Leverage and Deepening
Business Cycle Skewness

HENRIK JENSEN† IVAN PETRELLA‡
SØREN HOVE RAVN§ EMILIANO SANTORO¶

May 2017

Abstract

Since the mid 1980s the US economy has displayed a marked reduction in the volatility of business fluctuations, a phenomenon labeled as the Great Moderation. We document that, over the same period, the business cycle has also been characterized by an increasingly negative skewness. This finding can be explained by the concurrent increase in leverage of both households and firms. To demonstrate this point, we devise a DSGE model with collateralized borrowing and occasionally binding credit constraints. Looser credit increases the likelihood that constraints become slack in the face of expansionary shocks, while contractionary shocks are further amplified due to tighter constraints. As a result, booms gradually become smoother than busts. Based on the differential impact that occasionally binding constraints exert on the shape of expansions and contractions, we are able to reconcile a more negatively skewed business cycle with a moderation in its volatility. Finally, our model can account for an intrinsic feature of economic downturns preceded by private credit build-ups: Financially driven expansions lead to deeper contractions, as compared with equally-sized non-financial expansions.

Keywords: Credit constraints, business cycles, skewness, deleveraging.

JEL: E32, E44.

*We thank Henrique Basso, Alessandro Galesi, Tom Holden, Kieran Larkin, Gabriel Perez-Quiros, Omar Rachedi, Federico Ravenna, Marija Vukotic, and seminar participants at Bank of Spain, Goethe University Frankfurt, Danmarks Nationalbank, Catholic University of Milan, the “4th Workshop in Macro, Banking and Finance” at Sapienza University of Rome, the “7th IIBEO Alghero Workshop” at the University of Sassari, the “12th Dynare Conference” at the Banca d’Italia, the “8th Nordic Macroeconomic Summer Symposium” in Ebeltoft, and the “3rd BCAM Annual Workshop” at Birkbeck, University of London for helpful comments and suggestions. The usual disclaimer applies.

†Corresponding author. Address: University of Copenhagen and CEPR. Postal address: Department of Economics, University of Copenhagen, Øster Farimagsgade 5, Building 26, 1353 Copenhagen, Denmark. E-mail: Henrik.Jensen@econ.ku.dk.

‡Warwick Business School and CEPR.

§University of Copenhagen.

¶University of Copenhagen.
1 Introduction

Economic fluctuations across the industrialized world are typically characterized by asymmetries in the shape of expansions and contractions in aggregate activity. A prolific literature has extensively studied the statistical properties of this phenomenon, reporting that, relative to expansions, contractions are periods of larger and negative output fluctuations; see, among others, Neftci (1984), Hamilton (1989), Sichel (1993) and, more recently, Morley and Piger (2012). To quantify this phenomenon, most of these studies have considered static measures of skewness in economic aggregates, implicitly assuming that the shape of the business cycle does not change over time. We know this is generally not the case. For instance, since the mid 1980s the U.S. economy has displayed a marked decline in macroeconomic volatility, a phenomenon dubbed as the Great Moderation.\(^1\) This paper reports compelling evidence that, over the same period, the skewness of the U.S. business cycle has become increasingly negative. To rationalize this finding, we devise a model centered around the role of financial frictions.

Figure 1 reports the post-WWII rate of growth of real GDP, together with the 68\% and 90\% confidence intervals from a Gaussian density fitted on pre- and post-1984 data points. Three facts stand out: First, as discussed above, the U.S. business cycle has become less volatile in the second part of the sample, even if we account for the major turmoil induced by the Great Recession. Second, real GDP growth displays large swings in either direction during the first part of the sample, while in the post-1984 period this is the case only during the three recessionary episodes. In fact, if we examine the size of economic contractions in connection with the drop in volatility occurring since the mid 1980s, it appears that recessions have become relatively more ‘violent’, while the ensuing recoveries have become smoother, as recently pointed out by Fatás and Mihov (2013). Third, recessionary episodes have become less frequent, thus implying more prolonged expansions.

[Insert Figure 1]

All in all, these properties translate into the U.S. business cycle becoming more negatively skewed over the last three decades. Explaining this pattern represents a challenge for existing business cycle models. To meet this, a theory is needed that involves both non-linearities and a secular development of the underlying mechanism, so as to shape the evolution in the skewness of the business cycle. As for the first prerequisite, the importance of borrowing constraints as a source of business cycle asymmetries has long been recognized in the literature;

see, e.g., the survey by Brunnermeier et al. (2013). In expansions credit constraints tend to relax, so that financially-constrained households and firms may find themselves temporarily unconstrained. By contrast, financial constraints tighten during recessions. The resulting non-linearity inevitably translates into a negatively skewed business cycle. As for the second prerequisite of the mechanism we are in the quest of, the past decades have witnessed a massive deregulation of financial markets, with one result being a substantial increase in the degree of leverage of advanced economies. To see this, Figure 2 reports the credit-to-GDP and the loan-to-asset (LTA) ratios of both households and the corporate sector in the US. This leveraging process is also confirmed by Jordà et al. (2016), who examine a large cross-section of countries and report a positive correlation between the skewness of real GDP growth and the credit-to-GDP ratio.

To account for these facts we devise a dynamic stochastic general equilibrium (DSGE) model that allows for the possibility that the collateral constraints faced by the firms and a fraction of the households do not bind at any point in time. To highlight the business cycle implications of a progressive relaxation of the financial constraints, we first estimate the model on pre-1984 data, matching the (negative) skewness of output growth and other relevant business cycle statistics. Thus, we simulate a rise in leverage through a gradual increase in the average loan-to-value (LTV) ratio of both households and firms. This raises the likelihood of financial constraints becoming slack in the face of expansionary shocks, dampening the magnitude of the resulting boom. By contrast, in the face of contractionary shocks borrowers tend to remain financially constrained, making their debt reduction more burdensome. In light of this mechanism, the skewness of the business cycle becomes increasingly negative. In line with the data, the model also predicts that the duration of business cycle contractions does not change much as leverage increases, while the duration of expansions almost doubles.

Our findings carry important information about recent changes in the shape of business fluctuations. To elaborate on this, we juxtapose the drop in the skewness of the business cycle with the Great Moderation in macroeconomic volatility. While increasing LTV ratios cannot necessarily be pointed to as a main driver of the Great Moderation, our model reconciles the increase in the asymmetry of the business cycle with a drop in its volatility. In line with recent

2As we discuss in Appendix A, the aggregate loan-to-asset ratios reported in Figure 2 are likely to understate the actual LTV ratios requirements faced by the marginal borrower. While alternative measures may yield higher LTV ratios, they point to the same behavior of leverage over time (see also Graham et al., 2014, and Jordà et al., 2016).
empirical evidence reported by Gadea-Rivas et al. (2014, 2015), neither changes to the depth nor to the frequency of recessionary episodes account for the stabilization of macroeconomic activity. In fact, the adjustment in macroeconomic volatility mostly rests on the characteristics of the expansions, whose magnitude declines as an effect of collateral constraints becoming increasingly non-binding in the face of higher credit limits.

Recently, increasing attention has been devoted to the connection between the driving factors behind business cycle expansions and the extent of the subsequent contractions. Jordà et al. (2013) report that more credit-intensive expansions tend to be followed by deeper recessions – irrespective of whether the latter are accompanied by a financial crisis. Our model accounts for this feature along two dimensions. First, we show that contractions become increasingly deeper as the average LTV ratio increases, even though the boom-bust cycle is generated by the same combination of expansionary and contractionary shocks. Second, financially-driven expansions lead to deeper contractions, as compared with similar-sized expansions generated by non-financial shocks. Both exercises emphasize that, following a contractionary shock, the repercussion of constrained agents’ deleveraging increases in the size of their debt. As a result, increasing leverage makes it harder for savers to compensate for the drop in consumption and investment of constrained agents. This narrative of the boom-bust cycle characterized by debt overhang is consistent with the results of Mian and Sufi (2010), who identify a close connection at the county level in the US between pre-crisis household leverage and the severity of the Great Recession.

The idea that occasionally binding credit constraints may give rise to macroeconomic asymmetries is not new, and has recently been examined in detail by Guerrieri and Iacoviello (2017), Jensen et al. (2016), and Maffezzoli and Monacelli (2015).\footnote{This idea is closely related to the ‘sudden stop’ literature, in which a small open economy faces an occasionally binding constraint on its access to external credit. See, e.g., Mendoza (2010) and Benigno et al. (2013).} Compared to Guerrieri and Iacoviello (2017), whose focus is on the recent boom-bust cycle in the U.S. housing market and its connection with private consumption, we examine the impact of secular variations in both households’ and firms’ credit limits on the shape of output fluctuations. In this respect, our study implies that non-binding credit constraints are likely to have become a more salient feature of the macroeconomy in recent decades. This intuition is indirectly supported by Guerrieri and Iacoviello (2017), who show that non-binding credit constraints were prevalent during the last pre-crisis boom in the US. Maffezzoli and Monacelli (2015) provide an extensive account of the characteristics of financially-driven contractions, and also report that the aggregate impli-
cations of a deleverage shock are state-dependent, with the economy’s response being greatly amplified in situations where agents switch from being financially unconstrained to being constrained. However, while Maffezzoli and Monacelli (2015) focus on the characteristics of drops in economic activity induced by financial shocks and conditional on different degrees of firm leverage, we design our experiments so as to generate boom-bust cycles where expansions can be either credit-fueled or driven by non-financial shocks. In line with the boom-bust episodes studied by Jordà et al. (2013), we show that the nature of the driving forces behind a given expansion are crucial for predicting the deepness of the ensuing contraction.

Regarding the connection between financial liberalization and business cycle asymmetry, our paper is related to a recent empirical literature that focuses on the connection between leverage and the shape of the business cycle. Popov (2014) studies business cycle asymmetry in a large panel of developed and developing countries. Two main results are documented. First, the average business cycle skewness across all countries became markedly negative after 1991, consistent with our findings for the US. Second, this pattern is particularly distinct in countries that liberalized their financial markets. Bekaert and Popov (2015) examine a large cross-section of countries, reporting that more financially developed economies have more negatively skewed business cycles. Ordoñez (2013) documents that countries with more developed financial markets display less asymmetry than others with a more rudimentary financial system. While this finding is at odds with our results and those of the aforementioned papers, Ordoñez (2013) does not study the business cycle effects of a secular process of financial development within an industrialized country, while focusing on a large cross-section of countries. Moreover, while in our model financial deepening is captured by the degree of leverage – as indexed by the average LTV ratio – Ordoñez (2013) considers indirect measures of financial development. Finally, Rancière et al. (2008) establish a cross-country link between real GDP growth and the skewness of credit growth – a link which is stronger in financially liberalized countries. While we focus on the asymmetry of output, our credit measure shares this property, making our results comparable with their findings.

The rest of the paper is organized as follows. In Section 2 we report evidence on the connection between leverage and changes in the shape of the business cycle in the US. Section 3 inspects the key mechanisms at play in our narrative within a simple two-period model. Section 4 presents the DSGE model to be estimated. Section 5 discusses the solution and estimation of the model. Section 6 reports the main results and connects our findings to the Great Moderation in economic volatility. Section 7 shows that the model is capable of
producing the type of debt overhang recession emphasized in recent empirical studies. Section 8 concludes. The Appendices contain supplementary material concerning the model solution and various empirical and computational details.

2 Empirical evidence

This section presents a set of stylized facts that motivate the analysis. We first present evidence on the skewness of the growth of real GDP and other macroeconomic aggregates declining over the last three decades. We then take advantage of cross-sectional variation across the U.S. States to document an empirical relationship between household leverage and the deepness of state-level contractions during the Great Recession.

2.1 Business cycle evidence

A number of empirical studies have widely documented a major reduction in the volatility of the U.S. business cycle since the mid 1980s. In this section we document changes in the asymmetry of the cycle that have occurred over the same timespan. Table 1 reports the skewness of the rate of growth of different macroeconomic aggregates in the pre- and post-1984 period.

