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A MODEL OF GROWTH THROUGH
CREATIVE DESTRUCTION

By PHiLIPPE AGHION AND PETER HowirT!

A model of endogenous growth is developed in which vertical innovations, generated
by a competitive research sector, constitute the underlying source of growth. Equilibrium
is determined by a forward-looking difference equation, according to which the amount of
research in any period depends upon the expected amount of research next period. One
source of this intertemporal relationship is creative destruction. That is, the prospect of
more future research discourages current research by threatening to destroy the rents
created by current research. The paper analyzes the positive and normative properties of
stationary equilibria, in which research employment is constant and GNP follows a
random walk with drift, although under some circumstances cyclical equilibria also exist.
Both the average growth rate and the variance of the growth rate are increasing functions
of the size of innovations, the size of the skilled labor force, and the productivity of
research as measured by a parameter indicating the effect of research on the Poisson
arrival rate of innovations; and decreasing functions of the rate of time preference of the
representative individual. Under laissez faire the economy’s growth rate may be more or
less than optimal because, in addition to the appropriability and intertemporal spillover
effects of other endogenous growth models, which tend to make growth slower than
optimal, the model also has effects that work in the opposite direction. In particular, the
fact that private research firms do not internalize the destruction of rents generated by
their innovations introduces a business-stealing effect similar to that found in the
partial-equilibrium patent race literature. When we endogenize the size of innovations we
find that business stealing also makes innovations too small.

Keyworps: Endogenous growth, innovations, creative destruction.

1. INTRODUCTION

THE MAIN CONTRIBUTION of the literature on endogenous growth pioneered by
Romer (1986) and Lucas (1988) has been to endogenize the underlying source
of sustained growth in per-capita income, namely the accumulation of knowl-
edge. There are many channels through which societies accumulate knowledge,
including formal education, on-the-job training, basic scientific research, learn-
ing by doing, process innovations, and product innovations. This paper examines
a channel that has received little attention in the endogenous growth literature,
namely that of industrial innovations which improve the quality of products.
This channel introduces into endogenous growth theory the factor of obsoles-
cence; better products render previous ones obsolete. Obsolescence exemplifies
an important general characteristic of the growth process, namely that progress
creates losses as well as gains. It also embodies Schumpeter’s idea of creative

' The authors wish to acknowledge the helpful comments and criticisms of Roland Bénabou,
Olivier Blanchard, Patrick Bolton, Louis Corriveau, Mathias Dewatripont, Dick Eckaus, Zvi
Griliches, Elhanan Helpman, Rebecca Henderson, Louis Phaneuf, William Scarth, Nancy Stokey,
Patrick Rey, and the Co-Editor and referees of this journal.
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destruction (1942, p. 83, his emphasis):

The fundamental impulse that sets and keeps the capitalist engine in motion comes
from the new consumers’ goods, the new methods of production or transportation, the
new markets,.... [This process] incessantly revolutionizes the economic structure
from within, mcessantly destroymg the old one, incessantly creating a new one. ThlS
process of Creative Destruction is the essential fact about capitalism.

The present paper constructs a simple model of growth through creative
destruction, by modelling the innovation process as in the patent-race literature
surveyed by Tirole (1988, Ch. 10) and Reinganum (1989). The expected growth
rate of the economy depends upon the economy-wide amount of research. The
paper shows that equilibrium in such an economy is determined by a forward-
locking difference equation, according to which the amount of research in any
period depends upon the expected amount of research next period, similar to
the difference equation that defines equilibrium in the two-period overlapping-
generations model of money (Azariadis (1981), Grandmont (1985)).

More specifically, the model assumes, following Schumpeter, that individual
innovations are sufficiently important to affect the entire economy. A period is
the time between two successive innovations. The length of each period is
random, because of the stochastic nature of the innovation process, but the
relationship between the amount of research in two successive periods can be
modelled as deterministic. The amount of research this period depends nega-
tively upon the expected amount next period, through two effects.

The first effect is that of creative destruction. The payoff from research this
period is the prospect of monopoly rents next period. Those rents will last only
until the next innovation occurs, at which time the knowledge underlying the
rents will be rendered obsolete. Thus the expected present value of the rents
depends negatively upon the Poisson arrival rate of the next innovation. The
expectation of more research next period will increase that arrival rate, and
hence will discourage research this period.

The second effect is a general equilibrium effect working through the wage of
skilled labor, which can be used either in research or in manufacturing. In order
to be consistent with the conditions for labor-market equilibrium, the expecta-
tion of more research next period must correspond to an expectation of higher
demand for skilled labor in research next period, which implies the expectation
of a higher real wage of skilled labor. Higher wages next period will reduce the
monopoly rents that can be gained by exclusive knowledge of how to produce
the best products. Thus the expectation of more research next period will
discourage research this period by reducing the flow of rents expected to accrue
to a successful innovator.

This functional relationship between research in two successive periods has a
unique fixed point, which defines a stationary equilibrium. The stationary
equilibrium exhibits balanced growth, in the sense that the allocation of skilled
labor between research and manufacturing remains unchanged with each inno-
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vation; the log of GNP follows a random walk with drift. This is not always,
however, the only equilibrium in the model. As in the overlapping-generations
literature the functional relationship can also be satisfied by cyclical trajectories.

One noteworthy implication of the negative dependency of current research
upon future research is the possible existence of what we call a “no-growth
trap,” a cyclical equilibrium in which the level of research oscillates determinis-
tically between two levels each period, and in which the lower of these two
levels is zero. An economy in such an equilibrium would stop growing in finite
time, because with no research there would be no innovation, and hence the
period with no research would never come to an end. The (rational) expectation
that the next innovation would be followed by a very high level of research
would discourage anyone from undertaking that innovation.

Another implication is that the average growth rate of the economy is not
necessarily increased by an increase in the productivity of research. In particu-
lar, a parameter change that makes research more productive in some states of
the world can discourage research in other states, by increasing the threat of
obsolescence faced by the product of research in those other states, to such an
extent that the average growth rate is reduced.

From a normative point of view, the average growth rate in stationary
equilibrium may be more or less than socially optimal because of the presence
of conflicting distortionary effects. Specifically, although the model includes the
appropriability and intertemporal spillover effects which generate a less than
optimal growth rate in Romer’s (1990) model, it also has effects that work in the
opposite direction. In particular, there is a “business-stealing” effect of the sort
familiar from the patent-race literature (Tirole (1988, p. 399)). That is, re-
searchers do not internalize the destruction of existing rents created by their
innovations. When the size of innovations is taken as given, the business stealing
effect can lead to too much growth. In addition, we find that when the size of
innovations is endogenized, the business stealing effect tends to make innova-
tions too small.

Other papers in the endogenous growth literature that model vertical product
innovations include Segerstrom, Anant, and Dinopoulos (1990), who assume
that the time between successive innovations is deterministic. They have a richer
intersectoral structure than the present paper, and address a different set of
questions. Stokey (1988) models vertical product innovations and obsolescence
in a perfectly competitive model where innovations are the unintentional
by-product of learning by doing. The cost-reducing innovations of Shleifer
(1986) can also be interpreted as vertical product innovations. His model does
not endogenize growth, however, except in a limited dichotomous sense; that is,
the long-run average growth rate is fixed by the exogenously specified rate of
invention, except in the singular case where no inventions are ever implemented
and the economy stops growing.

Corriveau (1988) has a discrete-time analysis of endogenous growth based on
cost-reducing innovations as in Shleifer, in which the possibility of simultaneous
discoveries creates a different kind of “business-stealing” effect. In his model
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the payoff to current research is independent of future research because rents
to innovations are assumed to accrue only in the same period as the research
from which they resulted. Grossman and Helpman (1991) construct a model of
vertical product innovation that explicitly integrates the analysis of Segerstrom,
Anant, and Dinopoulos (1990) with that of the present paper.

Judd (1985) and Romer (1990) model growth based on horizontal product
innovations, using the Dixit-Stiglitz (1977) model of product variety. These
models involve no obsolescence; new products are no better than existing ones.
They also involve no uncertainty. King and Rebelo (1988) introduce uncertainty
into an endogenous growth model by assuming a random rate of return to the
accumulation of human capital under conditions of perfect competition.

