) j~xn � x̂j = Lmj~xn�1 � x̂j � Lmjxn�1 � x̂j � jxn � x̂j

So ��n(xn � x̂)! 0, and with positive probability.

Finally, the rate of convergence is ��, since for any � > ��, a small enough neighborhood

exists for which the linear system converges at a rate less than �. Whenever xn ! x̂, hxni

eventually stays in that neighborhood, wherein it is dominated by h~xni. }

Corollary C.1 If each '(m; �) is also continuously di�erentiable, then Theorem C.1 is

true with �� =
Q

m2M j'x(m; x̂)j
 (mjx̂) < 1.

We must generalize Theorem C.1 for xn 2 R
S�1 , S > 2. We focus on the Markov-

martingale context relevant for our model, and restrict attention to M = 2. A weaker,

more generally applicable, result could be obtained using the sup-norm of matrices; see

our MIT working paper.

Theorem C.2 Let x̂ be a �xed point of (7) in RS�1 withM = 2. Assume that each  (mj�)

is continuous at x̂, with 0 <  (1jx̂) < 1, and that each '(m; �) is C1 at x̂. Assume that each

Dx'(m; x̂) has distinct, real, positive, non-unit eigenvalues, and that  (1jx̂)Dx'(1; x̂) +

 (2jx̂)Dx'(2; x̂) = I. For any open ball O 3 x̂ there exists � < 1 and an open ball N � O

around x̂, such that x0 2 N ) Pr(��njjxn � x̂jj ! 0) � Pr (8n 2 N : xn 2 O) > 0.

Proof: The proof directly extends the methods used in the uni-dimensional case, by

considering A=Dx'(1; x̂), B=Dx'(2; x̂), and  = (1jx̂). Thus,  A+ (1�  )B=I.

First, by basic linear algebra, if A has distinct real eigenvalues, then it can be diagonal-

ized as JA = QAQ�1, where Q is an invertible matrix. Likewise, because JB = QBQ�1 =

Q(I� A)Q�1=(1� ) = (I� JA)=(1� ), the matrix Q also diagonalizesB. Rearranging

terms,  JA + (1 �  )JB = I. Since all eigenvalues are positive and not one, J AJ
1� 
B has

all diagonal entries inside (0; 1), by the earlier scalar AM-GM inequality. Let �� < 1 be the

maximal element in J AJ
1� 
B . Put JC = maxfJA; JBg (componentwise), and C = Q�1JCQ.

On RS�1 , we use the inner product hx; yi = x0Q0Qy and the norm kxk2 = hx; xi. For

this yields hAx;Axi = x0A0Q0QAx = x0Q0J 0AJAQx � x0Q0J 0CJCQx = hCx;Cxi, and so

kAxk � kCxk. By continuous di�erentiability of ', for any Æ > 0, there exists an open

ball N1(Æ) around x̂ such that x 2 N1(Æ) implies '(1; x)� x̂ = A(x� x̂)+ 
(x� x̂), where

k
(x)k < Ækxk. If the maximal eigenvalue of A is ��, then we have

k'(1; x)� x̂k2 � kA(x� x̂)k2 + Æ2kx� x̂k2 + 2Æ��kx� x̂k2
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Since no eigenvalue of A or B is 0, for any � > 1, there exists an open ballN2(�) around x̂ so

small that x 2 N2(�) implies k'(1; x)�x̂k � k�A(x�x̂)k and k'(2; x)�x̂k � k�B(x�x̂)k.

Clearly then, k'(i; x)� x̂k � k�C(x� x̂)k for both i = 1; 2, for all x 2 N2(�).

For any " > 0, there exists an open ballN3(") around x̂ in which  (1j�) 2 ( �";  +").

When � � 1 > 0 and " > 0 are both small enough, all diagonal entries of the diagonal

matrix (�JA)
 �"(�JB)

1� �"(�JC)
2" lie inside (0; 1). Put N0 = N2(�) \ N3(") \ O.

Consider now

~xn � x̂ =

8><
>:
�A(~xn�1 � x̂) if �n �  � "

�B(~xn�1 � x̂) if �n >  + "

�C(~xn�1 � x̂) else

This linear system is stable. Namely, yn = Q(~xn�1�x̂)Q
�1 follows the stochastic di�erence

equation yn+1 = �JAyn or yn+1 = �JByn or yn+1 = �JCyn with chances  �", 1� �", and

2". In this diagonal system, each coordinate follows a scalar equation. By Lemma C.1,

each individual coordinate converges a.s. upon zero at rate ���. The intersection of a �nite

number of probability one events has probability one, so a.s. yn ! 0. Thus, a.s. ~xn ! x̂ at

rate ���. Extending the proof of Lemma C.1-b, there exists an open ball N � N0 around

zero, such that x0 2 N implies ~xn remains in N0 with positive probability.