[Insert Table 1]

The skewness is typically negative and not too distant from zero in the first part of the sample – in fact, the zero is generally comprised within the 68% confidence interval – while decreasing substantially thereafter. The tendency is particularly marked for the annualized growth rates. To corroborate these findings, Figure 3 reports the histogram of GDP growth, as well as the corresponding fitted normal density over the two subsamples. Two things stand out: first, the histogram referring to second subsample is much less dispersed - implying greater concentration of probability mass in the central part of the distribution - as compared with the histogram obtained from the previous sample period; second, as the density gets squeezed around its mean in the second part of the sample, more probability mass accumulates in the left tail, as implied by the decline in the skewness coefficient. To dig deeper into this aspect, we employ the nonparametric test of Anderson and Darling (1954), with the null hypothesis being that real GDP growth data in either of the two periods are drawn from a Normal distribution: This is strongly rejected for the second subsample (p-value=0.0086), whereas it cannot be rejected in the first one (p-value=0.7236).4 In light of this preliminary evidence, it is important

4 This result is also confirmed by the Kuiper and the Shapiro-Wilk tests.
to check that the drop in the skewness does not result from a moderate asymmetry in the first part of the sample being magnified by a fall in the volatility, such as that occurred during the Great Moderation. The skewness of a random variable is defined as m_3/σ^3, where m_3 is the third central moment of the distribution and σ denotes its standard deviation: Therefore, an increase in the absolute size of the skewness could merely reflect a fall in σ, with m_3 remaining close to invariant. However, this does not seem to be the case, as $m_3 = -2.8169$ for the year-on-year growth rate of real GDP in the pre-1984 sample, while it equals -6.8755 afterwards.

Another way to highlight changes in the shape of the business cycle is to compare the upside and the downside semivariances over the two subsamples. The overall volatility of the cycle in the Great Moderation is about half of the pre-Moderation period (1.75% vs. 3.7%, when calculated on year-on-year GDP growth). However, the fall is not symmetric. In fact, whereas the (square root of) the upside and downside semivariance are roughly equal in the pre-Moderation sample, in the post-1984 sample the downside semivariance is roughly 40\% larger than its upside counterpart (1% vs 1.41%, when calculated on year-on-year GDP growth). As highlighted in Figure 1, this implies an increase in the smoothness of the expansions, indicating that the unraveling of the Great Moderation mostly rests on the characteristics of the upsides of the cycle (see Gadea-Rivas et al., 2014, 2015).

All in all, this evidence suggests that the US business cycle has become less volatile and more asymmetric in the last three decades. The next step in the analysis consists of translating changes in the business cycle asymmetry into some explicit measure of the deepness of economic contractions, while accounting for time-variation in the dispersion of the growth rate process. To this end, Table 2 reports the fall of real GDP during a given recession, divided by the duration of the recession itself: A measure that McKay and Reis (2008) label as the violence of a recessionary episode.

In line with the available anecdotal evidence, it is confirmed that the 1991 and 2001 recessions have been rather mild in terms of violence, as compared with both the Great Recession and most of the pre-1984 recessions. However, to compare the relative magnitude of different recessions over a period that displays major changes in the volatility of the business cycle, it

\[5\] The upside (downside) semivariance is obtained as the average of the squared deviation from the mean of observations that are above (below) the mean.
is appropriate to control for the average variability of the cycle around a given recessionary episode. To this end, the last column of Table 2 reports a measure of standardized violence, obtained by normalizing violence by the variability of year-on-year GDP growth in the 5 years prior to the recession. Under this metric we get a rather different picture. The three recessionary episodes occurred during the Great Moderation are substantially deeper than the pre-1984 ones: averaging out the first seven recessionary episodes returns a standardized violence of 1.22%, against an average of 2.90% for the post-1984 period (2.70%, if we exclude the Great Recession). It is also important to highlight that the duration of business cycle contractions does not change much between the two samples, while the duration of the expansions doubles.

2.2 Cross-state evidence

So far we have established that the post-1984 period is characterized by a smoother path of the expansionary periods and a stronger standardized violence of the recessionary episodes, as compared with the pre-Great Moderation period. In addition, over the same time window the process of financial deregulation has been associated with a sizeable increase in leverage of both households and firms. Relying on county-level US data, Mian and Sufi (2010) have identified a strong causal link between pre-crisis household leverage and the severity of the Great Recession. We now produce related evidence based on state-level data. Specifically, we take data on quarterly real Gross State Product (GSP) from the BEA Regional Economic Accounts and compute both the skewness of GSP growth and the violence of the Great Recession in the U.S. States. To account for the possibility that the recession does not begin/end in the same period across the US, we define the start of the recession in a given state as the period with the highest level of real GSP in the window that goes from 5 quarters before the NBER peak date to one quarter after that. Similarly, the end of the recession is calculated as the period with the lowest real GSP in the window from one quarter before to 5 quarters after the NBER trough date. Figure 4 correlates the resulting statistics to the average debt-to-income ratio prior to the recession. Notably, states where households were more leveraged not only have witnessed more severe GSP contractions during the last recession, but have also displayed a more negatively skewed GSP growth.

6 The volatility is calculated as the standard deviation of the year-on-year growth rate of real GDP over a 5-year window. We also exclude the period running up to the recession by calculating the standard deviation up to a year before the recession begins. Weighting violence by various alternative measures of business cycle volatility returns a qualitatively similar picture: Appendix B reports additional robustness evidence on the violence of the recessions in the US.

7 To construct this variable, we rely on the State Level Household Debt Statistics produced by the New York Fed.
To gain further insights into the cross-sectional connection between the magnitude of the Great Recession and business cycle dynamics, we order the U.S. States according to households’ average debt-to-income ratio.\(^8\) We then construct two synthetic series, computed as the growth rates of the median real GSP of the top and the bottom ten states in terms of leverage, respectively. According to Figure 5, there are no noticeable differences in the performance of the two groups before and after the Great Recession, while the drop in real activity has been much deeper for relatively more leveraged states. Altogether, this evidence points to a close link between leverage and business cycle asymmetries. The remainder of the analysis consists of showing how looser credit conditions may generate increasingly negative skewness within models with occasionally biding collateral constraints.

3 Inspecting the key mechanism in a partial equilibrium economy

The basic intuition behind the analysis below can be preliminarily conveyed through a textbook two-period model with debt. To keep things simple, we work under certainty equivalence, assuming that the representative household has quadratic preferences defined over a nondurable consumption good, \(C_t\). In period 1 households’ budget constraint is \(C_1 + B_0 = Y_1 + B_1\), where \(Y_1\) is a stochastic endowment, \(B_0\) is the initial stock of debt and \(B_1\) is the level of debt at the end of the first period. As for period 2, the constraint reads as \(C_2 = Y_2 - RB_1\), where \(R\) is a constant gross real rate of interest. Furthermore, we assume that credit in period 1 is a fraction of the expected income in period 2:

\[B_1 \leq \chi E_1 \{Y_2\}, \quad \chi \in [0,1].\]

(1)

where \(E_1\) is a conditional expectation operator and \(\chi\) denotes the loan-to-income ratio. We assume that income follows a random walk process. Thus, if the constraint (1) binds with equality, \(B_1 = \chi Y_1\) and consumption can be determined from the budget constraint:

\[C_1 = (1 + \chi)Y_1 - B_0.\]

(2)

\(^8\)See Figure F.3 in Appendix F.
In alternative, if the credit constraint is slack, consumption behaves in accordance with the following Euler equation:

\[C_1 = \frac{\beta R}{1 + \beta R^2} [(1 + R) Y_1 - R B_0] , \]

(3)

where \(0 < \beta < 1/R \) denotes households’ discount factor. Two implications can be drawn from the analysis so far: first, when the constraint binds with equality – and consumers behave according to a hand-to-mouth protocol – the response of \(C_1 \) to marginal variations in \(Y_1 \) (i.e., the marginal propensity to consume), increases in the credit limit; second, the marginal propensity to consume when the financial constraint binds is always greater than that observed when the constraint does not bind and households behave as standard consumption smoothers.

The next step in the analysis consists of showing how the critical value of \(Y_1 \) that makes consumption at time 1 the same under a binding and a non-binding constraint is affected by the credit limit. To this end, it is possible to retrieve \(Y_1 \) by equalizing (2) and (3), so that

\[Y_1 = \frac{1}{(1 + \chi)(1 + \beta R^2) - \beta R (1 + R)} B_0 . \]

(4)

We denote the probability that the credit constraint binds with \(F(Y_1) \), where \(F(\cdot) \) is the cumulative distribution function of \(Y_1 \). In line with our arguments, higher initial debt and lower credit limits increase the probability of the constraint being binding, as \(F' > 0 \).

The next section introduces a dynamic general equilibrium economy where the mechanisms we have just described are at play and produce negative asymmetry due to the financial constraints faced by the borrowers being occasionally binding. Broadly speaking, in such a model the stochastic process accounting for aggregate dynamics emerges as a mixture of the behavioral rules governing consumption and saving decisions under different regimes. In line with (4), the probability that the constraints become non-binding will be a positive function of the average LTV ratios faced by different types of borrowers.

4 The model

We now devise a structural model that can explain the empirical evidence described in the previous section. We adopt a standard real business cycle model augmented with collateral constraints along the lines of Kiyotaki and Moore (1997), Iacoviello (2005), Liu et al. (2013), and Justiniano et al. (2015); inter alia.9 The economy is populated by three types of agents,
each of mass equal to one. These agents differ by their discount factors, with the so-called patient households displaying the highest degree of time preference, while impatient households and entrepreneurs have relatively lower discount factors. As a result, patient households will be acting as lenders. Moreover, patient and impatient households supply labor, consume nondurable goods and land. Entrepreneurs only consume nondurable goods, and accumulate both land and physical capital, which they rent to firms. These are of unit mass and operate under perfect competition, taking labor inputs from both types of households, along with capital and land from the entrepreneurs. The resulting gross product may be used for investment and nondurable consumption.

4.1 Patient households

The utility function of patient households is given by:

$$E_0 \left\{ \sum_{t=0}^{\infty} (\beta^P)^t \left[\log \left(C_t^P - \rho^P C_{t-1}^P \right) + \varepsilon_t \log \left(H_t^P \right) + \frac{\nu_t^P}{1 - \varphi^P} \left(1 - N_t^P \right)^1 \right] \right\}, \quad \varphi^P \neq 1, \quad (5)$$

where C_t^P denotes nondurable consumption, H_t^P is the stock of land, and N_t^P denotes the fraction of time devoted to labor. Moreover, $0 < \beta^P < 1$ is the discount factor and $\varphi^P > 0$ is the coefficient of relative risk aversion pertaining to leisure, while $0 \leq \rho^P < 1$ measures the degree of habit formation in nondurable consumption, and $\nu^P > 0$ is the weight of labor disutility. Finally, ε_t is a land-preference shock satisfying

$$\log \varepsilon_t = \log \varepsilon + \rho_\varepsilon (\log \varepsilon_{t-1} - \log \varepsilon) + u_t, \quad 0 < \rho_\varepsilon < 1, \quad (6)$$

where $\varepsilon > 0$ denotes the steady-state value and where $u_t \sim N(0, \sigma_u^2)$. Utility maximization is subject to the following budget constraint

$$C_t^P + Q_t \left(H_t^P - H_{t-1}^P \right) + R_{t-1} B_{t-1}^P = B_t^P + W_t^P N_t^P, \quad (7)$$

where B_t^P denotes the stock of one-period debt held at the end of period t, R_t is the gross real interest rate on debt, Q_t is the price of land in units of consumption goods, and W_t^P is the real wage.
4.2 Impatient households

The utility of impatient households takes the same form as that of patient households:

$$E_0 \left\{ \sum_{t=0}^{\infty} (\beta^I)^t \left[\log \left(C_t^I - \rho^I C_{t-1}^I \right) + \epsilon_t \log \left(H_t^I \right) + \frac{\nu^I}{1-\varphi^I} \left(1 - N_t^I \right)^{1-\varphi^I} \right] \right\}, \quad \varphi^I > 0, \ \varphi^I \neq 1, \ \nu^I > 0,$$

where, as for the patient households, C_t^I denotes nondurable consumption, H_t^I is the stock of land, and N_t^I denotes the fraction of time devoted to labor. Households’ different impatience is captured by assuming $\beta^P > \beta^I$. This ensures that, in the steady state, patient and impatient households act as lenders and borrowers, respectively. Impatient households are also subject to the following budget constraint

$$C_t^I + Q_t \left(H_t^I - H_{t-1}^I \right) + R_{t-1} B_{t-1}^I = B_t^I + W_t^I N_t^I,$$

Moreover, impatient households are subject to a collateral constraint, according to which their borrowing B_t^I is bounded above by a fraction s_t of the expected present value of durable goods holdings at the beginning of period $t + 1$:

$$B_t^I \leq s_t^I \frac{E_t \{ Q_{t+1} \} H_t^I}{R_t},$$

This constraint can be rationalized in terms of limited enforcement, as in Kiyotaki and Moore (1997) and Iacoviello (2005). The loan-to-value (LTV) ratio (or credit limit), s_t^I, is stochastic and aims at capturing financial shocks (see, e.g., Jermann and Quadrini, 2012 and Liu et al., 2013):

$$\log s_t^I = \log s^I + \rho_{s,t} \left(\log s_{t-1}^I - \log s^I \right) + \nu^I, \quad 0 < \rho_{s,t} < 1,$$

where $\nu^I \sim N \left(0, \sigma_{s,t}^2 \right)$ and s^I, the steady-state LTV ratio, is a proxy for the average stance of credit availability.