Within the patent-race literature the paper closest to the present is that of
Reinganum (1985), which also emphasizes the affinity to creative destruction.
The present paper adds to Reinganum’s model the general equilibrium effects
of future research on the rents created by current research, and of the level of
manufacturing employment on the cost of research. The paper also generalizes
the Reinganum model by allowing the stream of innovations to continue
forever, and by explicitly analyzing the effect of the future level of research on
the prospective reward to current research.?

Section 2 below presents the basic model of the paper. This basic model
assumes for simplicity that each innovation creates an economy-wide monopoly
in the production of intermediate goods. Section 3 derives the functional
relationship between research in two successive periods that defines equilib-
rium. It then analyzes the determinants of the average growth rate and the
variability of the growth rate in stationary equilibrium. One of those determi-
nants is the degree of market power possessed by an intermediate-good
monopolist, which is parameterized in the model. Section 4 characterizes the
welfare properties of stationary equilibria in the basic model, under the assump-
tion of a fixed size of innovations. Section 5 introduces the possibility of
nondrastic innovations. Section 6 generalizes the model by allowing research
firms to choose the size of innovations as well as their arrival rate. Section 7
deals with a strategic monopsony effect that has been ignored until this point in
the argument, by which an intermediate firm can extend the expected lifetime of
its monopoly by hiring more than the short-run profit-maximizing amount of
skilled Iabor, at the cost of a higher real wage. Section 8 relaxes the assumption
of a single economy-wide monopoly in the production of intermediate goods.
Section 9 contains brief concluding remarks.

2 That is, Reinganum’s comparative-statics analysis follows the common practice of the patent-race
literature in taking the reward to a successful innovation as given, whereas the following analysis
shows that the effect of a parameter change on the time path of research involves feedback from
future research to current research working through the two above-mentioned channels: creative
destruction and the general equilibrium wage effect on profits, both of which flow through the
reward to a successful innovation.
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2. THE BASIC MODEL
2.A. Assumptions

There are three classes of tradeable objects: labor, a consumption good, and
an intermediate good. There is a continuum of infinitely-lived individuals, with
identical intertemporally additive preferences defined over lifetime consump-
tion, and the constant rate of time preference r > 0. The marginal utility of
consumption is assumed constant; thus r is also the rate of interest.

There is no disutility from supplying labor. There are ‘three categories of
labor: unskilled labor, which can be used only in producing the consumption
good; skilled labor, which can be used either in research or in the intermediate
sector; and specialized labor, which can be used only in research. Each individ-
ual is endowed with a one-unit flow of labor. Let M, N, and R denote
respectively the mass of unskilled, skilled, and specialized individuals.

The consumption good is produced using the fixed quantity M of unskilled
labor, and the intermediate good, subject to constant returns. Since M is fixed,
the production function can be written as

(21) y=A4F(x),

where F' >0, F” <0, y is the flow output of consumption good, x the flow of
intermediate input, and A a parameter indicating the productivity of the
intermediate input.

The intermediate good is produced using skilled labor alone, according to the
linear technology

(22) x=L,

where L is the flow of skilled labor used in the intermediate sector.

Research produces a random sequence of innovations. The Poisson arrival
rate of innovations in the economy at any instant is A¢(n, R), where n is the
flow of skilled labor used in research, A a constant parameter, and ¢ a
constant-returns, concave production function. Both A and ¢ are given by the
technology of research. There is no memory in this technology, since the arrival
rate depends only upon the current flow of input to research, not upon past
research. Assume that skilled labor is an essential factor in research: ¢(0, R) = 0.
Then an economy that allocates no skilled labor to research will not grow,
because it will experience no innovations. (The “linear” case where ¢(n, R) =n,
that is, where R = 0, will be used frequently.)

Time is continuous, and indexed by 7> 0. The subscript ¢ =0,1... denotes
the interval starting with the ¢th innovation (or with =0 in the case of ¢ = 0)
and ending just before the ¢ + 1st. The length of each interval is random. All
prices and quantities are assumed to remain constant within each interval. If 7,
is applied to research in interval ¢, the length of the interval will be exponen-
tially distributed with parameter A¢(#n,, R).

Each innovation consists of the invention of a new intermediate good, whose
use as input allows more efficient methods to be used in producing the
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consumption good. Real-world examples include such “input” innovations® as
the steam engine, the airplane, and the computer, whose use made possible new
methods of production in mining, transportation, and banking, with economy-
wide effects. An innovation need not, however, be as revolutionary as these
examples, but might consist instead of a new generation of intermediate good,
similar to the old one.

Specifically, use of the new intermediate good increases the productivity
parameter A in (2.1) by the factor y > 1. There are no lags in the diffusion of
technology.* The most modern intermediate good is always produced, so that:

(23) A, =Apy' (t=0,1,...),

where A, is the initial value given by history. (Of course, it is always possible to
produce the consumption good using an old technology, with a correspondingly
old intermediate good.)

A successful innovator obtains a patent which it can use to monopolize the
intermediate sector. (Section 8 relaxes this assumption by allowing for a finite
number of monopolistic competitors.) The patent is assumed to last forever.
However, the monopoly lasts only until the next innovation, at which time the
intermediate good is replaced by the next vintage. All markets are perfectly
competitive except that for intermediate goods.

2.B. The Intermediate Monopolist’s Decision Problem

For ease of presentation the analysis starts by assuming that innovations are
always drastic; that the intermediate monopolist is unconstrained by potential
competition from the previous patent. This assumption will be relaxed in
Section 5 below. The intermediate monopolist’s objective is to maximize the
expected present value of profits over the current interval. When the interval
ends so do the profits. The only uncertainty concerns the length of the interval.
Except in Section 7 below, the monopolist is assumed to take as given the
amount of research at each time, and hence also takes as given the length of the
interval.

3 Scherer (1984) combines process- and input-oriented R and D into a measure of “used” R and
D, which he distinguishes from pure product R and D. He estimates that during the period
1973-1978 in U.S. industry the social rate of return to “used” R and D lay between 71% and 104%,
whereas the return to pure product R and D was insignificant.

Gradual diffusion could be introduced by allowing the productivity parameter after each
innovation to follow a predetermined but gradual path asymptotically approaching the limit A,, and
then to jump to A, upon the next innovation and follow a gradual path approaching A4, .. This
would produce a cycle in research within each interval, as the gradual rise in productivity would
induce manufacturing firms to hire more and more workers out of research until the next innovation
occurs,
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Let x, be the flow of the intermediate good produced by the monopolist
during interval ¢. By (2.2), x, also equals employment of skilled labor in
manufacturing. The inverse demand curve facing a monopolist charging the
price p, (relative to the numéraire consumption good) is the marginal product

(2.4) p,=A,F(x,).

Thus the monopolist chooses x, to maximize [ 4,F'(x,) — w,]x,, taking as given
A, and the wage w, of skilled labor.

Define the “productivity-adjusted wage” as w, =w,/A4,, and the “marginal-
revenue function” as &(x) = F'(x) + xF"(x). Assume that marginal revenue is
downward-sloping and satisfies Inada-type conditions.

AssumpTioN 1: @' (x) <0 for all x >0, lim, _, , @(x) = o, lim, _, , @(x) = 0.

Then for any positive @, the monopolist’s choice of output x, is given by the
first-order condition
(2.5) w,=d(x,),
or
(2.6) x,=%(w,),
where % is the function @~ !. The flow of monopoly profits is
(2.7) m,=Am(w,),

where 7(w) = —(#(w))*F"(#(w)). Note that £ and # are each strictly positive-
valued and strictly decreasing for all positive w,.

