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We begin with our growth equation:
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Next, perform a 1st order Taylor approximation around steady state
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Next, observe that sf (k∗) /k∗ = n+ δ in the steady state, and,

f 0 (k∗;A) k∗ − f (k∗;A)

f (k∗)
=

r∗k∗ − y∗

y∗
= − [1− α (k∗)]

where α (k∗) therefore is the share of capital in national accounts in the steady
state.
Accordingly, we have
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which (approximately) the same as saying:1

ln kt+1 − ln kt ≈ −
½
[1− α (k∗)]

n+ δ

1 + n

¾
(ln kt − ln k∗) .

This is a useful intermediate result.
First, it makes it clear that the economy will be growing faster the farther

away it is from its steady state (i.e., ln kt+1 − ln kt is increasing in the distance
ln k∗ − ln kt). Second, it tells us that every time the capital stock increases
by 1 percent, the growth rate declines by [1− α (k∗)] (n+δ)1+n percent. This is

1 In discrete time we have xt+1 = (1 + g)xt, where g is the growth rate of x. In log terms
lnxt+1 = ln (1 + g) + lnxt which is approx. equal to g + lnxt when g is small.
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diminishing returns “in action”. It is worth remarking, that if we were employing
a Cobb-Douglas production function, i.e.

f (k;A) = Akα

, the formula would be the same. Only α (k∗) would no longer depend on the
factor intensity in the steady state (k∗), but would reduce to the exponent of
the production function, α.
Anyway, we would like to know more. Specifically, we would like to figure

out how quickly the economy is moving towards steady state. If we let zt ≡
ln kt − ln k∗, implying zt+1 − zt = ln kt+1 − ln kt, we have

zt+1 =

µ
1− [1− α (k∗)]

n+ δ

1 + n

¶
zt

a simple (linear) first order difference equation with the solution:

zt =

∙
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¸t
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Re-inserting ln kt − ln k∗, we have

ln kt − ln k∗
ln k0 − ln k∗

=

∙
1− [1− α (k∗)]

n+ δ

1 + n

¸t
.

Now, this expression tells us the ratio of the distance left to steady state, ln kt−
ln k∗, relative to the total initial distance to steady state, ln k0−ln k∗. As t→∞
the ratio tends to zero (as (1+n)−(1−α)(n+δ)

1+n < 1).

As you can see, the model tells us that each period a fraction (1+n)−(1−α)(n+δ)
1+n

of the gap is eliminated.
More specifically, we may ask how much time it will take us to get half way

to the steady state. The answer (by putting ln kt−ln k∗
ln k0−ln k∗ = 1/2, taking logs and

rearranging):

t1/2 =
− ln (2)

ln
³
(1+n)−(1−α)(n+δ)

1+n

´
This expression is a bit messy, unfortunately. But we can insert plausible values
for key parameters nevertheless. We choose n = 0.01, δ = 0.05 and α = 0.4.
The result is

t1/2 =
− ln (2)

ln
³
(1+0.01)−(1−.4)(0.01+0.05)

1+0.01

´ ≈ 19.
Hence, under plausible assumptions the model predicts that it takes 19 years
to close 50% of the gap to the steady state. Hence, the model does generate
lengthy transitions.
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A much more elegant formula can be derived, if we resort to continuos time.
In fact, you can show that

t1/2 =
ln (2)

(1− α) (n+ δ)
.

If you use the same parameter values, you get virtually the same result - about
19 years (as you should, off course).
But it also provides a useful “rule-of-thumb”. Since log (2) is about 0.7, you

can easily calculate the time it takes you to get half way to steady state by
dividing that number by the rate of convergence in percent.
Finally, it is worth observing that in continuos time the rate of convergence

simplifies to the expression
(1− α) (n+ δ) ,

which is similar to, yet simpler than, the discret time counterpart:

(1− α)
n+ δ

1 + n
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