4.3 Entrepreneurs

Entrepreneurs have preferences over non-durables only (cf. Iacoviello, 2005; Liu et al., 2013), and maximize

$$E_0 \left\{ \sum_{t=0}^{\infty} (\beta^E)^t \log \left(C_t^E - \rho^E C_{t-1}^E \right) \right\},$$
where C^E_t denotes entrepreneurial nondurable consumption and $\beta^P > \beta^E$. Utility maximization is subject to the following budget constraint

$$C^E_t + I_t + Q_t (H^E_t - H^E_{t-1}) + R_{t-1} B^E_{t-1} = B^E_t + r^K_{t-1} K_{t-1} + r^H_{t-1} H^E_{t-1}, \quad (13)$$

where I_t denotes investment in physical capital, K_{t-1} is the physical capital stock rented to firms at the end of period $t - 1$, and H^E_{t-1} is the stock of land rented to firms. Finally, r^K_{t-1} and r^H_{t-1} are the rental rates on capital and land, respectively. Capital accumulation is given by the law of motion

$$K_t = (1 - \delta) K_{t-1} + \left[1 - \frac{\Omega}{2} \left(\frac{I_t}{I_{t-1}} - 1 \right) \right] I_t, \quad 1 > \delta > 0, \quad \Omega > 0, \quad (14)$$

whereby quadratic investment adjustment costs are assumed. Like impatient households, entrepreneurs are credit constrained, but they are able to use both capital and their holdings of land as collateral:10

$$B^E_t \leq s^E_t E_t \left\{ \frac{Q^K_{t+1} K_t + Q_{t+1} H^E_t}{R_t} \right\}, \quad (15)$$

where Q^K_t denotes the price of installed capital in consumption units and s^E_t behaves in accordance with

$$\log s^E_t = \log s^E + \rho_{sE} (\log s^E_{t-1} - \log s^E_t) + v^E_t, \quad 0 < \rho_{sE} < 1, \quad (16)$$

where $v^E_t \sim \mathcal{N} (0, \sigma^2_{sE})$ and s^E is the steady-state LTV ratio.

4.4 Firms

Firms operate under perfect competition, employing a constant-returns-to-scale technology. They rent capital and land from the entrepreneurs and hire labor from both types of households in order to maximize their profits. The production technology for output, Y_t, is given by:11

$$Y_t = A_t \left[(N_t^P)^{\alpha} (N_t^I)^{1-\alpha} \right]^\gamma \left(H^E_{t-1} \right)^{\phi} K^{1-\phi}_{t-1} \left[K^1_{t-1} \right]^{1-\gamma}, \quad 0 < \alpha, \phi, \gamma < 1, \quad (17)$$

10The importance of real estate as collateral for business loans has recently been emphasized by Chaney et al. (2012) and Liu et al. (2013).
11The assumption of imperfect substitutability between labor types follows Iacoviello (2005) and Justiniano et al. (2015), among others. Iacoviello and Neri (2010) note that perfect substitutability complicates the solution of their model substantially, but yields similar results.
with total factor productivity A_t evolving according to

$$\log A_t = \log A + \rho_A (\log A_{t-1} - \log A) + z_t, \quad 0 < \rho_A < 1,$$

(18)

where $A > 0$ is the steady-state value of A_t, and $z_t \sim \mathcal{N}(0, \sigma_A^2)$.

4.5 Market clearing

Aggregate supply of land is fixed at H, implying that land-market clearing is given by

$$H = H^P_t + H^I_t + H^E_t.$$

(19)

The economy-wide net financial position is zero, such that

$$B^P_t + B^I_t + B^E_t = 0.$$

(20)

Finally, the aggregate resource constraint can be written as

$$Y_t = C^P_t + C^I_t + C^E_t + I_t.$$

(21)

5 Equilibrium and solution method

An equilibrium is defined as a sequence of prices and quantities which, conditional on the sequence of shocks $\{A_t, \varepsilon_t, \sigma_t\}_{t=0}^\infty$ and the initial conditions, satisfy the optimality conditions, the budget and credit constraints, as well as the technological constraints and the market-clearing conditions. Due to the assumptions about the discount factors, $\beta^P < \beta^I$ and $\beta^P < \beta^E$, both collateral constraints are binding in steady state. The steady-state real interest rate is pinned down by patient households’ Euler equation, whereas impatient households and entrepreneurs have a higher subjective real rate of interest. However, the optimal level of debt of one or both agents may fall short of the credit limit when the model is not at its steady state, in which case the collateral constraint will be non-binding.

To account for the occasionally binding nature of the collateral constraints, our solution method follows Laséen and Svensson (2011) and Holden and Paetz (2012), who develop a solution method for log-linearized DSGE models featuring inequalities. The idea is to introduce

footnote{We provide the optimality conditions in Appendix C, while the steady state and the log-linearized version of the model are presented in the Online Appendix to this paper.}
a set of (anticipated) “shadow value shocks” to ensure that the shadow values associated with each of the two collateral constraints remain non-negative at all times. For first-order perturbations, we have verified that our solution method produces similar simulated moments as the method of Guerrieri and Iacoviello (2015, 2017); cf. also Holden and Paetz (2012). We present the technical details of the method in Appendix D.

5.1 Calibration and estimation

Upon log-linearization, we need to assign explicit values to the parameters of the model. Our parameterization aims at matching a set of characteristics of the U.S. business cycle in the decades preceding the Great Moderation. To this end, we calibrate a subset of the parameters, while estimating the remaining parameters using the simulated method of moments (SMM). Thus, we raise the LTV ratios faced by households and firms to reflect the increase in leverage observed in recent decades, and track the implied changes in the skewness of output and other macroeconomic variables, as well as other business cycle statistics.

5.1.1 Calibrated parameters

We choose to calibrate a subset of the model parameters that can be pinned down using a combination of existing studies and first moments of the data. We interpret one period as a quarter. Therefore, we set $\beta^p = 0.99$, implying an annualized steady-state rate of interest of about 4%. Moreover, as we assume that both impatient households and entrepreneurs have lower discount factors than patient households, we set $\beta^i = \beta^e = 0.96$, in the ballpark of the available estimates; see, e.g. Iacoviello, 2005 and references therein. The Frisch elasticity of labor supply is given by the inverse of φ^i, multiplied by the steady-state ratio of leisure to labor hours. Calibrating the latter to 3 for both types of households implies $\varphi^i = 9$, $i = \{P, I\}$. Therefore, we set $\nu^i = 0.27$ for $i = \{P, I\}$, so as to induce households to work around 1/4 of their time in the steady state. We set the income share of labor supplied by patient households, α, to 0.7: Iacoviello (2005) obtains an estimate of 0.64 by matching impulse responses from his model with those from a VAR, while Iacoviello and Neri (2010) find a value of 0.79 using Bayesian estimation.

The remaining part of the calibration ensures that the model reproduces a set of ‘big ratios’ of the U.S. economy for the period from World War II until the onset of the Great Moderation. First, we follow Elsby et al. (2013) and use the official estimate of the Bureau of Labor Statistics to pin down the labor income share. The average value for the years 1948-1983
implies $\gamma = 0.6355$. We set the difference between the steady-state LTV ratios of entrepreneurs and impatient households, $s^E - s^I$, to the sample average of the difference between the two loan-to-asset series shown in the right panel of Figure 2, which equals 0.09. We then calibrate the remaining four parameters – s^I, δ, ϵ, ϕ – to jointly match the following four ratios, at the annual frequency: A steady-state ratio of residential land to output of 1.10, a ratio of commercial land to output of 0.63, an average capital-output ratio of 1.11, and an average ratio of private nonresidential investment to output of 0.23. The calibrated parameters are summarized in Panel A of Table 3. The depreciation rate of capital is 0.0518, somewhat higher than standard values, as it reflects that our measure of capital excludes residential capital and structures, which have lower depreciation rates than, e.g., intellectual properties. The implied value of $\phi = 0.1340$, which multiplied by $(1 - \gamma)$ measures land’s share of inputs, is somewhat higher than estimated by Liu et al. (2013) for the Great Moderation period. Finally, our calibration implies LTV ratios of 0.62 for impatient households, and thus 0.71 for entrepreneurs. These values are lower than those used in most studies related to the Great Moderation, as our calibration covers the period before the concurrent financial liberalization. In addition, the implied LTV ratios are somewhat higher than the loan-to-asset series shown in the right panel of Figure 2. We find this comforting, as here we report average ratios, which are likely to understate the actual credit limits faced by the marginal borrower.

5.1.2 Estimated parameters

We rely on the SMM to estimate the remaining model parameters. This method is particularly well-suited for DSGE models involving non-binding constraints or other non-linearities, as these preclude the use of the Kalman filter, thus making the application of Bayesian methods particularly cumbersome. Ruge-Murcia (2012) studies the properties of SMM estimation of non-linear DSGE models, and finds that this method is computationally efficient and delivers accurate parameter estimates. Moreover, Ruge-Murcia (2007) performs a comparison of the

13Our computations of these ratios largely follow those of Liu et al. (2013). For residential land, we use owner-occupied real estate from the Flow of Funds tables. For commercial land, Liu et al. (2013) use BLS data for land inputs in production, which is not available for the sample period we consider. Instead, we compute the sum of the real estate holdings of nonfinancial corporate and nonfinancial noncorporate businesses from the Flow of Funds, and then follow Liu et al. (2013) in multiplying this number by a factor of 0.5 to impute the value of land. For capital, we compute the sum of the annual stocks of equipment and intellectual property products of the private sector and consumer durables. We use the corresponding flow variables to measure investment. Finally, we measure output as the sum of investment (as just defined) and private consumption expenditures on nondurable goods and services.

14See, e.g., Calza et al. (2013), Liu et al. (2013) or Justiniano et al. (2014).

15See Fernández-Villaverde et al. (2016) for a discussion of the particle filter as a potential replacement for the Kalman filter in such cases, or Guerrieri and Iacoviello (2017) for a different filtering scheme based on the extended path algorithm of Fair and Taylor (1983), which facilitates a Bayesian estimation of their model.
SMM with other widely used estimation techniques applied to a basic RBC model, showing it fares quite well in terms of accuracy and computing efficiency, along with being less prone to misspecification issues than Maximum Likelihood-based methods.

We estimate the following parameters: The investment adjustment cost parameter (Ω), the parameters measuring habit formation in consumption (ρ^P, ρ^I, and ρ^E),\(^\text{16}\) and the parameters governing the persistence and volatility of the shocks (ρ_A, ρ_s, ρ_e, σ_A, σ_s, σ_e), where we have implicitly assumed that impatient households and entrepreneurs are subject to identical credit-limit shocks. As in this class of models the consumption of the patient households displays perfect comovement with the price of the durable asset (Barsky et al., 2007), we allow for different habit parameters between constrained and unconstrained agents, while imposing that the degree of habit formation of the entrepreneurs is equal to that of the impatient households.

In the estimation, we use five macroeconomic time series for the U.S. economy spanning the sample period 1952:I–1984:II: The growth rates of real GDP, real private consumption, real non-residential investment, real house prices, and the average of the deviations from trend of the two LTA series reported in the right panel of Figure 2, where the trend is computed using a multivariate Beveridge-Nelson decomposition.\(^\text{17}\) The beginning of the sample is dictated by the availability of quarterly Flow of Funds data.\(^\text{18}\) The end of the sample coincides with the onset of the Great Moderation. In the estimation, we match the following empirical moments: The standard deviations and first-order autoregressive parameters of each of the five variables, the correlation of consumption, investment, and house prices with output, and the skewness of output, consumption, and investment. This gives a total of 16 moment conditions to estimate nine parameters. We provide more details about the data and our estimation strategy in Appendix E.