An example satisfying Assumption 1 is the Cobb-Douglas example, in which
the consumption-good technology is F(x) =x%, 0 <a < 1, which yields

l1-«

1/(a—1)

(2.8) P =w/a, 7Tt=( )tht’ xt=(wt/a2)

2.C. Research

There are no contemporaneous spillovers in research; that is, a firm employ-
ing the amounts z, s of the two factors in research will experience innovations
with a Poisson arrival rate of A¢(z,s), independently of the inputs of other
firms. The objective of a firm in choosing z and s at each date is to maximize
the flow of expected profits from research:

(2.9) Ap(z,8)V,y—w,z—ws,

where V,_, is the value of the ¢+ 1st innovation, and w; is the wage rate of
specialized labor.
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Because ¢ has constant returns, and because the total flow of specialized
labor must equal R in equilibrium, it follows from the Kuhn-Tucker conditions
for maximizing (2.9) that

(2.10) w,>¢'(n,)AV,.y, n,>0, with at least one equality,

where ¢(n,) = ¢(n,, R), and n, is the economy-wide flow of skilled labor used
in research during interval ¢. Note that

(211) ¢(0)=0, and ¢'(n)>0, ¢"(n)<0 forall n>0.

As we shall see, all research is conducted by outside research firms rather
than by the incumbent monopolist. Because of constant returns to scale the
number of research firms is indeterminate. The value V,,_; to an outside
research firm is the expected present value of the flow of monopoly profits , .,
generated by the ¢ + 1st innovation over an interval whose length is exponen-
tially distributed with parameter A¢(n, , ,):

Tyt1

G VI

The reason why the monopolist chooses to do no research is that the value to
the monopolist of making the next innovation would be V,,, —V,, which is
strictly less than the value V,, to an outside firm. This is an example of the
Arrow effect, or replacement effect (see Tirole (1988, p. 392)). The efficiency
effect, or rent-dissipation effect, according to which an outside firm might
receive a smaller payoff from an innovation than would the present incumbent,
because of having to compete with the present incumbent, is absent in the case
of drastic innovations because the flow of profit =, , in (2.12) is independent of
whether the firm earning those profits has access to the previous patent.’

There is an important intertemporal spillover in this model. An innovation
raises productivity forever. It allows each subsequent innovation to raise A, by
the same multiple y, and with the same probability A¢(#n,), but from a starting
value that is higher by the multiple y than it would otherwise have been. The
producer of an innovation captures (some of) the rents from that productivity
gain, but only during one interval. After that the rents are captured by other
innovators, building upon the basis of the present innovation, but without
compensating the present innovator.® This intertemporal spillover plays a role
in the welfare analysis of Section 4 below.

3 If, instead of a constant-returns research technology, each firm had an identical research
technology with rising marginal cost, then the monopolist might do some research, but the Arrow
effect would imply that the monopolist would do less research than each outside research firm, as
shown by Reinganum (1985, Proposition 2) in a similar context.

8 This is the spillover identified by Romer (1990, pp. S83-S85).
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The model also embodies Schumpeter’s idea of “creative destruction.” Each
innovation is an act of creation aimed at capturing monopoly rents. But it also
destroys the monopoly rents that motivated the previous creation. Creative
destruction accounts for the term A¢(n,.,) in the denominator of V,,, in
(2.12). More research reduces the expected tenure of the current monopolist,
and hence reduces the expected present value of its flow of rents.

2.D. Capital Markets

The structure of capital markets can be specified in many different ways. One
is to suppose that there is a frictionless Walrasian credit market in which future
expected consumption can be discounted at the constant rate r. Another is to
suppose that there is no credit market. According to the latter specification all
nonresearch workers consume their wage income at each instant, the owners of
the monopoly intermediate firm consume their flow of profits at each instant,
and research workers receive no pay unless their firms innovate, at which time
they are paid in shares of the next intermediate firm. According to either
specification, all research firms could be assumed to be owned by their workers,
and (2.9) would represent the expected flow of surplus to be divided among
them. The crucial assumption that utility is linear in consumption makes these
different specifications all equivalent, by removing any motive to use capital
markets for risk-sharing.

3. PERFECT FORESIGHT DYNAMICS AND BALANCED GROWTH
3.A. Equilibrium

At any point in time there is only one decision for society to make; namely,
how to allocate the fixed flow N of skilled labor between manufacturing and
research. Combining (2.5), (2.7), (2.10), (2.12) and the equilibrium condition
N=n, +x, yields

(I)(N_nt) S 'yﬁ(‘ﬁ(N_nHl))
AG(n) T r+de(n)

(3.1) , n,>0, with atleast one equality.

Condition (3.1) determines research employment at ¢ as a function of research
employment at ¢ + 1:

(3.2) nt=‘/’(nt+1)7

where ¢: [0, N) > R, is a strictly decreasing function wherever it is positive-
valued.

‘'The functional relationship ¢ between research employment in two succes-
sive periods is illustrated in Figure 1, where c(n,) is the “marginal cost of
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marginal cost, benefit
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Ficure 1.—The effect of future research on current research: ny = ¢(n;) and n; = y(n,). The
pair (0, n8) constitutes a no-growth trap.

research” and b(n,, ) the “marginal benefit of research,” defined by

_&(N-n,)
c(n,) A’ (n,)

~ ,y»ﬁ-((f)(N"nt+l))
b(n,.,) = r+ie(n,.q)

By (2.11) and Assumption 1, c is strictly increasing, b is strictly decreasing, and
c(n,) > » as n,— N. It follows that in the case illustrated in Figure 1, where
c(0) < b(0), ¢(n,,,) is well defined on [0, N), and is positive and decreasing if
and only if” n,,, <7. In the case where c(0) <b(0), ¥(n,, ) is identically zero.

In economic terms, there are two reasons for the negative dependency of
current research on future research, corresponding to the two places in which
n,,, enters the expression for the marginal benefit of research, b(n, ). That is,
a foreseen increase in research next period discourages research this period (a)
by raising future wages and hence reducing the flow of profits 7(&(N —n,, )
to be captured from the next innovation, and (b) by raising the rate of creative
destruction A¢(n,, ) next period and hence shortening the expected lifetime of
the monopoly to be enjoyed by the next innovator.

A perfect foresight equilibrium (PFE) is defined as a sequence {n,}j satisfying
(3.2) for all ¢ > 0. In Figure 1 the sequence {ng, n, n,, ...} constructed from the

7 The critical value 7 is defined by c(0) = b(7), unless lim,, _, 5 b(n) > c(0), in which case 7 = N.
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counterclockwise spiral starting at n, constitutes a PFE. A stationary equilib-
rium corresponds to a PFE with n, constant. It is defined as the solution to

i =y(#).
There exists a unique stationary equilibrium. As Figure 1 shows, if ¢(0) < b(0)
then 7 is positive, and is defined by
@(N-f) y#(&(N—h))
A@(R)  r+Ae(h)

(3.3)

In this case growth is positive because innovations arrive at the Poisson rate
Ao(7) > 0. If ¢(0) > b(0) then A = 0 and there is no growth, because the Poisson
arrival rate of innovations is A¢(0) = 0. Henceforth, assume that ¢(0) < b(0) and
Ai>0.

Other equilibria may also exist. A two-cycle is a pair (n° n!) such that
n® = y(n') and n' = Y(n°). It defines a PFE of period two. If both n° and n' are
positive, the PFE is a “real” two-cycle. If either n° or n! is zero, it is a
“no-growth trap.” In a real two-cycle, the prospect of high research in odd
intervals discourages research in even intervals, and the prospect of low re-
search in even intervals stimulates research in odd intervals.® A no-growth trap
is the extreme case in which the prospect of high research in odd intervals shuts
down research completely in even intervals. Although the no-growth trap
defines an infinite sequence {n,}7, the oscillation will cease after one innovation.
From then on no growth will occur because no innovations will occur. It is clear
from Figure 1 that a no-growth trap exists if lim , _,,7(w)=0 and r is small
enough. A real two-cycle will exist if a no-growth trap exists and® c'(4) +
b'(n) > 0.