We have already shown that the linear system h~xn � x̂i dominates in norm the non-

linear one hxn � x̂i on N0. Hence, xn ! x̂ with positive probability, and just as in the

proof of Theorem C.1, the convergence is at rate ��. }

D. OMITTED PROOFS

Cascade Set Characterization: Proof of Lemma 2. Since ptm(q) is increasing

in m by (1), [ptm�1(q); p
t
m(q)] is an interval for all q. Then J tm is the closed interval of all q

that ful�ll
ptm�1(q) � b and ptm(q) �

�b (13)

Interior disjointness is obvious. Next, if int (J tm) 6= ? then FH(ptm�1(q))=0 and FH(ptm(q))=

1 for all q 2 int (J tm). The individual will choose action m a.s., and so no updating occurs;

therefore, the continuation belief is a.s. q, as required.

With bounded beliefs, one of the inequalities in (13) holds for some q, but no q might

simultaneously satisfy both. As (1) yields pt0(q) � 0 and ptMt
(q) � 1 for all q, we must

have J t1 = [0; qt] and J tMt
= [�qt; 1], where pt1(q

t) � �b and ptMt
(�qt) � b de�ne 0 < qt < �qt < 1.

Finally, let m2 > m1, with q1 2 J tm1
and q2 2 J tm2

. Then ptm2�1
(q1) � ptm1

(q1) � �b >

b � ptm2�1
(q2); and so q2 > q1 because p

t
m2�1

is strictly decreasing in q.

With unbounded beliefs, b = 0 and �b = 1. Hence, ptm�1 = 0 and ptm = 1 for q 2 J tm
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by (13). By (1), this only happens for m = 1 and q = 0, or m =Mt and q = 1.

With bounded beliefs, type t takes only two actions with positive chance in a neighbor-

hood of the non-empty cascade set J tm. This follows from (13), since all ptm are continuous,

and ptm�1(q)<p
t
m(q) for all m and q2(0; 1), absent a weakly dominated action for type t.

Limit Cascades Occur: Proof of Theorem 1 (a). We �rst proceed here under

the simplifying assumption that  and ' are continuous in `. By Theorem B.2, stationarity

at the point ^̀ yields  (mj^̀) = 0 or '(m; ^̀) = ^̀. Assume ^̀ meets this criterion, and

consider the smallest m such that �(mj^̀) > 0, so FH(�pm�1(^̀)) = FL(�pm�1(^̀)) = 0. Then

'(m; ^̀) = ^̀ implies FH(�pm(^̀)) = FL(�pm(^̀)) > 0. Since FH �FSD FL by Lemma A.1(c),

this equality is only possible if FH(�pm(^̀)) = FL(�pm(^̀)) = 1. Thus, ^̀2 �Jm, as required.

Next abandon continuity. Suppose by way of contradiction that there exist a point

^̀ 2 supp(`1) with ^̀ =2 �J . Then for some m we have 0 < FH(�pm(^̀)�) < 1, so that

individuals will strictly prefer to choose action m for some private beliefs and m + 1 for

others. Consequently, �pm(^̀) > b, and since �p0(^̀) = 0 � b, the least such m satisfying

�pm(^̀) > b is well-de�ned. So we may assume FH(�pm�1(^̀)�) = 0.

Next, FH(�pm(`)) > 0 in a neighborhood of ^̀. There are two possibilities:

Case 1. FH(�pm(^̀)) > FH(�pm�1(^̀)).

Here, there will be a neighborhood around ^̀ where FH(�pm(`)) � FH(�pm�1(`)) > " for

some " > 0. From (3),  (mj`) =  (mjH; `) is bounded away from 0 in this neighborhood,

while (5) reduces to '(m; `) = `FL(�pm(`))=F
H(�pm(`)), which is also bounded away from ^̀

for ` near ^̀. Indeed, �pm(^̀) is in the interior of co(supp(F )), and so Lemma A.1 guarantees

us that FL(�pm(`)) exceeds and is bounded away from FH(�pm(`)) for ` near ^̀ (recall that

�pm is continuous). By Theorem B.1, ^̀2 supp(`1) therefore cannot occur.