The estimated parameters are reported in Panel B of Table 3. The estimate of Ω is in line with existing results from estimated DSGE models; see, e.g., Justiniano et al. (2013). Likewise, the degree of habit formation of impatient households and entrepreneurs is close to the estimates of Justiniano et al. (2013) and Guerrieri and Iacoviello (2017), whereas the estimated habit parameter for patient households is virtually zero. The volatility and persistence parameters of

\(^{16}\)Unlike the other estimated parameters, ρ^P, ρ^I and ρ^E also affect the steady state of the model. To account for this, we rely on the following iterative procedure: We first calibrate the model based on the starting values for ρ^P, ρ^I and ρ^E used to initiate the estimation (i.e., ρ^P = ρ^I = ρ^E = 0.7), cf. Appendix E. Upon estimation, but before simulating the model, we recalibrate it for the estimated values of the habit parameters. This leads only to a small change in the value of ε, while the remaining parameters are unaffected.

\(^{17}\)Specifically, since the LTV ratios for households and firms share a common trend, we follow Robertson et al. (2006) in computing the multivariate Beveridge and Nelson (1981) trends for the two series.

\(^{18}\)In fact, house prices are only available starting in 1963:I. We choose not to delay the beginning of other data series to this date.
the technology shock are in line with those typically found in the real business cycle literature; see, e.g., Mandelman et al., 2011. The finding of quite large and persistent land-demand shocks is consistent with the results of Iacoviello and Neri (2010) and Liu et al. (2013). Finally, while the financial shocks in our model are more volatile than found by Jermann and Quadrini (2012) and Liu et al. (2013), they are also less persistent, implying an unconditional standard deviation of the process in line with the estimates from these studies. We report the implied business cycle moments along with their empirical counterparts in Appendix E.

[Insert Table 3]

6 Asymmetric business cycles and collateral constraints

We are now ready to explore the ability of our model to generate stronger business cycle asymmetry as leverage increases. We do so in three steps. First, we inspect a set of impulse responses to build intuition around the non-linear transmission of different shocks. Next, we present the skewness and other business cycle statistics obtained from a large number of stochastic simulations. Finally, we examine the behavior of the skewness in conjunction with the Great Moderation in macroeconomic volatility.

6.1 Impulse-response functions

To gain a preliminary insight into the nature of the asymmetry generated by our framework, and how this evolves under different LTV ratios, we study the propagation of different shocks. Figure 6 displays the response of output to a set of positive shocks, as well as the mirror image of the response to equally-sized negative shocks, under different credit limits. Looking at the first row of the figure, technology shocks of either sign produce symmetric responses under the calibrated LTV ratios for impatient households and entrepreneurs. By contrast, at higher credit limits a positive technology shock renders the borrowing constraint of the entrepreneurs slack for three quarters, while impatient households remain constrained throughout. Entrepreneurs optimally choose to borrow less than they are able to: This attenuates the expansionary effect on their demand for land and capital, dampening the boom in aggregate economic activity. On the contrary, following a negative technology shock, the borrowing constraints remain binding throughout. As a result, impatient households and entrepreneurs are forced to cut back on their borrowing in response to the drop in the value of their collateral assets. This produces a stronger
output response. In other words, under relatively high LTV ratios a negative technology shock has a larger impact on output than a similar-sized positive shock.

[Insert Figure 6]

As far as asymmetry is concerned, both demand and credit limit shocks produce results that are qualitatively similar to those appreciated for the shock to productivity. As for stochastic shifts in household preferences, the second row of Figure 6 indicates that entrepreneurs’ collateral constraint becomes non-binding for two quarters after a positive land demand shock in the scenario with high LTV ratios, while impatient households remain constrained throughout. Therefore, entrepreneurs have no incentive to expand their borrowing capacity by increasing their stock of land. In fact, they lower their land holdings on impact, allowing patient and impatient households to increase their stock of land at the expense of nondurable consumption. Otherwise, there is no attenuation of large negative shocks to the economy. In that case, both collateral constraints remain binding, giving rise to a large output drop. Similar observations apply to the transmission of the financial shock, with the main difference being that upward shifts in the credit limits bear a greater potential of rendering the financial constraints non-binding. In fact, under high average LTV ratios the entrepreneurs are unconstrained during the first five periods following a positive shock. For the reasons discussed above, this leads to a smooth response of output, as compared with what happens following a negative shock: In this case entrepreneurs are forced into a sizeable deleveraging, reducing the stock of land available for production. Simultaneously, also impatient households deleverage and bring down their stock of land, which further depresses the land price, and thus the borrowing capacity of both types of constrained agents. The result is a large drop in output.

All in all these results suggest that, in line with the key insights of Figure 1, expansionary shocks associated with a relaxation of the financial constraint produce a smooth response of gross output, while contractionary shocks induce sharper responses. This is broadly consistent with the observation of lower volatility of the upside of the business cycle, as compared with its downside.

6.2 Asymmetry and credit limits

The impulse responses in the previous subsection offer a clear message: Economic expansions tend to become smoother than contractions as leverage increases, paving the way for a negatively skewed business cycle. Moreover, the three types of shock we consider exert similar
effects on business cycle asymmetry, so that their relative contribution is not crucial to our qualitative findings.

To deepen our understanding of the properties of the model over the entire range of feasible credit limits, we conduct a large set of stochastic simulations and report a number of statistics associated with different values of the average LTV ratios. In line with the partial equilibrium economy of Section 3, Figure 7 shows that the occurrence of episodes of non-binding constraints increases with the degree of leverage. In fact, entrepreneurs go from being unconstrained about 20% of the time at the baseline calibration, to as much as 95% of the time at higher values of the average LTV ratios. As for the impatient households, they only start experiencing instances of non-binding financial constraints at a 25% average downpayment, finding themselves financially unconstrained about 22% of the time at the upper end of the interval for the average LTV ratios. Given these figures, in light of the impulse-response analysis of the previous section we should expect the increasing relevance of periods of lax credit constraints to be associated with an increasingly negative asymmetry of the resulting macroeconomic aggregates.

[Insert Figure 7]

The left panel of Figure 8 displays the skewness of the growth rate of output, aggregate consumption and investment: All statistics start from being negative at our calibrated average LTV ratios and decline as leverage increases. This property has sizeable implications for the size of the recessions in our artificial economy, as indicated by the right panel of Figure 8. At the baseline calibration, the standardized violence of the recessions computed from the simulated time series of gross output is quantitatively in line with its data analogue reported in Table 2 for the pre-1984 sample. As leverage rises, the standardized violence increases, up to the point it doubles at the upper end of the interval for average LTV ratios, being broadly in line with what is observed in the post-1984 sample.

[Insert Figure 8]

\footnote{Specifically, we retrieve each statistic as the median from 501 simulations each running for 2000 periods. Unless stated otherwise, from now on we report the variable of interest for different average LTV ratios faced by the impatient households. In each simulation the entrepreneurial average LTV ratio is adjusted so as to be 9% greater than any value we consider for impatient households’ credit limits, in line with the baseline calibration of the model.}

\footnote{In our dynamic simulations, impatient households and entrepreneurs may sometimes find themselves unconstrained even during economic downturns as a result of, say, a positive credit limit shock and a concurrent negative non-financial shock. In such situations – which are most likely to occur at high LTV ratios – even recessions may be dampened, thereby mitigating business cycle skewness. This explains the small reversal of the skewness of the growth of consumption and investment at relatively high LTV ratios. We return to this issue in the next subsection.}
It is also important to highlight that the model is capable of reproducing relative changes in the duration of contractions and expansions that are similar to those reported in Table 2. As leverage increases expansions tend to last longer – as indicated by the left panel of Figure 9 – while the duration of the contractions displays a faint hump-shaped pattern over the range of LTV ratios we consider, so that there is not much difference between the pre- and post-financial deepening scenario.

[Insert Figure 9]

6.3 Skewness and volatility

Recent statistical evidence has demonstrated that the Great Moderation was never associated with smaller or less frequent downturns, but has been driven exclusively by the characteristics of the expansions, whose magnitude has declined over time (Gadea-Rivas et al., 2014, 2015). We now examine this major statistical development in conjunction with the change in the skewness of the business cycle, which has largely occurred over the same time span.

[Insert Figure 10]

The left panel of Figure 10 reports the standard deviation of output growth as a function of the average LTV ratios. As discussed in Jensen et al. (2016), macroeconomic volatility displays a hump-shaped pattern. Starting from low credit limits, higher availability of credit allows financially constrained agents to engage in debt-financed consumption and investment, as dictated by their relative impatience, thus reinforcing the macroeconomic repercussions of shocks that affect their borrowing capacity. This pattern eventually reverses, as higher LTV ratios increase the likelihood that credit constraints become non-binding. In such cases, the consumption and investment decisions of households and entrepreneurs tend to delink from changes in the value of their collateral assets, dampening the volatility of aggregate economic activity. In fact, at the upper end of the range of average LTV ratios we consider, volatility drops below the value we match under the baseline calibration.

A key property of a model with occasionally binding constraints is that the volatility reversal is much stronger for positive than for negative shocks, in the face of which financial constraints tend to remain binding. This inherent property of our framework indicates that the drop in output volatility observed beyond $s^I \approx 0.75$ is mostly connected with expansionary periods, as in the evidence reported by Gadea-Rivas et al. (2014, 2015). The right panel of Figure 10 confirms this view: Here we compare the volatility of expansionary and contractionary
episodes, respectively, as a function of the average LTV ratios. The volatility of expansions is always lower than that of contractions, and declines over most of the range of average credit limits. The volatility of contractions, on the other hand, reverts at a relatively high degree of leverage: This drop is due to financial constraints being potentially non-binding even during economic contractions. Such situations may arise if, e.g., a negative technology shock coincides with a positive credit limit shock.

While our framework points to a hump-shaped relationship between credit limits and macroeconomic volatility, the key driver of business cycle asymmetry – occasionally binding credit constraints – in itself works as an impetus of lower macroeconomic volatility, ceteris paribus. Thus, despite our analysis does not warrant the claim that the empirical developments in the volatility and skewness of the business cycle necessarily have the same origin, higher credit limits do eventually lead to a drop in the overall volatility of our model economy by making financial constraints increasingly slack.\footnote{A large literature suggests that innovation in the credit market – especially in consumer credit and home mortgages – have played a role in the Great Moderation; see den Haan and Sterk (2010) for a review. A related question is whether our main finding of increasingly negative business cycle skewness would survive in the presence of an exogenous reduction in macroeconomic volatility of the magnitude observed during the Great Moderation. Appendix 8 documents that this is indeed the case.}

Notably, the increasing prevalence of non-binding credit constraints allows the model to account for different correlations between the volatility and the skewness of output growth, conditional on different credit limits. Based on the comparison between Figure 8 and the left panel of Figure 10, this correlation is increasingly negative until $s^I \approx 0.75$, thus becoming positive as financial deepening reaches very advanced stages. These results are reminiscent of the evidence reported by Bekaert and Popov (2015), who document a positive long-run correlation between the second and third moment of output growth in a large cross-section of countries, but also a negative short-run relationship in financially developed economies.\footnote{Clearly, our model cannot account for the positive link between the skewness and volatility of output growth in economies at early stages of their financial development. As pointed out by Bekaert and Popov (2015), while occasionally hit by crises and sudden stops, these countries experience periods of rapid economic growth that tend to generate high volatility along with positive skewness.}

7 Debt overhang and business cycle asymmetries

Several authors have recently pointed to the nature of the boom phase of the business cycle as a key determinant of the subsequent recession. Using data for 14 advanced economies for the period 1870–2008, Jordà et al. (2013) find that more credit-intensive expansions tend to be followed by deeper recessions, whether or not the recession is accompanied by a financial...
crisis. This evidence is consistent with our cross-state evidence and the results of Mian and Sufi (2010), who identify a close connection at the county level in the US between pre-crisis household leverage and the severity of the Great Recession.

In this section we demonstrate that our model is capable of reproducing these empirical facts. Figure 11 reports the results of the following experiment: Starting in the economy’s steady state, we generate a boom-bust cycle for different steady-state debt levels, as reflected by different average LTV ratios. We first feed the economy with a series of positive shocks of all three types in the first five periods (up to period 0 in the figure). During the boom phase, we calibrate the size of the expansionary shocks hitting the economy so as to make sure that the boom in output is identical across all the calibrations. Hereafter, starting in period 1 in the figure, we shock the economy with contractionary shocks of all three types for two periods, after which the negative shocks are ‘phased out’ over the next three periods. Crucially, the contractionary shocks are identical across the calibrations. This ensures that the severity of the recession is determined by the endogenous response of the model at each different LTV ratio.