Consider the Cobb-Douglas example: F(x) =x?, with a linear research tech-
nology ¢(n) = n. From (2.8), the equation (3.3) defining a positive 7 is

e (O

r+An

(34) 1=

b

8 Shleifer (1986) also finds deterministic cycles in a model of multiple equilibria with innovations.
The source of multiplicity in Shleifer’s model is a contemporaneous strategic complementarity,
whereby the incentive to innovate this period is stronger the more innovations are occurring
elsewhere in the economy this period. No such strategic complementarity exists in the present
model, in which more research this period raises the marginal cost of research without affecting the
marginal benefit. Because Shleifer assumes that imitation destroys the return from innovations after
one period, his model does not exhibit the dependency of current research upon future research
which underlies the cycles, as well as the other equilibria, in the present model. Deneckere and
Judd (1986) also generate cycles in a model of innovations. Their cycles arise from local instability of
a unique equilibrium rather than from multiple equilibria. Like Shleifer, they also do not allow for
any effect of future research upon current research.

Consider the second-iterate function 2(n). Geometrically, 2 is defined by reversing the spiral
illustrated in Figure 1; thus ny = ¥%(n,). Suppose a no-growth trap exists. Then 0 = ¢s%(n) <n for
small but positive n (see Figure 1). Because ¢'(#) + b'(#2) > 0, therefore the counterclockwise spiral
in Figure 1 spirals out in the neighbourhood of #, so that %(n) > n for n close to but less than 7.
By the continuity of ¢ there must exist an n° strictly between 0 and # such that ¢2(n®) = n°
Evidently n®, ¢(n°) constitute a real two-cycle.
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and the condition for 7 to be positive is

(3.5 1</\y(1—;—a)N/r.

Since 7(®) = 0, a no-growth trap exists when r is small. Since'® '(4) /c'(A) = 0
uniformly in r as a — 0, a real two-cycle exists when « and r are small enough.

3.B. Research in Stationary Equilibrium

The rest of the paper focuses on stationary equilibria. Comparative-statics
analysis of (3.3) shows the following proposition.

ProposiTioN 1: The amount of research employment #i in a stationary equilib-
rium increases with: (a) a decrease in the rate of interest r; (b) an increase in the
size y of each innovation; (c) an increase in the total endowment N of skilled
labor; or (d) an increase in the arrival parameter \.

This proposition is intuitive: (a) A decrease in the rate of interest increases
the marginal benefit to research, by raising the present value of monopoly
profits. (b) An increase in the size of each innovation also increases the
marginal benefit to research, by raising the size of next interval’s monopoly
profits relative to this interval’s productivity. (c) An increase in the endowment
of skilled labor both increases the marginal benefit and reduces the marginal
cost of research, by reducing the wage of skilled labor. (d) An increase in the

011 this example

b(n)= W and  c(n)=&(N—n)/A.
Therefore
W)= T EW )TN =) Z4b() -y = @ (N =),

r+An
Because Ab(#A) = Ac(#) = @(N — #), therefore
o Ay (B(N - R)) +AG(N —A) /@ (N - A)
bR/ () = ek .
But #(a(N — ) = —(N — 7) and (N — A) = a®(N — #)*~ 1. Therefore
AMN-# 1

( ) ( + )

r+Ah

b ()/e (7) = -

From this and (3.4),

l-a

1
b'(a)/c(A)=— ( Sy =a) )('y + m) — 0 uniformly in r as « — 0.
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arrival parameter decreases both the marginal cost and the marginal benefit of
research, because on the one hand it results in more “effective” units of
research for any given level of employment, but on the other hand it also
increases the rate of creative destruction during the next interval. The former
effect dominates.

The above discussion of result (d) suggests an interesting implication of
creative destruction that could arise if the arrival parameter A were permitted to
vary from one interval to the next. Suppose, for example, that with each
successful innovation a new value of A was drawn from the finite set {A,...,A,,}
according to a fixed transition matrix B. Transition into a high-A state could
represent a fundamental breakthrough leading to a Schumpeterian wave of
innovations, whereas transition to a low-A state could represent the exhaustion
of a line of research. Then a stationary equilibrium would involve not one level
of research employment but one for each state. Now consider the effects of a
ceteris paribus increase in A,. This parameter change might raise research
employment in state 2, but it would tend to reduce research employment in
other states, by increasing the rationally expected rate of creative destruction
during the next interval. Furthermore, even though the parameter change
represents an unambiguous improvement in the productivity of the research
technology, it might reduce the average level of research employment in
stationary equilibrium. Indeed, Appendix 1 works out a numerical example in
which, in the limit, as A, becomes infinite, average research employment falls to
Zero.

The linear Cobb-Douglas example of (3.4) and (3.5) above yields an additional
comparative-statics result by parameterizing the degree of market power en-
joyed by an intermediate monopolist. Specifically, 1 — a is the Lerner (1934)
measure of monopoly power (price minus marginal cost divided by price),
(1 —a)~! is the elasticity of demand faced by an intermediate monopolist, and
1 — « is the fraction of equilibrium revenue in the intermediate sector accruing
to the monopolist, 7, /(7, + w,x,). Thus, by all measures, the degree of market
power is measured inversely by the parameter a.

According to (3.4), an increase in the degree of market power (decrease in a)
increases the stationary-equilibrium amount of research 7 whenever # is
positive. According to (3.5), given fixed values of the parameters v, A, r, and N,
the stationary-equilibrium amount of research will be positive if and only if
there is at least some minimal degree of market power; that is, if and only if «
is less than the critical value

AyN
— <1
AYyN +1

a*

If the degree of market power falls short of this minimal value, then the flow of
monopoly profits from the next innovation would not be enough to induce
positive research aimed at capturing those rents even if they could be retained
forever, with no creative destruction in the next interval.
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3.C. Balanced Growth

Real output (i.e. the flow of consumption goods) in the economy during
interval ¢ is

(3.6) y.=A,F(N-#),
which implies

(3'7) Yes1=YYs-
Thus the time path of the log of real output In y(s) will be a random
step-function starting at In y, = In F(N —#) + In A4, with the size of each step
equal to the constant Iny > 0, and with the time between each step {4,, 4,,...}
a sequence of iid variables exponentially distributed with parameter A¢(#). This
statement and (3.3) fully specify the stochastic process driving output, in terms
of the parameters of the model.

Not surprisingly, this stochastic process is nonstationary. Suppose observa-
tions were made at discrete points in time 1 unit apart. Then from (3.7),

(38) Iny(r+1)=Iny(7)+e(7) (r=0,1,...)

where £(7) is Iny times the number of innovations between 7 and 7+ 1. From
the above analysis

{8(0) e(1) }

Iny’ Iny’ "

is a sequence of iid variables distributed Poisson with parameter A¢(#4). Thus
(3.8) can be written as

(39)  Iny(r+1)=Iny(r) +Ap(A)Iny +e(r) (r=0,1,...),
where e(7) = e(7) — Ap(A) In y. Note that e(7) is iid., with

(3.10) E(e(r)) =0, vare(r)=Ag(A)(Iny)’.

From (3.9) and (3.10), the discrete sequence of observations on the log of
output follows a random walk with constant positive drift. It also follows that
the economy’s average growth rate (AGR) and the variance of the economy’s
growth rate (VGR) are given by

(3.11) AGR=\g(A)Iny, VGR=2Ae(A)(Iny)>.

Combining (3.11) with Proposition 1 allows one to sign the impact of parame-
ter changes on the average growth rate. Increases in the arrival parameter, the
size of innovations, the size of skilled labor endowment, and (in the Cobb-
Douglas example) the degree of market power all raise AGR. Increases in the
rate of interest lower it. The parameter changes have the same qualitative effect
on VGR as on AGR. The effects are intuitive and straightforward. The effect of
market power, combined with the finding that a minimal degree of market
power is needed before growth is even possible, underlines the importance of
imperfect competition for the growth process.
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The example of Appendix 1 shows, however, that in a more general setting
where the arrival parameter A can vary from state to state, it is not always true
that an unambiguous improvement in the productivity of the research technol-
ogy will increase the economy’s average growth rate. Instead, an increase in the
arrival parameter in one state can discourage research in other states by
increasing the rationally expected rate of creative destruction to such an extent
that the economy’s average growth rate falls.