Case 2. FH(�pm(^̀)) = FH(�pm�1(^̀)).

This can only occur if FH has an atom at �pm�1(^̀) = b, and places no weight on (b; �pm(^̀)].

It follows from FH(�pm�1(^̀)�) = 0 and �pm�2 < �pm�1, that F
H(�pm�2(`)) = 0 for all ` in a

neighborhood of ^̀. Therefore,  (m � 1j`) and '(m � 1; `) � ` are bounded away from 0

on an interval [^̀; ^̀+ �), for some � > 0. On the other hand, the choice of m ensures that

 (mj`) and '(m; `)�` are boundedly positive on an interval (^̀��0; ^̀], for some �0 > 0. So

once again Theorem B.1 (observe the order of the quanti�ers!) proves that ^̀ =2 supp(`1).

Confounding Outcomes are Nondegenerate: Rest of Proof of Theorem 2(g).

Let types (U; i) prefer action 1 to 2 in state H, and types (V; j) prefer action 1 to 2 in state

L. By a rescaling, we may assume that the payo� vector of type (U; i) is (bUi ; c
U
i ) in state

H and (0; 1) in state L, with bUi > cUi ; type (V; j) respectively earns (0; 1) and (bVj ; c
V
j ),

with bVj > cVj . These engender posterior belief thresholds 1=(1+ ui) and 1=(1+ vj), where

ui = bUi � cUi and vj = bVj � cVj . As in the example of section 3.1, we have private belief
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thresholds �pUi (`) = `=(ui + `) and �pVj (`) = `=(vj + `).

Case 1. Bounded beliefs.

Assume T = 2. Generically, u 6= v, so assume WLOG u < v. The cascade set for type

t is �J t = [0; `t] [ [�̀t;1]. With u < v and yet a common likelihood interval of activity, we

have `U < `V < �̀U < �̀V . For ` 2 [`U ; `V ) only type U is active. Thus  (1jL; `) rises above

 (1jH; `) in this interval, so  (1jL; `V ) >  (1jH; `V ). Near �̀V , only type V is active, so

 (1jL; �̀U) <  (1jH; �̀U). By continuity,  (1jL; `�) =  (1jH; `�) for some `� 2 (`V ; �̀U).

Case 2. Unbounded beliefs.

Let �Ui and �Vj denote the population weights.

 (1js; `) = �1 + �
P

i �
U
i F

s(`=(ui + `)) + �
P

j �
V
j [1� F s(`=(vj + `))]

)  `(1js; 0) = �f s(0)
�P

i �
U
i ui=(ui + 0)2 �

P
j �

V
j vj=(vj + 0)2

�
Since fL(0) > fH(0) by Lemma A.1,  `(1jH; 0) <  `(1jL; 0) when

P
i �

U
i =ui >

P
j �

V
j =vj.

Since fL(1) < fH(1),  `(1jH;1) >  `(1jL;1) likewise ensues from
P

i �
U
i ui <

P
j �

V
j vj.

Finally, both inequalities hold (or both fail) for suÆciently di�erent (and opposed) pref-

erences | namely ui small enough and/or vi big enough, in the case above; we get the

reverse inequality in each case for ui big enough and/or vi small enough.

Proof of Overturning Principle used in Theorem 3. If n optimally takes m,

his belief pn satis�es
1� rm�1

rm�1
> `(h)

1� pn

pn
�

1� rm

rm
(14)

Let �(h) denote the set of all beliefs pn that satisfy (14). Then individual n chooses action

m with probability
R
�(h)

dFH (resp.
R
�(h)

f dFH) in state H (resp. state L). This yields

the continuation

`(h;m) = `(h)

R
�(h)

f dFHR
�(h)

dFH

Cross-multiply and use (14) with Lemma A.1(a) to bound the right hand integral.

Stability of Markov-Martingale Processes: Rest of Proof of Theorem 4.

Next suppose that for m in some subset M0 � M, '(m; �x) 6= �x and thus  (m; �x) = 0.

Then M nM0 6= ? since
P

m  (mj�) = 1. Note that � �
Q

m=2M0
j'x(m; �x)j

 (mj�x) < 1.

Choose �̂ 2 (�; 1). By Corollary C.1, there is an open ball N0 around 0 such that x0� �x 2

N0 ) Pr(8n 2 N : �̂�njxn � �xj 2 N0) > 0 when only actions in MnM0 are taken.