As the figure illustrates, the deepness of the contraction increases with the steady-state LTV ratios. A boom of a given size is followed by a more severe recession when debt is relatively high, as compared with the case of a more scarce credit availability. At higher average LTV ratios, households and entrepreneurs are more leveraged during the boom, and they therefore need to face a more severe process of deleveraging when the recession hits. By contrast, when credit levels are relatively low, financially constrained agents face lower credit availability to shift consumption and investment forward in time during booms, and are therefore less vulnerable to contractionary shocks.

[Insert Figure 11]

We next focus on the nature of the boom and how this spills over to the ensuing contraction. The left panel of Figure 12 compares the path of output in two different boom-bust cycles, while the right panel shows the corresponding paths for aggregate debt. In each panel, the dashed line represents a non-financial boom generated by a combination of technology and land-demand shocks, while the solid line denotes a financial boom generated by credit limit shocks. We calibrate the size of the expansionary shocks so as to deliver an identical increase

\footnote{During both the boom and the bust we keep the relative size of the three shocks fixed, in accordance with their standard deviations estimated in Subsection 5.1.2. However, we set their persistence parameters to zero, in order to avoid that the shape of the recession may be determined by lagged values of the shocks during the boom. We make sure that impatient households and entrepreneurs remain constrained in all periods of each of the cases, so as to enhance comparability.}

\footnote{In the non-financial boom we keep the relative size of the technology and land-demand shocks in line with...}
in output during each type of boom (which lasts for five periods, up until period 0 in the figure). As in the previous experiment, we then subject the economy to identical sets of contractionary shocks of all three types, so as to isolate the role played by the specific type of boom in shaping the subsequent recession. The contractionary shocks hit in periods 1 and 2 in the figure, and are then ‘phased out’ over the next three periods. While the size of the expansion in output is identical in each type of boom, the same is not the case for total debt, which increases by more than twice as much during the financial boom. The consequences of this build-up of credit show up during the subsequent contraction, which is much deeper following the financial boom, in line with the empirical results discussed above. This exercise confirms that the macroeconomic repercussions of constrained agents’ deleveraging is increasing in the size of their debt. It also demonstrates the importance of allowing for occasionally binding credit constraints: In Figure 12 impatient households and entrepreneurs are temporarily unconstrained during the boom, but become constrained with the onset of the contraction, giving rise to a sharp deleveraging and a decline in output. These findings are in line with those of Maffezzoli and Monacelli (2015), who find that the effect of a deleverage shock on output displays an S-shaped pattern with respect to the initial debt level. At low (high) levels of initial debt, a deleverage shock has a moderate effect on output, as agents remain constrained (unconstrained) before and after the shock. The largest macroeconomic effects of such shocks are observed at intermediate debt levels, when agents switch from being unconstrained to being constrained.

8 Concluding comments

We have documented a pattern of stronger negative skewness in the US business cycle over the last decades, and pointed to the concurrent increase in the LTV ratios of households and firms as a potential explanation. To substantiate this claim, we have presented a dynamic general equilibrium model with credit-constrained households and firms, in which we have shown that increasing average LTV ratios translate into a more negatively skewed business cycle, as seen in the data. This finding relies on the occasionally-binding nature of financial constraints: As their credit limits increase, households and firms are more likely to become temporarily unconstrained during booms, while credit constraints tend to remain binding during downturns. As in the previous experiment, we set the persistence parameters of all the shock processes to zero.

[Insert Figure 12]
Our results are of interest to macroprudential policymakers for two main reasons. First, one focus of such policies has typically been to reduce LTV ratios in order to curb macroeconomic volatility. According to our findings, a reduction of the LTV ratio may have ambiguous effects on business cycle volatility. Even a policy of state-dependent LTV ratios should be carefully designed in order to properly account for the asymmetric role played by credit constraints in booms and busts. A suitable welfare analysis needs to optimally weigh these factors. This is a topic we are investigating in ongoing work. Second, our results add to a recent literature emphasizing that the seeds of the recession are sown during the boom: The nature of the boom phase, as much as its size, is an important determinant of the ensuing downturn, and policymakers should pay close attention to the build-up of credit during expansions in macroeconomic activity. Indeed, Mian et al. (2015) find that IMF and OECD forecasts made after large increases in household debt tend to overestimate subsequent output growth, and that those forecasts could be improved by adjusting them downwards to account for past increases in household as well as firm credit.
References

Holden, T., and M. Paetz, 2012, Efficient Simulation of DSGE Models with Inequality Constraints, School of Economics Discussion Papers 1612, University of Surrey.

Tables and Figures

Table 1. The skewness of the US business cycle.

<table>
<thead>
<tr>
<th></th>
<th>QoQ</th>
<th>YoY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1984:III-2016:II</td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td>-0.1178</td>
<td>-0.0983</td>
</tr>
<tr>
<td></td>
<td>[0.5708]</td>
<td>[0.6241]</td>
</tr>
<tr>
<td></td>
<td>-1.2122</td>
<td>-1.3037</td>
</tr>
<tr>
<td></td>
<td>[0.6218]</td>
<td>[0.6998]</td>
</tr>
<tr>
<td>Consumption</td>
<td>-0.5064</td>
<td>-0.2023</td>
</tr>
<tr>
<td></td>
<td>[0.5694]</td>
<td>[0.6183]</td>
</tr>
<tr>
<td></td>
<td>-0.4678</td>
<td>-1.0005</td>
</tr>
<tr>
<td></td>
<td>[0.6299]</td>
<td>[0.7372]</td>
</tr>
<tr>
<td>Investment</td>
<td>-0.2100</td>
<td>-0.0067</td>
</tr>
<tr>
<td></td>
<td>[0.5658]</td>
<td>[0.6004]</td>
</tr>
<tr>
<td></td>
<td>-0.8271</td>
<td>-1.3994</td>
</tr>
<tr>
<td></td>
<td>[0.6161]</td>
<td>[0.6707]</td>
</tr>
</tbody>
</table>

Notes: In the ‘QoQ’ (‘YoY’) column we report, for different macroeconomic aggregates, the coefficient of skewness computed on the quarter-on-quarter (year-on-year) growth rate of real GDP over the 1947:I-1984:II and 1984:III-2016:II samples. Standard errors are reported in brackets.

Table 2. The violence of recessions in the US.

<table>
<thead>
<tr>
<th></th>
<th>Duration</th>
<th>Violence</th>
<th>Std. Violence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contractions</td>
<td>Expansions</td>
<td></td>
</tr>
<tr>
<td>1969:IV – 1970:IV</td>
<td>4</td>
<td>35</td>
<td>0.4710</td>
</tr>
<tr>
<td>1973:IV – 1975:1</td>
<td>5</td>
<td>12</td>
<td>2.5293</td>
</tr>
<tr>
<td>1990:III – 1991:1</td>
<td>2</td>
<td>31</td>
<td>2.6511</td>
</tr>
<tr>
<td>2001:1 – 2001:IV</td>
<td>3</td>
<td>40</td>
<td>1.2671</td>
</tr>
</tbody>
</table>

Average

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Pre-1984</th>
<th>Post-1984</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.7143</td>
<td>3.6667</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.3333</td>
<td>31.6667</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2285</td>
<td>2.2697</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2174</td>
<td>2.9018</td>
</tr>
</tbody>
</table>

Notes: For every recession we calculate ‘Violence’ as the annualized fall of real GDP from the peak to the trough of the contractionary episode, divided by the length of the recession; ‘Std. Violence’ standardizes the violence of the recession by the average business cycle volatility prior to the recession itself. The latter is calculated as the standard deviation of the year-on-year growth rate of real GDP over a 5-year window. We exclude the period running up to the recession by calculating the standard deviation up to a year before the recession begins.
Table 3: Parameter values

Panel A: Calibrated parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β^P</td>
<td>Discount factor, patient households</td>
<td>0.99</td>
</tr>
<tr>
<td>$\beta^i, i = {I, E}$</td>
<td>Discount factor, impatient agents</td>
<td>0.96</td>
</tr>
<tr>
<td>$\varphi^i, i = {P, I}$</td>
<td>Curvature of utility of leisure</td>
<td>9</td>
</tr>
<tr>
<td>$\nu^i, i = {P, I}$</td>
<td>Weight of labor disutility</td>
<td>0.27</td>
</tr>
<tr>
<td>ε</td>
<td>Weight of housing utility</td>
<td>0.0763</td>
</tr>
<tr>
<td>ϕ</td>
<td>Non-labor input share of land</td>
<td>0.1340</td>
</tr>
<tr>
<td>γ</td>
<td>Labor share of production</td>
<td>0.6355</td>
</tr>
<tr>
<td>δ</td>
<td>Capital depreciation rate</td>
<td>0.0518</td>
</tr>
<tr>
<td>α</td>
<td>Income share of patient households</td>
<td>0.7</td>
</tr>
<tr>
<td>s^I</td>
<td>Initial loan-to-value ratio, impatient households</td>
<td>0.6239</td>
</tr>
<tr>
<td>s^E</td>
<td>Initial loan-to-value ratio, entrepreneurs</td>
<td>0.7139</td>
</tr>
</tbody>
</table>

Panel B: Estimated parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ω</td>
<td>Investment adjustment cost parameter</td>
<td>2.9827</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.9585)</td>
</tr>
<tr>
<td>ρ^P</td>
<td>Habit formation, patient households</td>
<td>0.0031</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0526)</td>
</tr>
<tr>
<td>ρ^I</td>
<td>Habit formation, impatient households + entrepreneurs</td>
<td>0.7723</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.1380)</td>
</tr>
<tr>
<td>ρ_A</td>
<td>Persistence of technology shock</td>
<td>0.9894</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0326)</td>
</tr>
<tr>
<td>ρ_s</td>
<td>Persistence of credit-limit shock</td>
<td>0.8873</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0658)</td>
</tr>
<tr>
<td>ρ_ε</td>
<td>Persistence of land-demand shock</td>
<td>0.9893</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0527)</td>
</tr>
<tr>
<td>σ_A</td>
<td>Std. dev. of technology shock</td>
<td>0.0080</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0012)</td>
</tr>
<tr>
<td>σ_s</td>
<td>Std. dev. of credit-limit shock</td>
<td>0.0345</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0011)</td>
</tr>
<tr>
<td>σ_ε</td>
<td>Std. dev. of land-demand shock</td>
<td>0.0361</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.1156)</td>
</tr>
</tbody>
</table>

Note: The standard errors of the estimated parameters are reported in brackets.
Figure 1: Growth of real GDP.

Notes: Figure 1 reports the year-on-year rate of growth of real GDP over the 1947:I-2016:II sample. The bands correspond to the 68% and 90% confidence intervals from a Gaussian density fitted on the 1947:I-1984:II and 1984:III-2016:II samples. The vertical shadowed bands denote the NBER recession episodes.

Figure 2: Household and corporate leverage in the US.

Notes: Left panel: the solid-blue line graphs the ratio between loans to households and GDP, while the dashed-red line reports the same variable at the corporate level. Right panel: the solid-blue line graphs the ratio between households’ liabilities and assets, while the dashed-red line reports the same variable at the corporate level. The vertical shadowed bands denote the NBER recession episodes.
The left panel plots the violence of the Great Recession in each U.S. State against the average debt-to-income ratio at the household-level over the period 2003-07. To allow for the fact that the recession does not begin/end at the same time throughout the US, we calculate the start (end) of the recession as the period with the highest (lowest) level of real GSP in a window that goes from 5 quarters to one quarter after the NBER dates. The right-hand panel plots the skewness of year-on-year real GSP growth over the 2005-2016 period against the average debt-to-income ratio. In each panel we report the p-values associated with the slope coefficient: the first p-value is calculated on the slope coefficient estimated by OLS, while the second p-value refers to the slope estimated by excluding outliers (i.e., the observations whose standardized residuals from a first stage OLS regression are classified as being out of the 5/95% Gaussian confidence interval). In both cases we use White (1980) heteroschedasticity robust standard errors.

Notes: Figure 5 reports the growth rates of two synthetic GSP series obtained by ranking the U.S. States according to their average debt-to-income ratio in the 5 years before the Great Recession. The dashed-blue line is calculated from the median real GSP of the top 10 states, while the solid-green line is obtained from the median for the bottom 10 states. The resulting statistics have been normalized to zero at the beginning of the Great Recession (i.e., 2007:IV). The vertical shadowed band denotes the 2007:IV-2009:II recession episode.
Figure 3: GDP growth: 1947:I-1984:II vs. 1984:III-2016:II.