4. WELFARE PROPERTIES OF THE STATIONARY EQUILIBRIUM

This section compares the laissez-faire average growth rate derived above
with the AGR that would be chosen by a social planner whose objective was to
maximize the expected present value of consumption y(7). Since every innova-
tion raises y(7) by the same factor v, the optimal policy consists of a fixed level
of research. Expected welfare is

@1 U=[e" S [1(,7) A, F(N - n) dr,
0 t=0

where I1(¢,7) equals the probability that there will be exactly ¢ innovations up
to time 7. Given that the innovation process is Poisson with parameter A¢(n),
we have

(42)  II(t,7) = (A@(n)7) e ¢ /1!
From (4.1) and (4.2),

AoF(N—n)
T r=2e(m)(y-1)

Equation (4.3) identifies U as the initial flow of output A4,F(x) discounted at
the rate r — A@(n)(y — 1). This “social discount rate” is less than the rate of
interest r because the stream of output will be growing over time. More
specifically, the social discount rate is the rate at which each risk-neutral
individual in the economy would capitalize a stream that was perpetually subject
to increases by the factor (y — 1) with a Poisson arrival rate of A¢(n), and
constant otherwise.

The socially optimal level of research n* maximizes U. The first-order
condition for an interior maximum is

F'(N-n*) (y—1)F(N-n*)

Ag'(n%) r—Ap(n*)(y-1)"
(If no solution exists to (4.4) then n* = 0.) This level of research would produce.
an average growth rate of Ao(n*)Iny. Accordingly laissez-faire produces an

average growth rate more (less) than optimal if A > (<)n*. Which way these
inequalities go can be checked by comparing (4.4) with the equation determin-

(43) U

(4.4)
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ing the stationary equilibrium level of research 7:

G(N-A) y#(d(N—Ah))
AP(R)  r+he(h)

(3.3)

There are four differences between (4.4) and (3.3). The first is that the social
discount rate r — A@(n)(y — 1) appears in (4.4) instead of the “private discount
rate” r + Ap(n). The social rate is less than the rate of interest, whereas the
private rate is greater. This difference corresponds to the intertemporal spillover
effect discussed in Section 2. The social planner takes into account that the
benefit to the next innovation will continue forever, whereas the private re-
search firm attaches no weight to the benefits that accrue beyond the succeeding
innovation.!!

The second difference is that total output F(N — n*) appears on the right-
hand side of (4.4) instead of the flow of profits 7(&(N — 7)) that appears in the
marginal benefit in (3.3). This is the “appropriability” effect familiar from the
patent-race literature.

The third difference is that the factor (y — 1) in (4.4) replaces y in the
marginal benefit of (3.3). This corresponds to a “business-stealing” effect. The
private research firm does not internalize the loss to the previous monopolist
caused by an innovation. In contrast, the social planner takes into account that
an innovation destroys the social return from the previous innovation.!?

The fourth difference is that the marginal product F'(N —n*) appears in
(4.4) in place of the wage @(N —#) in the marginal cost in (3.3). This is a
“monopoly-distortion” effect which does not appear in the partial-equilibrium
patent-race literature. Specifically, the social cost of research employment
exceeds the private cost because in laissez-faire the alternative user of skilled
research labor is a monopolist.

" Two additional spillovers could easily be included. First, researchers could benefit from the
flow of others’ research, so that an individual firm’s arrival rate would be a constant-returns function
of its own and others’ research. Second, there could be an exogenous Poisson arrival rate u of
imitations that costlessly circumvent the patent laws and clone the existing intermediate good. Both
would have the effect of lowering AGR. Also, as shown in Aghion and Howitt (1988), the inclusion
of . would introduce another source of cycles in the economy, since each imitation would make the
intermediate industry perfectly competitive, which would raise manufacturing employment, until the
next innovation arrives.

In the patent-race literature the business-stealing effect is usually derived in a symmetric
model with no incumbent, in which all research firms enjoy some positive surplus because there is
no free entry. An example is Mortensen (1982), who identifies the business-stealing effect with the
comment: “Wasteful competition arises because none of the contestants takes account of the loss of
the prospect that others suffer when the former’s discovery ends the game” (p. 970). In the present
paper the loss accrues not to the other research firms, whose value remains equal to zero, by free
entry, even after an innovation by another firm, but to the incumbent monopolist who, because of
the replacement effect, has chosen not to participate in the patent race. As Tirole (1988, p. 399)
notes, there is another negative externality that would occur if the research technology had memory.
Specifically, a firm might engage in research in order to reduce the probability that its rivals will win
the race. This effect is absent from the present model, in which one firm’s research has no effect on
the others’ probabilities of innovating.
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The intertemporal-spillover and appropriability effects tend to make the
laissez-faire average growth rate less than optimal, whereas the business-steal-
ing and monopoly-distortion effects tend to make it greater than optimal.
Because these effects conflict with each other, the laissez-faire average growth
rate may be more or less than optimal. This can be seen in the linear
Cobb-Douglas example, where n* and A satisfy

1
A(y-l)(;)(N_”*)

@3 I=—=0sG-n

(3.4) 1=M(l;a)(N_ﬁ)

r+ Af

In this example, the appropriability and monopoly-distortion effects are com-
bined in the presence of the factor (1 — a) in (3.4); together they tend to make
the laissez-faire AGR less than optimal. This combined effect together with the
intertemporal-spillover effect dominates when the size of innovations vy is large,
in which case!® A < n*. However, when there is much monopoly power (a close
to zero) and innovations are not too large, the business-stealing effect domi-
nates, in which case!* A > n*.

5. NONDRASTIC INNOVATIONS

Until this point the analysis has assumed that innovations are drastic; that the
intermediate monopolist is not constrained by potential competition from own-
ers of previous patents. The present section shows that the analysis of stationary
equilibria can be generalized to the case where innovations are nondrastic.

Innovations are nondrastic if and only if the previous incumbent could make a
positive profit when the current one was charging the price p, =A,F'(i(w,))
which yields an unconstrained maximum to the current incumbent’s profit. If
innovations are nondrastic, the current incumbent sets the maximum price that
gives the previous incumbent nonpositive profits, and satisfies all the demand at
that price, leaving none to the previous incumbent.

The previous incumbent could make a positive profit if and only if a
competitive producer of consumption goods could produce at an average cost of
less than unity by combining unskilled labor with the previous incumbent’s
good, buying the latter at a price equal to its average cost of production w,; that

3 Prom (4.5), as y rises to the upper limit 1 +r/AN, n* approaches N while, from (3.4), 71 is
bounded below N.

“1f 1/a>1+r/AN, then A>0 for all y, whereas if y<1+ar/AN, then n* =0. These
inequalities are compatible with the condition derived below for innovations to be drastic, namely

that y > ™%, as can be verified with the example: a =1/2, y = V2, r/AN = 242 - 1).
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is, if and only if the condition

(51  C(wMw,)<4,_,

were to hold with strict inequality, where wM is the equilibrium wage of

unskilled labor and C is the unit-cost function associated with the production
function F.

In equilibrium all the unskilled labor is combined with the current incumbent’s
intermediate good. Thus the unskilled wage must satisfy the competitive equilib-
rium condition:

(52) C(wM p)=A,.

It follows that innovations are nondrastic if and only if (5.1) holds with strict
inequality when w}? satisfies (5.2) together with p, = A, F'(#(w,)). It also follows
that if innovations are nondrastic then p, and wM satisfy (5.2) and (5.1) with
equality.

In the Cobb-Douglas example, where the unconstrained optimal price for the
current incumbent is w,/a, innovations are nondrastic if and only if

(53) y<a™f

in which case!®

(5‘4) pt=,yl/awt’ 7Tt=(71/a_1)wtx;’ xt=(yl/awt/a)l/(a—1).
The rest of the analysis of this section will focus on stationary equilibria with
positive growth in the linear Cobb-Douglas example.