De�ne events En = fmn =2 M0g, Fn = f�̂�njxn � �xj < jx0 � �xjg, Gn = \nk=0(Ek \ Fk)

and G1 = \1k=0(Ek \ Fk). Then,

Pr(G1) = Pr(G0)
Q1

n=0 Pr(Gn+1jGn) = Pr(G0)
Q1

n=0 Pr(Fn+1jEn+1; Gn) Pr(En+1jGn)
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Corollary C.1 implies 0 <
Q1

n=0 Pr(Fn+1jEn+1; Gn). When xn ! �x exponentially fast

and  is C1, the sequence
P

m2M0
 (mjxn) vanishes exponentially fast; therefore 0 <Q1

n=1 Pr(En+1jGn). Collecting pieces, 0 < Pr(G1) � Pr(xn converges to �x at rate �).

Herds and Confounded Learning Arise: Proof of Theorem 5.

Part (a): Let `0 be close to, but just below, the �xed point ^̀ = inf Ĵ . Generically,

only one rational type t is active in a neighborhood of ^̀. The other rational types are then

equivalent to noise in this neighborhood, and we continue WLOG as if there is only a single

rational type. Let m denote the action which this rational type takes with probability one

on Ĵ . Since private beliefs have C1 tails, �(mj�),  (mj�), and '(m; �) are C1 near ^̀.

Suppose that '`(m; ^̀) < 0. As ` " ^̀, both C1 functions �(mjH; `); �(mjL; `)! 1, and

thus '(m; `)� `! 0. Then `n+1 2 Ĵ for `n close enough to ^̀. So after �nitely many steps,

and thus with a positive probability, h`ni jumps into Ĵ , and convergence is at rate � = 0.

Next posit '`(m; ^̀) � 0. Let �(m; `) � `�(mjL; `)=�(mjH; `) be the continuation

without noise. Then �`(m; ^̀) = 1+^̀[fH(b)�fL(b)] < 1 by Lemma A.1(a), for bounded and

not all uninformative beliefs (0 < b < 1=2). So '`(m; ^̀) = (�m + ��`(m; ^̀))=(�m + �) < 1,

and thus � < 1 by Theorem 4, provided '(m0; ^̀) � 0 for all actions m0. Then '`(m
0; `) = 1

for ` near ^̀ for all actions except m0 = m + 1, the only other one rationally taken for `

close enough to �Jm. But �`(m; ^̀) < 1 implies �`(m+ 1; ^̀) > 1, and thus '`(m+ 1; ^̀) > 1.

Finally, assume `1 2 Ĵ , and that the �nal approach was from the left. Eventually, all

but type t must be inside their cascade sets, and thus herding. The convergence of `n to

`1 is exponentially fast. With fH(b) > 0, �t(mjH; `n) then converges exponentially fast

to one. By the �rst Borel-Cantelli lemma, eventually type t takes action m.

Part (b): By Fatou's lemma, E[`1] � `0. Let `� = inf �K > 0. Since the limit is

concentrated on f0g [ �K, it must be 0 with probability at least (`� � `0)=`
�.

Part (c): We only need robustness to noise since the example establishes the noiseless

case. Let ~', ~ denote the analogues of ',  when noise is added. Then ~ (mjH; `�) =

�m + � (mjH; `�). Di�erentiating ~'(m; `) = ` ~ (mjL; `)= ~ (mjH; `) then yields

~'`(m; `
�) = 1 + `�

~ `(mjL; `
�)� ~ `(mjH; `

�)

~ (mjH; `�)
= 1 + �`�

 `(mjL; `
�)�  `(mjH; `

�)

� (mjH; `�) + �m

If  (mjH; `�) > 0, then ~'` approaches '` as �m ! 0. If  (mjH; `�) = 0, then '` does not

a�ect the stability criterion for `�, but does when �m > 0. For any " > 0, ~'`(m; `
�) < (1+

")= ~ (mjH; `�) for small enough noise, since lim�m!0
~ (mjH; `�) ~'`(m; `

�) = 1. As �m ! 0,

~ (mjH; `�) tends to  (mjH; `�) = 0, and so for all " > 0, eventually ~'`(m; `
�)

~ (mjH;`�) <

((1+")= ~ (mjH; `�))
~ (mjH;`�) < 1+". So if �m'`(m; `

�) (mjH;`
�) < 1, then `� remains stable

for small enough �m.
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