Notes: Figure 3 reports the histogram of the quarter-on-quarter growth rate of real GDP (solid-blue line), as well as the corresponding fitted normal density (dotted-green line) over the 1947:I-1984:II and 1984:III-2016:II samples.
Figure 6: Impulse responses.

Notes: Figure 6 reports the impulse responses of gross output to a one-standard deviation shock to technology (row 1), land demand (row 2), and credit limits (row 3). Left column: $s^t = 0.62$, $s^E = 0.71$; right column: $s^t = 0.85$, $s^E = 0.94$. The shadowed bands indicate the periods in which the entrepreneurs are financially unconstrained.
Figure 7: Leverage and frequency of non-binding collateral constraints.

Notes: Frequency of non-binding constraints for impatient households (solid line) and entrepreneurs (dashed line). Both statistics are graphed for different average LTV ratios faced by the impatient household. Across all the simulations the entrepreneurial average LTV ratio is adjusted so as to be 9% greater than any value we consider for impatient households’ credit limits, in line with the baseline calibration of the model.

Figure 8: Business cycle asymmetry

Notes: Figure 8 graphs the skewness of the year-on-year growth rate of output, consumption and investment (left panel), and the standardized violence of the recessions (right panel), for different average LTV ratios faced by the impatient household. To identify the recessionary episodes in our simulated gross output series, we use the Harding and Pagan (2002) algorithm. We then compute violence as the average fall of output over a given recessions, divided by the length of the recession itself. Finally, we standardize violence by means of the volatility of year-on-year output growth over the five years prior to the recession. Across all the simulations the entrepreneurial average LTV ratio is adjusted so as to be 9% greater than any value we consider for impatient households’ credit limits, in line with the baseline calibration of the model.
Figure 9: Average duration of expansions and contractions.

Notes: Expansions (contractions) are regarded as periods in which gross output is above (below) its steady state level. Both statistics are graphed for different average LTV ratios faced by the impatient household. Across all the simulations the entrepreneurial average LTV ratio is adjusted so as to be 9% greater than any value we consider for impatient households’ credit limits, in line with the baseline calibration of the model.

Figure 10: Leverage and volatility.

Notes: The left panel reports the standard deviation of output growth, while the right panel reports the standard deviation of contractions (dashed line) and expansions (solid line) in economic activity. Expansions and contractions are determined based on whether output is above or below its steady-state level.
Notes: Starting in the economy’s steady state, we generate a boom-bust cycle for different steady-state debt levels, as implied by different average LTV ratios. We first feed the economy with a series of positive shocks during the first five periods. The size of the expansionary shocks is set so as to make sure that the boom is identical across all the calibrations. Thus, we shock the economy with identical contractionary shocks for two periods, after which the negative shocks are ‘phased out’ over the next three periods.

Notes: The solid-blue line represents a financial boom, while the dashed-green line represents a non-financial boom. The light-grey area denotes periods in which the entrepreneur becomes financially unconstrained in the financial boom, while the darker grey area denotes periods in which the entrepreneur becomes unconstrained in the non-financial boom. The darkest grey area thus represents periods in which the entrepreneur becomes unconstrained in both types of boom (and the areas overlap). Impatient households remain constrained throughout in both types of booms. We calibrate the size of the expansionary shocks so as to deliver an identical increase in output during each type of boom (which lasts for five periods, up until period 0). We then subject the economy to identical sets of contractionary shocks of all three types. The contractionary shocks hit in periods 1 and 2, and are then ‘phased out’ over the next three periods.
Appendix A: Assets and liabilities in the US

Figure 2 shows the ratio of liabilities to assets for households and firms in the United States, respectively. All data are taken from FRED (Federal Reserve Economic Data), Federal Reserve Bank of St. Louis. The primary source is Flow of Funds data from the Board of Governors of the Federal Reserve System. For business liabilities we use the sum of debt securities and loans of nonfinancial corporate and noncorporate businesses. As assets we follow Liu et al. (2013) and use data on both sectors’ equipment and software as well as real estate at market value. For households and nonprofit organizations, we again use the sum of debt securities and loans as data for liabilities and use as assets both groups’ real estate at market value and equipment and software of nonprofit organizations. For the years 1945–1951, data are only available on an annual basis. For these years, we use a linear interpolation to compute quarterly observations.

The ratios reported in Figure 2 are aggregate measures, and may therefore not reflect actual loan-to-value (LTV) requirements for the marginal borrower. Nonetheless, we report these figures since the flow of funds data deliver a continuous measure of LTV ratios covering the entire period 1945–2016. For households, the aggregate ratio of credit to assets in the economy is likely to understate the actual down-payment requirements faced by households applying for a mortgage loan, since loans and assets are not uniformly distributed across households. In our model we distinguish between patient and impatient households, and we assume that only the latter group is faced with a collateral constraint. In the data we do not make such a distinction, so that the LTV ratio for households reported in Figure 2 represents an average of the LTV of patient households (savers), who are likely to have many assets and small loans, and that of impatient households (borrowers), who on average have larger loans and fewer assets. Justiniano et al. (2014) use the Survey of Consumer Finances and identify borrowers as households with liquid assets of a value less than two months of their income. Based on the surveys from 1992, 1995, and 1998, they arrive at an average LTV ratio for this group of around 0.8, while our measure fluctuates around 0.5 during the 1990s. Following Duca et al. (2011), an alternative approach is to focus on first-time home-buyers, who are likely to fully exploit their borrowing capacity. Using data from the American Housing Survey, these authors report LTV ratios approaching 0.9 towards the end of the 1990s; reaching a peak of almost 0.95 before the onset of the recent crisis. While these alternative approaches are likely to result in higher levels of LTV ratios, we are mostly interested in the development of these ratios over a rather long time span. While we believe the Flow of Funds data provide the most comprehensive and consistent time series evidence in this respect, substantial increases over time in the LTV ratios faced by households have been extensively documented; see, e.g., Campbell and Hercowitz (2009), Duca et al. (2011), Favilukis et al. (2015), and Boz and Mendoza (2014). It should be noted that for households, various government-sponsored programs directed at lowering the down-payment requirements faced by low-income or first-time home buyers have been enacted by different administrations (Chambers et al., 2009). These are likely to have contributed to the increase in the ratio of loans to assets illustrated in the left panel of Figure 2.

Likewise, the aggregate ratio of business loans to assets in the data may cover for a disparate distribution of credit and assets across firms. In general, the borrowing patterns and conditions of firms are more difficult to characterize than those of households, as their credit demand is more volatile, and their assets are less uniform and often more difficult to assess. Liu et al. (2013) also use Flow of Funds data to calibrate the LTV ratio of the entrepreneurs, and arrive at a value of 0.75. This ratio is based on the assumption that commercial real estate enters with a weight of 0.5 in the asset composition of firms. The secular increase in firm leverage

25Until 2015, debt securities and loans were aggregated under the title ‘Credit market instruments’ for businesses as well as households in the Financial Accounts of the United States.
over the second half of the 20th century has also been documented by Graham et al. (2014) using data from the Compustat database. These authors report loan-to-asset ratios that are broadly in line with those we present. More generally, an enhanced access of firms to credit markets over time has been extensively documented in the literature. This involves, for instance, the emergence of a market for high-risk, high-yield bonds (Gertler and Lown, 1999), increased flexibility in firms’ financing decisions, and the resulting immoderation in financial quantities (Jermann and Quadrini, 2009).

Appendix B: Additional evidence on the violence of the US business cycle

Table B1 reports alternative measures of standardized violence.

Appendix C: First-order conditions

This appendix reports the first-order conditions for each agent in the model.

Patient households

Patient households’ optimal behavior is described by the following first-order conditions:

\[
\frac{1}{C_t^P - \rho^P C_{t-1}^P} - \frac{\beta \rho^P}{\mathbb{E}_t \{C_{t+1}^P\} - \rho^P C_t^P} = \lambda_t^P, \tag{22}
\]

\[
\nu^P \left(1 - N_t^P\right)^{-\sigma^P} = \lambda_t^P W_t^P, \tag{23}
\]

\[
\lambda_t^P = \beta^P R_t \mathbb{E}_t \{\lambda_{t+1}^P\}, \tag{24}
\]

\[
Q_t = \frac{\varepsilon_t}{\lambda_t^P H_t^P} + \beta^P \mathbb{E}_t \left\{\frac{\lambda_{t+1}^P}{\lambda_t^P} Q_{t+1}\right\}, \tag{25}
\]

where \(\lambda_t^P\) is the multiplier associated with (7) for \(i = P\).

Impatient households

The first-order conditions of the impatient households are given by:

\[
\frac{1}{C_t^I - \rho^I C_{t-1}^I} - \frac{\beta \rho^I}{\mathbb{E}_t \{C_{t+1}^I\} - \rho^I C_t^I} = \lambda_t^I, \tag{26}
\]

\[
\nu^I \left(1 - N_t^I\right)^{-\sigma^I} = \lambda_t^I W_t^I, \tag{27}
\]

\[
\lambda_t^I - \mu_t^I = \beta^I R_t \mathbb{E}_t \{\lambda_{t+1}^I\}, \tag{28}
\]

\footnote{It should be mentioned that they also show a Flow of Funds-based measure of debt to total assets at historical cost (or book value) for firms. The increase over time in this measure is smaller. However, we believe that the ratio of debt to pledgeable assets at market values (as shown in Figure 2) is the relevant measure for firms’ access to collateralized loans, and hence more appropriate for our purposes.}

\footnote{We emphasize that Figure 2 reports a gross measure of firm leverage. Bates et al. (2009) report that firm leverage net of cash holdings has been declining since 1980, but that this decline is entirely due to a large increase in cash holdings.}

<table>
<thead>
<tr>
<th>Year</th>
<th>(1) [Baseline QoQ]</th>
<th>(2) [Pre/Post84 YoY]</th>
<th>(3) [Pre/Post84 QoQ]</th>
<th>(4) [SV YoY]</th>
<th>(5) [SV QoQ]</th>
<th>(6) [TVP-AR+SV YoY]</th>
<th>(7) [TVP-AR+SV QoQ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1953:II – 1954:II</td>
<td>0.6353</td>
<td>1.1270</td>
<td>0.7337</td>
<td>0.7313</td>
<td>0.5989</td>
<td>0.6644</td>
<td>0.5835</td>
</tr>
<tr>
<td>1960:II – 1961:I</td>
<td>0.3512</td>
<td>0.5951</td>
<td>0.3874</td>
<td>0.4288</td>
<td>0.3074</td>
<td>0.4636</td>
<td>0.3038</td>
</tr>
<tr>
<td>1969:IV – 1970:IV</td>
<td>0.1631</td>
<td>0.1556</td>
<td>0.1013</td>
<td>0.2476</td>
<td>0.1548</td>
<td>0.2398</td>
<td>0.1584</td>
</tr>
<tr>
<td>1973:IV – 1975:I</td>
<td>0.6618</td>
<td>0.8358</td>
<td>0.5441</td>
<td>0.8468</td>
<td>0.5417</td>
<td>0.8329</td>
<td>0.5086</td>
</tr>
<tr>
<td>1980:I – 1980:III</td>
<td>0.9991</td>
<td>1.4542</td>
<td>0.9467</td>
<td>1.2388</td>
<td>0.9719</td>
<td>1.2342</td>
<td>0.8633</td>
</tr>
<tr>
<td>1981:III – 1982:IV</td>
<td>0.5977</td>
<td>0.8851</td>
<td>0.5762</td>
<td>0.6452</td>
<td>0.4481</td>
<td>0.6211</td>
<td>0.3995</td>
</tr>
<tr>
<td>2001:I – 2001:IV</td>
<td>0.7295</td>
<td>0.7299</td>
<td>0.5410</td>
<td>0.7551</td>
<td>0.4630</td>
<td>0.7010</td>
<td>0.4191</td>
</tr>
</tbody>
</table>

Average

| Pre-84 | 0.7196 | 1.0669 | 0.6945 | 0.8437 | 0.6770 | 0.8205 | 0.6574 |
| Post-84 | 1.4953 | 1.3074 | 0.9691 | 1.3795 | 1.1083 | 1.2819 | 1.0969 |

Notes: Table B1 reports different measures of standardized violence that change depending on the business cycle volatility employed in the denominator. ‘QoQ’ and ‘YoY’ indicate that the volatility has been computed over annualized quarter-on-quarter growth and year-on-year growth, respectively. Column (1) follows the same procedure employed to obtain the standardized violence in Table 2, but calculates the volatility on QoQ data. Columns (2) and (3) calculate the volatility by splitting the data between pre- and post-Great Moderation. In columns (4) and (5) the standardization is operated by considering the following stochastic volatility model for real GDP growth: \(y_t = \rho_0 + \rho_1 y_{t-1} + \rho_2 y_{t-2} + \sigma_t \varepsilon_t \), where \(\sigma_t^2 = \sigma_t^{2 -1} + \kappa \sigma_t^{2 -1} \) and \(\varepsilon_t \sim N(0,1) \). In columns (6) and (7) the standardization is operated by considering a time-varying AR model for real GDP growth with stochastic volatility similar to that of Stock and Watson (2007), where all the time-varying parameters follow RW laws of motion (as in Delle Monache and Petrella, 2017).
\[Q_t = \frac{\varepsilon_t}{\lambda_t^E H_t^E} + \beta^I E_t \left\{ \frac{\lambda_{t+1}^I Q_{t+1}}{\lambda_t^I} \right\} + s_t^I \frac{\mu_t E_t \{Q_{t+1}\}}{R_t}, \]

(29)

where \(\lambda_t^I \) is the multiplier associated with (9) for \(i = I \), and \(\mu_t^I \) is the multiplier associated with (10). Additionally, the complementary slackness condition

\[\mu_t^I \left(B_t^I - s_t^I \frac{E_t \{Q_{t+1}\} H_t^I}{R_t} \right) = 0, \]

(30)

must hold along with \(\mu_t^I \geq 0 \) and (10).