The analysis assumes that the monopolist chooses to do no research, as in the
case of drastic innovations. This implicitly places a lower bound on the size of
innovations, because it requires the efficiency effect to be smaller than the
replacement effect. Appendix 2 shows that the condition

(55) ¥/ +y )=y '+ min{y¥*,a"'}

is sufficient for the monopolist to do no research. Note that this condition is
satisfied when vy is close to the value a™¢ at which innovations become drastic.
If there is positive research during interval ¢, then, as before,

w; _ Tt
)\(P’(l’l,) r+)‘¢(”r+l)

(5.6)

51n the Cobb-Douglas example, the unit-cost function is
_a- 1-
c(wM,p)=(1-a) " Paep(wM) "7,

It follows from this and (5.2) that if the incumbent charged the unconstrained profit-maximizing
price &~ 'w,, the unskilled wage would be w = (1 — @)a?*/1 =4 (w,/A,) =%/, Putting this
into (5.1) yields the condition y <a~® Treating (5.1) as an equality and solving it and (5.2)
simultaneously for (wM, p,) vields p, = y'/*w,.
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In a stationary equilibrium with positive growth, (5.4) and (5.6) imply

My(yY*=1)(N - #)

5.7 1=
(5.7) r+An

Equation (5.7) defines the stationary equilibrium level of research 7. It is the
same as the equation (3.4) that applies in the drastic case, except that the
markup y'/¢ in (5.7) replaces the markup a ™" in (3.4). The comparative-statics
results of Proposition 1 apply to the solution of (5.7). In addition, the stationary
equilibrium level of research defined by (5.7) is increased by an increase in
market power (a decrease in a) as in the drastic case. Thus in the linear
Cobb-Douglas example all the comparative statics results derived for the case of
drastic innovations are valid also when innovations are nondrastic.

Comparison of (5.7) and (4.5) shows that the same welfare effects analyzed in
Section 4 operate in the case where innovations are nondrastic, again with the
result that research and growth under laissez-faire may be more or less than
optimal.'6

As is customary in the patent-race literature this analysis has ruled out the
possibility that the current and previous incumbent might contract to share the
higher monopoly profits that could be earned if the previous incumbent agreed
never to compete. For example, the previous incumbent might sell its patent to
the current one; in the extreme case where the previous incumbent always had
no bargaining power in negotiation with the current one, competition from
previous vintages of the intermediate good would never constrain the monopolist,
and the above analysis of drastic innovations would apply no matter how small
the innovations were.

6. ENDOGENOUS SIZE OF INNOVATIONS

This section generalizes the analysis of stationary equilibria by allowing
research firms to choose not only the frequency but also the size of innovations.
It shows that under laissez-faire, innovations will be too small if they are drastic.
In the nondrastic case, the tendency to make innovations too small is at least
partly mitigated by the incentive for innovators to move away from their
competitive fringe, which they can do by increasing the size of innovations.

Assume that the arrival rate of innovations to a firm employing the factor
combination (z, s) and aiming for innovations of size y is A@(z, s)v(y), where
v'(y) < 0; the bigger the innovation, the harder it is to discover. Assume
v"(y) < 0; the marginal cost (in terms of lower arrival rate) of aiming for larger
innovations increases with the size of innovations. Then the product yu(y) is a
concave function of vy.

16 Suppose y = V2 and a = 1/2. To get A <n* let r approach (V2 = DAN from above; then n*
approaches N whereas # is bounded below N. To get / > n™* let r = 2(y2 = 1AN; then n* = 0 and
# > 0. In either case y = a ™, but the example is robust to a small decrease in y that would satisfy
the necessary and sufficient condition (5.3) for innovations to be nondrastic without violating the
sufficient condition (5.5) for the monopolist to do no research.
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The analysis focuses again on stationary equilibria with positive growth.
Consider first the case of drastic innovations. By the same logic as before, the
payoff to the ¢ + 1st innovator is

A7 (D)

O e @)

where 7 is the stationary-equilibrium value of v. If the ¢ + 1st innovation has
size vy, not necessarily equal to 9, then A,,, =yA, and V,,, = yV,. Therefore
the expected flow of profits to the research firm in interval ¢ is

(62)  Ad(z,8)v(y)yV,—w,z—wSs.
The firm takes V, as given. Thus its profit-maximizing choice of y also maxi-

mizes the product v(y)y. Because this product is a concave function of 7y,
therefore 9 is defined by the condition!’

(6.3)  wv(9)+9v'(9) =0.

The first-order condition for profit maximization with respect to skilled labor,
together with (6.1) produces an expression analogous to (3.3):

B(N=R)  v(§)97(S(N —f))

A/ () r+ie(R)v(7)
The comparative statics analysis of Section 3 carries through unchanged, since ¥
is determined by (6.3) independently of all parameters that do not enter the
function v, with the obvious exception that it is no longer permissible to

investigate the effects of a change in .
As in Section 4, the expected present value of consumption equals

65 U~ AyF(N = n)
’ r=xe(n)o(y)(y-1)’

where the denominator is the social discount rate. Therefore, independently of
the choice of n, the social planner will choose y so as to maximize the
expression v(y)X(y — 1). The socially optimal value y* is then defined by

(6.6)  v(¥*) +y*v'(v*) —0v'(y*)=0.

By concavity of yu(y),!® 9 <y*. Innovations are too small under laissez-faire.
This result is another manifestation of the business-stealing effect. The social
planner chooses y so as to maximize the arrival rate multiplied by the net size
(y =1 of innovations, whereas the private research firm, which does not

internalize the loss of the existing vintage of intermediate good, maximizes the
arrival rate times the gross size y.

(6.4)

17 Note that it is always possible to choose the function v so that the solution to (6.3) satisfies the
condition for innovations to be drastic in the Cobb-Douglas example: y > a ~¢.

8 Since v’ < 0, (6.6) implies that v(y)y is locally decreasing at y*, so that y* exceeds the point
at which v(y)y is maximized.
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The socially optimal level of research employment n* satisfies the condition
F(N-n*) o(y*)(y*—1)F(N—n*)

AQ'(n*)  r=2ap(n*)o(y*)(y*-1)°
Comparison between (6.4) and (6.7) reveals the same welfare effects as in the
analysis of Section 4. In addition, the fact that ¥ <+y* in itself makes A < n*.
This is because, as we have seen, v(P)(¥ — 1) < v(y*)(y* — 1). So if the other
four effects were absent, and both 7 and n* were determined by (6.7), the effect
on research employment would be the same as if the laissez-faire economy had
a smaller arrival parameter A, which would reduce # below n*.

The economy’s average growth rate Ao(A)v(9)In $ is affected by the fact that
innovations are too small under laissez-faire, although the direction of the
overall effect is ambiguous. The direct effect on In$ is to decrease AGR. The
direct effect on the arrival rate Ao(A)v($) is to increase AGR. The indirect
effect on the arrival rate working through ¢(#) is to decrease AGR.

In the nondrastic case, the above business-stealing effect whereby innovations
are too small under laissez-faire is mitigated by an additional effect, namely that
private innovators tend to increase the size of innovations in order to increase
their profit margins. This margin is independent of the size y in the drastic case
but it increases with y in the nondrastic case. (In the Cobb Douglas example the
profit margin is @~ ! — 1 if the innovation is drastic and y!/* — 1 if nondrastic.)
The following example shows, however, that this additional “profit-margin”
effect does not necessarily overturn our earlier result to the effect that innova-
tions are too small.

(6.7)

ExampLE: Let ¢(n) =n, F(x)=x'/2. From (5.3) innovations are nondrastic
if y<v2. From (5.4), the payoff to the (¢ + 1)st innovator in a stationary
equilibrium is

(2 =D)x(8, )W
U r+ (P (N-x(d,7))’
where x(&,y)=Q2dvy2)~2 In (6.8), y is the size of innovation to be chosen by
the innovator during interval ¢, whereas ¥ and & denote stationary-equilibrium

values which the innovator takes as given. As in the drastic case, w,,; = yw,.
Therefore ¥ must solve the equation

_ argmax v(y)(y* = 1)x(d,7)yw,
YA () (N =x(8,7)

Since dx /dy <0, we have

(6.8)

9 <argmax v(y)(y*—1)x(d,y)y=7%.
From the above analysis we know that

argmax v(y)(y —1) = y*.
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Therefore a sufficient condition for 9 <y* is that (y2— Dx(®,y)y =
(y — Dg(y) with g'(y) <0. The latter is true,' with g(y) = (y + 1)y/4&%y*.

7. STRATEGIC MONOPSONY EFFECT

In this section the intermediate firm is assumed to take into account its
influence on the amount of current research and thereby on the probability of
its replacement. In particular, by increasing its demand x, for skilled labor, the
monopolist can raise the wage rate that must also be paid to skilled workers in
research. The effect is to reduce the equilibrium amount of research n, and
consequently to delay the arrival of the (¢ + 1)st innovation. The monopolist will
trade this gain off against the higher wages it must pay its own skilled labor.

The analysis focuses on stationary equilibria with positive growth. The
monopolist during interval ¢ chooses x, to maximize the expected present value
of profits:

(A F'(x)—w)x
" r+de(N-—x)

subject to

(*) w,=Ap'(N—x)V, 1,

where (*) follows from (2.10). The magnitudes x,, n,, V,/A4,, and w,/A, are
constant, at the equilibrium values X%, 7, V, and @. Therefore X solves

_ [F'(x) = Ay@(N-x)V]x
71 = e r+Ap(N —x)

The first-order condition is
(72)  F(%) +B"(%) = AV[(y ~ 1)@ (N ~%) —Zy@'(N - 5)].
From the constraint (*),
(73)  w@=Ay¢(N-X)V.
From (7.2), (7.3), and the definition of @,
Y

7'4 5 = -_— "L = ' 5

74) [y—l—yuv—n)so ()/¢ (%)

It follows that the stationary-equilibrium level of research 7 is given by the
analogue to (3.3):

a')(N—ﬁ)H y ] ym(7i)

]d’)(N—ﬁ)EE(r'z).

7 {Mp’(?z) Y1y (N-me (@) /() | r+Ae(i)’

19 Because it compares y* with ¥, this analysis would apply even if the research firm ignored the
1egative effect that its choice of y has on the value of an innovation by reducing the equilibrium
evel of x,,; and hence raising the rate of creative destruction next period.
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where the function 7 is defined as
(7.6) 7(A)=[F(N-n)-a(n)](N-r).

Assume that the expression (N — n)¢”(n) is nondecreasing in n. Then the
left-hand side of (7.5) is increasing in 7. If the right-hand side is still decreasing,
then the solution to (7.5) is unique. It is straightforward to verify that all the
comparative statics results in Proposition 1 apply to this solution, and that in the
Cobb-Douglas example the solution is an increasing function of the degree of
market power.

Welfare analysis of stationary equilibria is somewhat affected by the strategic
monopsony effect, but the overall result remains, namely that the laissez-faire
average growth rate may be more or less than optimal. Comparison of (7.5) with
(4.4) reveals the same intertemporal-spillover, appropriability, business-stealing,
and monopoly-distortion effects as before, although the monopoly-distortion
effect will be quantitatively different because 7(n) # 7(&(N — n)). There is an
additional effect, however, from the presence of the term

Y
Y= 1=y(N-n)¢"(n)/¢'(n)
on the left-hand side of (7.5). This additional effect is the “monopsony-distor-
tion” effect.

In the linear case, where ¢” is zero, the constraint (*) indicates that the
intermediate firm’s wage rate is independent of the amount of skilled labor it
hires, so the monopsony-distortion effect induces it to hire more skilled workers
in order to reduce the amount of current research, and hence the amount of
creative destruction. The effect just cancels the business-stealing effect, as can
be seen by multiplying both sides of (7.5) by (y — 1)/y. Thus in the linear
Cobb-Douglas example, research and growth are unambiguously less than
optimal.

In the general case where ¢” < 0 the monopsony-distortion effect is ambigu-
ous, because hiring more skilled labor increases the intermediate firm’s wage
rate at the same time that it reduces creative destruction. Because of these
conflicting tendencies it is straightforward to construct examples in which the
overall monopsony-distortion effect vanishes. More specifically, given any speci-
fication of the model it is possible to perturb the research function ¢ in such a
way?’ that 7 and »* remain unchanged and the solution 7 to (7.5) becomes
equal to 7. Since A can be more or less than n* it follows that 7 can be more or
less than n*.

The rest of the paper ignores the strategic monopsony effect, by assuming
that intermediate firms take as given the wage of skilled labor and the amount

? Just perturb ¢ in such a way that ¢(71), e(n*), ¢'(#), and ¢'(n*) remain unchanged, but ¢”"(#)
is made equal to —¢'(7)/y(N — 7). This can be done without altering the sign of ¢’ and ¢” on
[0, N). According to (3.3) and (4.4), # and n* will be unchanged. This perturbation makes the
second factor on the left-hand side of (7.5) equal to unity when 7 = 7, and makes 7(A) = 7(&(N —
#)). Since # solves (3.3) it will now also solve (7.5).
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of research. This assumption is based on our belief that the effect is not
important, because it derives from the simplifying assumption that there is only
one intermediate firm in the economy. If there were many competing intermedi-
ate firms, as in the next section, each might plausibly regard itself as too small to
affect the skilled wage or the amount of research.

8. MANY INTERMEDIATE GOODS

~ This section relaxes the simplifying assumption of a single economy-wide
monopoly in intermediate goods. Suppose instead that there are m different
intermediate sectors. Output of the consumption good is y, =X/ A, F(x,,),
where x, denotes the flow of output of the ith intermediate good during
interval ¢, and where F has all the properties assumed above. (This requires
that each sector have its own specialized brand of unskilled labor.)

Following Shleifer (1986), suppose that innovations arrive in different sectors
in a deterministic order.?' Specifically, the innovating sector is always the one
with the lowest productivity parameter A4;,. Each innovator becomes a local
monopolist in that sector for a period of m successive innovations, and is
replaced by the last of those m innovations. Let A4, denote the productivity
parameter in the leading sector, where an innovation has arrived most recently.
Assume that A;, =y?~¥/"4, when i is the kth most advanced sector. Then y
is again the size of each innovation relative to the previous vintage of good in
the same sector.

Let £, denote the stationary-equilibrium employment of skilled labor in the
kth most advanced sector. Then £, maximizes the flow of profits:

[AyAR/mF (x,) — w,| g
Therefore,
b=y ),

where X is defined as above and w is again the stationary-equilibrium productiv-
ity-adjusted wage, w,/A4,. The productivity-adjusted flow of profits in the kth-
leading sector is

kA, = YR M (k=D my),

2! The alternative of allowing innovations to be randomly distributed across sectors is analyzed in
an Appendix to an earlier version of this paper, available from the authors upon request. This
Appendix assumes a continuum of sectors and a continual flow of innovations. Whoever innovates at
date 7 is thereby allowed to enter a randomly chosen sector with the “leading technology” A(7),
where A(7) grows continuously at the exponential rate oAn. The possibility that the same sector
might receive two innovations in rapid succession, before the leading technology has advanced by
much, implies that in stationary equilibrium some positive (and endogenous) fraction of innovations
will be nondrastic. The model yields all the comparative-statics results of Proposition 1 above,
except possibly for result (b). )
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The productivity-adjusted wage is the solution to the equilibrium condition

m
N=n+ ) i(y* V"w),

k=1
which can be written as
w=a(N-n),

where the function & satisfies Assumption 1 above.