Entrepreneurs

The optimal behavior of the entrepreneurs is characterized by:

\[\frac{1}{C_t^E - \rho^E C_{t-1}^E} - \frac{\beta^E}{E_t \{C_{t+1}^E\} - \rho^E C_t^E} = \lambda_t^E, \]

(31)

\[\lambda_t^E - \mu_t^E = \beta^E R_t E_t \{\lambda_{t+1}^E\}, \]

(32)

\[\lambda_t^E = \psi_t^E \left[1 - \frac{\Omega}{2} \left(\frac{I_t}{I_{t-1}} - 1 \right)^2 - \frac{\Omega}{I_{t-1}} \left(\frac{I_t}{I_{t-1}} - 1 \right) \right] + \beta^E \Omega E_t \left\{ \psi_{t+1}^E \left(\frac{I_{t+1}}{I_t} \right)^2 \left(\frac{I_{t+1}}{I_t} - 1 \right) \right\}, \]

(33)

\[\psi_t^E = \beta^E r_t^K E_t \{\lambda_{t+1}^E\} + \beta^E (1 - \delta) E_t \{\psi_{t+1}^E\} + \mu_t^E s_t^E \frac{E_t \{Q_{t+1}\}}{R_t}, \]

(34)

\[Q_t = \beta^E r_t^H E_t \left\{ \frac{\lambda_{t+1}^E}{\lambda_t^E} \right\} + \beta^E E_t \left\{ \frac{\lambda_{t+1}^E}{\lambda_t^E} Q_{t+1} \right\} + s_t^E \frac{\mu_t E_t \{Q_{t+1}\}}{R_t}, \]

(35)

where \(\lambda_t^E \), \(\mu_t^E \) and \(\psi_t^E \) are the multipliers associated with (13), (14), and (15), respectively. Moreover,

\[\mu_t^E \left(B_t^E - s_t^E \frac{E_t \{Q_{t+1}\} H_t^E}{R_t} \right) = 0, \]

(36)

holds along with \(\mu_t^E \geq 0 \) and (15). Finally, the definition of \(Q_t^K \) implies that

\[Q_t^K = \psi_t^E / \lambda_t^E. \]

(37)

Firms

The first-order conditions for the firms determine the optimal demand for the input factors:

\[\alpha \gamma Y_t / N_t^P = W_t^P, \]

(38)

\[(1 - \alpha) \gamma Y_t / N_t^I = W_t^I, \]

(39)

\[(1 - \gamma) (1 - \phi) E_t \{Y_{t+1}\} / K_t = r_t^K, \]

(40)

\[(1 - \gamma) \phi E_t \{Y_{t+1}\} / H_t^E = r_t^H. \]

(41)
Appendix D: Solution method

As discussed in the main text, we treat the collateral constraints as inequalities when we solve the model, accounting for two complementary slackness conditions:

\[
\mu^I_t \left(B^I_t - s_t \frac{E_t \{Q_{t+1}^I \} H^I_t}{R_t} \right) = 0,
\]

\[
\mu^E_t \left(B^E_t - s_t E_t \left\{ \frac{Q_{t+1}^K K_t + Q_{t+1}^I H^E_t}{R_t} \right\} \right) = 0,
\]

where, for simplicity, we have assumed that impatient households and entrepreneurs are subject to identical credit limits. We then adopt the solution method of Holden and Paetz (2012), on which this appendix builds. In turn, Holden and Paetz (2012) expand on previous work by Laséen and Svensson (2011). With first-order perturbations, this solution method is equivalent to the piecewise linear approach used in Guerrieri and Iacoviello (2017), as discussed by Guerrieri and Iacoviello (2015) and the references therein. We have verified that the solution method described in Guerrieri and Iacoviello (2015) does indeed produce identical results. Furthermore, Holden and Paetz (2012) and Guerrieri and Iacoviello (2015) evaluate the accuracy of their respective methods against a global solution based on projection methods. This is done for a very simple model with a borrowing constraint, for which a highly accurate global solution can be obtained and used as a benchmark. They find that the non-linear local approximations are very accurate. For the model used in this paper, the large number of state variables (9 endogenous state variables and 3 shocks) renders the use of global solution methods impractical due to the curse of dimensionality typically associated with such methods.

The collateral constraints put an upper bound on the borrowing of each of the two constrained agents. While the constraints are binding in the steady state, this may not be the case outside the steady state, where the constraints may not bind. Observe that we can reformulate the collateral constraints in terms of restrictions on each agent’s shadow value of borrowing; \(\mu^j_t \), \(j = \{ I, E \} \): We know that \(\mu^j_t \geq 0 \) if and only if the optimal debt level of agent \(j \) is exactly at or above the collateral value. In other words, we need to ensure that \(\mu^j_t \geq 0 \). If this restriction is satisfied with inequality, the constraint is binding, so the slackness condition is satisfied. If it holds with equality, the collateral constraint becomes non-binding, but the slackness condition is still satisfied. If instead \(\mu^j_t < 0 \), agent \(j \)'s optimal level of debt is lower than the credit limit, so that treating his collateral constraint as an equality implies that we are forcing him to borrow ‘too much’. In this case, the slackness condition is violated. We then need to add shadow price shocks so as to ‘push’ \(\mu^j_t \) back up until it exactly equals its lower limit of zero and the slackness condition is satisfied. To ensure compatibility with rational expectations, these shocks are added to the model as “news shocks”. The idea of adding such shocks to the model derives from Laséen and Svensson (2011), who use such an approach to deal with pre-announced paths for the interest rate setting of a central bank. The contribution of Holden and Paetz (2012) is to develop a numerical method to compute the size of these shocks that are required to obtain the desired level for a given variable in each period, and to make this method applicable to a general class of potentially more complicated problems than the relatively simple experiments conducted by Laséen and Svensson (2011).

We first describe how to compute impulse responses to a single generic shock, e.g., a technology shock. The first step is to add independent sets of shadow price shocks to each of the two log-linearized collateral constraints. To this end, we need to determine the number of periods \(T \) in which we conjecture that the collateral constraints may be non-binding. This number may be smaller than or equal to the number of periods for which we compute impulse
responses; \(T \leq T^{IRF} \). For each period \(t \leq T \), we then add shadow price shocks which hit the economy in period \(t \) but become known at period 0, that is, at the same time the economy is hit by the technology shock. In other words, the log-linearized collateral constraints now become:

\[
\frac{nY}{n_k B^I} \hat{B}_t^I = \hat{s}_t + E_t \left\{ \hat{Q}_t \right\} + \hat{H}_t^I - \beta^P \hat{R}_t - \sum_{s=0}^{T-1} \varepsilon_{s.t-s}^{SP.I},
\]

\[
\frac{nY}{n_k B^E} \hat{B}_t^E = \hat{s}_t - \beta^P \hat{R}_t + \frac{K}{K + QH^E} \left(E_t \left\{ \hat{Q}_t^K \right\} + \hat{K}_t \right) + \frac{QH^E}{K + QH^E} \left(E_t \left\{ \hat{Q}_t \right\} + \hat{H}_t^E \right) - \sum_{s=0}^{T-1} \varepsilon_{s.t-s}^{SP.E},
\]

where \(\varepsilon_{s.t-s}^{SP.I} \) is the shadow price shock that hits agent \(j \) in period \(t = s \), and is anticipated by all agents in period \(t = t - s = 0 \) ensuring consistency with rational expectations. We let all shadow price shocks be of unit magnitude. We then need to compute two sets of weights \(\alpha_{\mu_t} \) and \(\alpha_{\mu_E} \) to control the impact of each shock on \(\mu_t^{I} \) and \(\mu_t^{E} \). The ‘optimal’ sets of weights ensure that \(\mu_t^{I} \) and \(\mu_t^{E} \) are bounded below at exactly zero. The weights are computed by solving the following quadratic programming problem:

\[
\alpha^* = \arg \min \left[\alpha_{\mu_t} \right] \left[\begin{array}{cc}
\mu_t + \mu_t^{I.A} & \mu_t^{I.A} \\
\mu_t^{I.A} & \mu_t^{E.A}
\end{array} \right] \left[\begin{array}{cc}
-\mu_t^{I.E} & -\mu_t^{I.E} \\
-\mu_t^{I.E} & -\mu_t^{I.E}
\end{array} \right] \left[\begin{array}{c}
\alpha_{\mu_t} \\
\alpha_{\mu_E}
\end{array} \right],
\]

subject to

\[
\alpha_{\mu_t} \geq 0,
\]

\[
\mu_t^{I} + \mu_t^{I.A} + \mu_t^{I.E} + \mu_t^{I.E.A}\alpha_{\mu_t} + \mu_t^{I.E} + \mu_t^{I.E.A}\alpha_{\mu_E} \geq 0,
\]

\(j = \{ I, E \} \). Here, \(\mu_t^j \) and \(\mu_t^{I.A} \) denote, respectively, the steady-state value and the unrestricted relative impulse response of \(\mu_t^j \) to a technology shock, that is, the impulse-response of \(\mu_t^j \) when the collateral constraints are assumed to always bind. In this respect, the vector

\[
\begin{bmatrix}
\mu_t^{I.A} \\
\mu_t^{E.A}
\end{bmatrix}
\]

contains the absolute, unrestricted impulse responses of the two shadow values stacked. Further, each matrix \(\mu_t^{I.E} \) contains the relative impulse responses of \(\mu_t^j \) to shadow price shocks to agent \(k \)’s constraint for \(j, k = \{ I, E \} \), in the sense that column \(s \) in \(\mu_t^{I.E} \) represents the response of the shadow value to a shock \(\varepsilon_{s.t-s}^{SP, I} \) i.e. to a shadow price shock that hits in period \(s \) but is anticipated at time \(0 \), as described above.\(^{28}\) The off-diagonal elements of the matrix

\[
\begin{bmatrix}
\mu_t^{I.E} & \mu_t^{I.E} \\
\mu_t^{E.I} & \mu_t^{E.I}
\end{bmatrix}
\]

take into account that the impatient household may be affected if the collateral constraint of the entrepreneur becomes non-binding, and \textit{vice versa}. Following the discussion in Holden and Paetz (2012), a sufficient condition for the existence of a unique solution to the optimization problem is that the matrix

\[
\begin{bmatrix}
\mu_t^{I.E} & \mu_t^{I.E} \\
\mu_t^{E.I} & \mu_t^{E.I}
\end{bmatrix}
\]

is positive definite. We have checked and verified that this condition is in fact always satisfied.