Let the technology of research be the same as before, with an arrival
parameter equal to mA. The length of each interval is distributed exponentially
with parameter mA¢(n), and each local monopoly lasts for m intervals. Let 7,
denote the time of the ¢th innovation. Then the value of the zth innovation is

m
I/;: Z E(e_r("'z+k—]_’rx))
k=1

Ti+k—1
r+migp(n) )
m o mAg(n) T F(y* D ")
=4, Z r+m/\<p(n)) ( r+m/\go(n).)’

and the condltlon for a positive stationary-equilibrium level of research is the
analogue to (3.3):

A(N-n) &

mAg (”) k=1

mag(i) \*7H [y mE[y*-D/me(N - h)]
(8.1) r+mie(#) ) ( r+migp(h) )

In the linear Cobb-Douglas example this condition is the analogue to (3.4):

m k/m AvKk—1
Zyw—n/m(a—l)[y_ﬂ_)‘_”l_]

l—a n (r +man)*
(8.2) 1=mx\(—)(N—n) 7
@ Y yk=/m@=1
Y
1
Since the right-hand side of (8.1) is a decreasing function?? of n and the
left-hand side an increasing function, the solution to (8.1), if it exists, is unique.
If no solution exists, then the equilibrium level of research is zero. All the
comparative-statics results of Proposition 1 apply to the solution of (8.1), with
the possible exception of (b), the effect of v, the size of innovations. In the

2 Note that
3 m (mag(m) ',
on k=1 (r+mip(n))"

(k= 1)(mrp(n)) 2%,  k(mre(n))* '#,
e Z (remio(m)*  (rrmag(n)*!
L L (k= 1)(mAe(r))* (A~ Fim)
=mAg'(n) g,z (r +mhrg(n))* =0

k
where 7, >, > -+ >, >, =0.
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linear Cobb-Douglas example, however, it can be shown that (b) remains true,
provided that the social discount rate (the denominator of U below) is positive.?

In stationary equilibrium each innovation raises the entire cross-sectional
profile of productivity parameters by the factor y!/™. It therefore raises GNP by
y!/™, and raises the log of GNP by the factor (1/m)Iny. Since the Poisson
arrival rate of innovation is mA#, therefore the economy’s average growth rate
is Afilny, exactly as before. The variance of the growth rate is AA(Iny)?/m;
aggregation across many sectors reduces variability through a law of large
numbers.

By the same logic as in Section 4, social welfare is measured by

E 900/ (x,)
Op— ;n)up(n)(yl/’" -1)°
A social planner would choose (x,...,x,,,n) to maximize U subject to the
constraint,
(83) N-n=x;+ - +x
and n > 0. The first-order conditions for an interior maximum are
(84)  F'(x;)=pyk-b/m (k=1,...,m),
(85)  mAg'(n)(y"/"™ - 1)U=pA,,

where u is a Lagrange multiplier. Let (N — n) denote the value of w such that
the solutions (x,,..., x,,) to (8.4) solve (8.3). Then (8.5) can be expressed as:

A(N—n*) m ( (/™= 1)F(x¥)

—1/myk—1
mAg'(n*) =k§1(y ) r—mig(n*)(y"/"=1) )’

U=4

m’

(8.6)
In the linear Cobb-Douglas example,

1
m)l(;)(yl/'”— 1)(N —n*)
r—mAn*(y'/m 1)

Comparison of (8.6) with (8.1) reveals the same four effects as before. The
monopoly-distortion effect is still present because A(N —n) > &(N —n). The

(87) 1=

2 1t suffices to show that the right-hand side of (8.2) is increasing in y. The ratio of sums in this
expression can be regarded as the expected value of the discrete random variable

yl/m k
= mAn,
1+r/min

under the truncated geometric distribution with parameter y/™(@~1 < 1, The effect on this ratio of
a marginal increase in 7y is the sum of the effect on each z, and the effect of changing the
parameter of the distribution. The former is positive. The latter would also be positive, by first-order
stochastic dominance, if z, were decreasing in k, which it is if the social discount rate is positive.
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appropriability effect applies sector-by-sector, and is amplified by the fact that

y—‘/'">( mig(n) )

r+mAo(n)

if the social discount rate is positive. As before, research and growth under
laissez-faire may be more or less than optimal; in the linear Cobb-Douglas
example, 7 <n* if vy is large,* but 7 > n*if « is small and v is not too large.?

9. CONCLUSION

The paper has presented a model of economic growth based on Schumpeter’s
process of creative destruction. Growth results exclusively from technological
progress, which in turn results from competition among research firms that
generate innovations. Each innovation consists of a new intermediate good that
can be used to produce final output more efficiently than before. Research firms
are motivated by the prospect of monopoly rents that can be captured when a
successful innovation is patented. But those rents in turn will be destroyed by
the next innovation, which will render obsolete the existing intermediate good.

It would be useful to generalize and extend the analysis in several directions,
such as assuming that technology is ultimately bounded, thereby requiring the
size of innovations eventually to fall. The model would gain richness and realism
if capital were introduced, either physical or human capital embodying technical
change, or R and D capital that affects the arrival rate of innovations. Allowing
unemployment, by introducing search into the labor market, would facilitate
study of the reciprocal interaction between -technological change and the
business cycle. All these extensions seem feasible because of the simplicity and
transparency of the basic model.
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APPENDIX 1
AN EXAMPLE WITH A RANDOM ARRIVAL PARAMETER

Let A follow a two-state Markov process on the space {A;,A,} with all transition probabilities
equal to 1/2. A stationary equilibrium is an equilibrium in which the productivity-adjusted wage
rate depends only on the state of the world, not on time. Let 4,V; be the value of making the ¢th

24 From (8.7), as y!/™ rises to the upper limit 1 + 7/mAN, n* approaches N while, from (8.2), A

is bounded below N.
BIf1/a>1+r/AN then A > 0 for all y, whereas if y'/” <1+ ar/mAN, then n* = 0.
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innovation and moving into state j. Assume the linear case of ¢(n) = n. In any state i, the marginal
expected return to research in interval ¢ is A;4,, (V; + V,)/2. This will equal the wage if positive
research occurs in state i. If research occurs in all states, the V,’s must satisfy the analogue to (2.12):
7(Ay(V1+V2)/2)
r+M[N=2(Ay(Vi+72)/2)]

V= (i=1,2).

Define n; =N — #(A,y(V; + V,)/2). Then the average level of research employment is
n=n.q,+n,q,,

where g; is the asymptotic fraction of time spent in state i. It is easily verified that
q1=1—=q,=2yn,/(Ayny + Ayn3).

To complete the example, take the Cobb-Douglas case (F(x) =x®), and suppose a =y~1=1/2
and r=N=A,=1. Since %(w)=(w/a?)/@D and #(0)=(1-a)/a)oi(w), the formula for
each V; can be rewritten as:

-1 -2

i=[16(r1+1,)] - {1 - [4(m + )] }Vp

and
-1 -2

Vy=[162,(V1 +1,)] ‘)‘2{1 = [42,(V1 + )] }Vz-
When A, = 1, the solution to these equations is V; = V, = V3 / 81/5 , which implies n; =n,=n=1/3.
As A, — o, the solution approaches V;=1/4, V, =0, which implies n; =0, n,=1, and g, =
ny/(ny+Ainy/A,) = 1; hence 7 =0.

The economy’s average growth rate equals fIny, where f is the asymptotic frequency of
innovations:

2045 ]_
ALt A,

f=Ana; +Ayn,a, = [

Thus when A, =1, fIny=(1/3)In2>0; and as A, — o, f Iny approaches 0.

APPENDIX 2
DERIVATION OF CONDITION (5.5)

In the stationary equilibrium described in Section 5, the monopolist has no incentive to do
research if

A wsA(V V),
where

_ (M - Dw(N-#)

V; n
r+An

is the value of the monopolist’s current patent and

M _ [min (y%/*,a™1) = 1]w,, (N - )
t+1 r+AA

would be the gross value of the next innovation to the current monopolist, for whom the innovation
would be drastic if y2>a ™9, if next period the level of research was the stationary-equilibrium
value 7. In fact more than this level of research would be conducted if the monopolist were to
innovate, because the monopolist could then charge a markup higher than y/2, so the value would
actually be less than V. Substituting these expressions for ¥, and ¥/, into (A.1) and using the
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fact that w, . ; = yw, produces
Alymin(y¥%,a71) —y - (y¥/* - 1) |(N-#)
= ~ .
r+an
Condition (5.5) follows immediately from (A.2) and (5.7).

A2y 1
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