We can explain the nature of the optimization problem as follows. First, note that \(\mu_t^{I} + \mu_t^{I.A} + \mu_t^{I.E} + \mu_t^{I.E.A}\alpha_{\mu_t} + \mu_t^{I.E} + \mu_t^{I.E.A}\alpha_{\mu_E} \) denotes the combined response of \(\mu_t^I \) to a given shock (here, a technology shock) \textit{and} a simultaneous announcement of a set of future shadow price shocks for a given set of weights. Given the constraints of the problem, the objective is to find a

\(^{28}\) Each matrix \(\mu_t^{I.E} \) needs to be a square matrix, so if the number of periods in which we guess the constraints may be non-binding is smaller than the number of periods for which we compute impulse responses, \(T < T^{IRF} \), we use only the first \(T \) rows of the matrix, i.e., the upper square matrix.
set of optimal weights so that the impact of the (non-negative) shadow-price shocks is exactly large enough to make sure that the response of μ_t^I is never negative. The minimization ensures that the impact of the shadow price shocks will never be larger than necessary to obtain this. Finally, we only allow for solutions for which the value of the objective function is zero. This ensures that at any given horizon, positive shadow price shocks occur if and only if at least one of the two constrained variables, μ_t^I and μ_t^E, are at their lower bound of zero in that period. As pointed out by Holden and Paetz (2012), this can be thought of as a complementary slackness condition on the two inequality constraints of the optimization problem. Once we have solved the minimization problem, it is straightforward to compute the bounded impulse responses of all endogenous variables by simply adding the optimally weighted shadow price shocks to the unconstrained impulse responses of the model in each period.

We rely on the same method to compute dynamic simulations. In this case, however, we need to allow for more than one type of shock. For each period t, we first generate the shocks hitting the economy. We then compute the unrestricted path of the endogenous variables given those shocks and given the simulated values in $t - 1$. The unrestricted paths of the bounded variables (μ_t^I and μ_t^E) then take the place of the impulse responses in the optimization problem. If the unrestricted paths of μ_t^I and μ_t^E never hit the bounds in future periods, our simulation for period t is fine. If the bounds are hit, we follow the method above and add anticipated shadow price shocks for a sufficient number of future periods. We then compute restricted values for all endogenous variables, and use these as our simulation for period t. Note that, unlike the case for impulse responses, in our dynamic simulations not all anticipated future shadow price shocks will eventually hit the economy, as other shocks may occur before the realization of the expected shadow price shocks and push the restricted variables away from their bounds.

Appendix E: Data description and estimation strategy

As described in the main text, we use data for the following five macroeconomic variables of the U.S. economy spanning the period 1952:I–1984:II: The growth rates (in log-differences) of real GDP, real private consumption, real non-residential investment, and real house prices, and the average of the deviations from trend of the two LTA series reported in the right panel of Figure 2. All data series are taken from the Federal Reserve’s FRED database, with the exception of the house price, which is provided by the US Census Bureau. The series are the following:

- **Growth rate of Real Gross Domestic Product**, billions of chained 2009 dollars, seasonally adjusted, annual rate (FRED series name: GDPC1).
- **Growth rate of Real Personal Consumption Expenditures**, billions of chained 2009 dollars, seasonally adjusted, annual rate (FRED series name: PCECC96).
- **Growth rate of Real private fixed investment: Nonresidential** (chain-type quantity index), index 2009=100, seasonally adjusted (FRED series name: B008RA3Q086SBEA).
- **Growth rate of Price Index of New Single-Family Houses Sold Including Lot Value**, index 2005=100, not seasonally adjusted. This series is available only from 1963:Q1 onwards.
 - To obtain the house price in real terms, this series is deflated using the GDP deflator (**Gross Domestic Product: Implicit Price Deflator**, index 2009=100, seasonally adjusted, FRED series name: GDPDEF).
- **LTA data**: See Appendix A. We use the average of the cyclical components – obtained through a multivariate Beveridge-Nelson decomposition– of the series in the right panel of Figure 2 for the period up until 1984:II.
Estimation

We use 16 empirical moments in the SMM estimation: The standard deviations and first-order autoregressive parameters of each of the five variables described above, the correlation of consumption, investment, and house prices with output, and the skewness of output, consumption, and investment. These moments are matched to their simulated counterparts from the theoretical model. Our estimation procedure seeks to minimize the sum of squared deviations between empirical and simulated moments. As some of the moments are measured in different units (e.g., standard deviations and correlations), we use the percentage deviation from the empirical moment in each case. In order for the minimization procedure to converge, it is crucial to use the same set of shocks repeatedly, making it sure that the only change in the simulated moments from one iteration to the next is that arising from updating the parameter values. In practice, since the list of parameter values to be estimated includes the variance of the shocks in the model, we draw from the standard normal distribution with zero mean and unit variance, and then scale the shocks by the variance of each of the three shock processes, allowing us to estimate the latter. We use a draw of 2000 realizations of each of the three shocks in the model, thus obtaining simulated moments for 2000 periods. To make sure that the draw of shocks used is representative of the underlying distribution, we make 501 draws of potential shock matrices, rank these in terms of the standard deviations of each of the three shocks, and select the shock matrix closest to the median in all cases. This matrix of shocks is then used in the estimation. In the estimation, we impose only very general bounds on parameter values: All parameters are bounded below at zero, and the habit formation parameters along with all AR(1)-coefficients are bounded above at 0.99.

To initiate the estimation procedure a set of initial values for the estimated parameters are needed. These are chosen based on values reported in the existing literature. It is important to state that the estimation results proved robust to changes in the set of initial values, as long as these remain within the range of available estimates. Based on the empirical estimates of Justiniano et al. (2013), we set the initial values of the investment adjustment cost parameter (Ω) and the parameters governing habit formation in consumption for the three agents to 4 and 0.7, respectively. For the technology shock, we choose values similar to those used in most of the real business cycle literature, $\rho_A = 0.97$ and $\sigma_A = 0.005$ (see, e.g., Mandelman et al., 2011). For the credit limit shock, we set the persistence parameter $\rho_s = 0.98$, while the standard deviation is set to $\sigma_s = 0.01$, consistent with the values estimated by Jermann and Quadrini (2012) and Liu et al. (2013). Finally, for the land-demand shock, we set $\rho_s = 0.96$ and $\sigma_s = 0.06$, in line with Iacoviello and Neri (2010) and Liu et al. (2013).

We abstain from using an optimal weighting matrix in the estimation. This choice is based on the findings of Altonji and Segal (1996), who show that when GMM is used to estimate covariance structures and, potentially, higher-order moments such as variances, as in our case, the use of an optimal weighting matrix causes a severe downward bias in estimated parameter values. Similar concerns apply to SMM as to GMM. The bias arises because the moments used to fit the model itself are correlated with the weighting matrix, and may thus be avoided by the use of fixed weights in the minimization. Altonji and Segal (1996) demonstrate that minimization schemes with fixed weights clearly dominate optimally weighted ones in such circumstances. Ruge-Murcia (2012) points out that parameter estimates remain consistent for any positive-definite weighting matrix, and finds that the accuracy and efficiency gains associated with an optimal weighting matrix are not overwhelming. Finally, we follow Iacoviello (2005) in attaching a weight of four to the moments of particular interest, which in our case are

29Our simulated sample is thus more than 15 times longer than the actual dataset (which spans 130 quarters). Ruge-Murcia (2012) finds that SMM is already quite accurate when the simulated sample is five or ten times longer than the actual data.
the skewness of output, consumption, and investment, while all other moments receive a unit weight. The empirical moments and their model counterparts upon estimation are reported in Table E1.

When computing standard errors, we rely on a version of the delta method, as described, e.g., in Hamilton (1994). We approximate the numerical derivative of the moments with respect to the estimated parameters using the secant that can be computed by adding and subtracting \(\epsilon \) to/from the estimates, where \(\epsilon \) is a very small number. The covariance (or spectral density) matrix is estimated using the Newey-West estimator.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>2.75</td>
<td>2.84</td>
</tr>
<tr>
<td>Consumption</td>
<td>2.00</td>
<td>2.23</td>
</tr>
<tr>
<td>Investment</td>
<td>6.25</td>
<td>6.91</td>
</tr>
<tr>
<td>House price</td>
<td>3.71</td>
<td>3.05</td>
</tr>
<tr>
<td>LTV ratio</td>
<td>7.46</td>
<td>6.96</td>
</tr>
<tr>
<td>Skewness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>−0.16</td>
<td>−0.38</td>
</tr>
<tr>
<td>Consumption</td>
<td>−0.17</td>
<td>−0.31</td>
</tr>
<tr>
<td>Investment</td>
<td>−0.07</td>
<td>−0.41</td>
</tr>
<tr>
<td>Autocorrelations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>0.78</td>
<td>0.82</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.58</td>
<td>0.81</td>
</tr>
<tr>
<td>Investment</td>
<td>0.89</td>
<td>0.84</td>
</tr>
<tr>
<td>House price</td>
<td>0.61</td>
<td>0.79</td>
</tr>
<tr>
<td>LTV ratio</td>
<td>0.89</td>
<td>0.92</td>
</tr>
<tr>
<td>Correlations with output</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption</td>
<td>0.93</td>
<td>0.85</td>
</tr>
<tr>
<td>Investment</td>
<td>0.92</td>
<td>0.75</td>
</tr>
<tr>
<td>House price</td>
<td>0.66</td>
<td>0.38</td>
</tr>
</tbody>
</table>
Appendix F: Household leverage in the US

Figure F1 displays the ranking of most highly leveraged US states used in subsection 2.2.

Figure F1: U.S. States ordered by households’ average debt-to-income ratio.

Notes. The US States are ordered by the average debt-to-income ratio in the household sector, over the period 2003-2007.

Appendix G: Skewness and the Great Moderation

In the main text, we demonstrated that our model was able to generate a more negatively skewed business cycle along with a drop in macroeconomic volatility when we raise the steady-state LTV ratios. However, the drop in the standard deviation of GDP growth documented in Figure 10 falls short of the decline observed in US data during the Great Moderation period. In this respect, it is important to recognize that none of the factors to which the Great Moderation is typically ascribed are featured in our model. One widely cited explanation for the Great Moderation is the so-called “Good Luck” hypothesis, according to which the Great Moderation was simply a result of smaller shocks hitting the US economy (see, e.g., Stock and Watson, 2003). The goal of this appendix is to demonstrate that our main finding of an increasingly negatively skewed business cycle holds up in an environment where increasing LTV ratios are combined with smaller macroeconomic shocks to obtain a drop in output volatility similar to that observed in the data. It is important to stress that this coexistence is not trivial: Reducing the size of the shocks hitting the economy effectively lowers the probability that collateral constraints become non-binding, thus weakening the key driver of business cycle skewness in our model.

The Great Moderation entailed a decline in the volatility of GDP growth in the US economy of roughly 40 percent (the standard deviation of annualized GDP growth was 2.84% from 1952:Q1-1984:Q2, cf. Table E1, while it was 1.74% in the period 1984:Q2-2016:Q2). In the

\[\text{Table E1, while it was 1.74% in the period 1984:Q2-2016:Q2}. \]
following, we engineer a similar decline in output volatility in our model simulations by reducing the standard deviations of all three shocks in the model, keeping their relative size fixed in accordance with the estimation in subsection 5.1.2. To obtain the desired drop in the volatility of GDP growth at $s^I = 0.90$, we need to reduce the standard deviation of each shock by 30 percent. We first assume that the decline in the size of the shocks occurred gradually along with the increase in LTV ratios. The top row of Figure G1 shows the pattern of the standard deviation and skewness of GDP growth in this experiment. The right panel illustrates that in this case, the drop in macroeconomic volatility is similar to that observed in the data during the Great Moderation, as desired. In contrast to the results reported in subsection 6.3, the standard deviation of output growth now declines monotonically. The left panel shows that the decline in skewness of GDP growth survives in this environment. In fact, the magnitude of the drop in skewness is almost identical to the baseline results presented in subsection 6.2 of the main text. This demonstrates that the mechanism giving rise to business cycle skewness in our model is compatible with the “Good Luck” hypothesis of the decline in macroeconomic volatility observed during the Great Moderation.

Some may argue that the Great Moderation entailed a discrete, downward shift in the size of macroeconomic shocks hitting the US economy rather than the gradual decline assumed above. The bottom row of Figure G1 shows the results from an experiment in which the standard deviation of each shock is reduced by 30 percent starting a $s^I = 0.6239$, and then kept at this new level as the LTV ratios are increased. By design, the standard deviation of GDP growth reaches the same level as in the top row of Figure G1 when $s^I = 0.90$. The hump-shaped pattern of output volatility presented in subsection 6.3 is maintained in this experiment, though at a lower level. Importantly, skewness of GDP growth displays roughly the same pattern as in the top row, confirming again the robustness of our main finding.

Figure G1: Skewness and the Great Moderation

Notes. The top row displays the skewness and standard deviation of output growth in the experiment where the size of shocks is reduced gradually, while the bottom row displays the same statistics in the case where the size of shocks is reduced at once. In each case, the numbers reported are median values from 501 stochastic model simulations of 2000 periods each.