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APPENDIX A: First Order Conditions from Households’ Utility
Maximization

Maximizing (1) subject to (3), (4), (5), and (6) leads to a set of first-order conditions that can be
re-arranged to obtain:
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APPENDIX B: Some Useful Steady State Relationships

As in the competitive equilibrium, real wage in each sector equals the marginal product of labor.
Thus, we can derive the following relationship between the production of non-durables and that of
durables in the steady state:
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Furthermore, the following relationship between durable and non-durable consumption can be derived

from the Euler conditions:
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Moreover, the following shares of consumption and intermediate goods over total production are
determined for the non-durable goods sector:
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Analogously, for the durable goods sector:
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These conditions prove to be crucial in the second-order approximation of consumers’ utility to elim-
inate the linear terms. Moreover, they allow us to derive the steady state ratio of labor supply in the
non-durable goods sector over the total labor supply (¢). To this end, we take the ratio between the
following equations:
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which returns a coherent value of ¢.

The Relative Price in the Steady State

We start from the steady-state condition for the marginal cost in the non-durable goods sector:
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where ¢, = W. As in the steady state the production subsidies neutralize distortions due
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P"=MC"™.
After some trivial manipulations it can be shown that:
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Analogously, for the durable goods sector:
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Using the fact that S"/S%=1/Q :
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Moreover, as in the steady state W” = W¢ = W, RW? = RW™Q. This allows us to find a closed

form expression for Q.



APPENDIX C: Relative Price in the Efficient Equilibrium with Per-
fect labor Mobility

We now define the efficient equilibrium in the model with no frictions in both the goods and the labor
market. On the labor market this condition, obtained for A — oo, ensures that nominal salaries are
equalized across sectors of the economy:

th* = Wt = Wt*' (4)

Moreover, given the production subsidies that eliminate sectoral distortions due to monopolistic com-
petition:

PY = MC™ PY = MCF. (5)

Conditions and imply that:
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We then use both conditions to eliminate W, :
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Proof of Proposition 1

Suppose there were a monetary policy under which the equilibrium allocation under sticky prices
would be Pareto optimal. Then, in such an equilibrium, the gaps would be completely closed for
every period. That is, rmc; = 7“7770? =0, Vt. It follows from the pricing conditions that 7} = 7r§l =0,
Vt. The relative price evolves as:

G =G 1+ —nd— Ag.

Since we also have that Ag; = 0, the equation above implies that 7} — 7rf = Ag;. From the analysis
above:
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Therefore, it cannot be that 7} = 7 = 0, unless Ag; = 0, which translates into:
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APPENDIX D: Equilibrium Dynamics in the Efficient Equilibrium

This appendix details the linearized system in the efficient equilibrium:
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APPENDIX E: Log-linear Economy

Here we report the log-linear economy in extensive form:
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APPENDIX F: Second-order Approximation of the Utility Function

Following Woodford (2003), we derive a well-defined welfare function from the utility function of the
representative household:

W, = U (CP,Dy) — V (Ly) .

We start from a second-order approximation of the utility from consumption of durable and non-
durable goods:
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where O <H§ H3> summarizes all terms of third order or higher. Notice that:
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As (nggnc" =cp + % ()2, where & = log (%) is the log-deviation from steady state under sticky

prices, we obtain:
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where t.i.p. collects terms independent of policy stabilization.

Next, we introduce a second-order approximation to the transition law for the stock of durables.
This will substitute out the linear term for durables in the expression above (see Erceg and Levin,
2006). The law of motion reads as:

Dy = (1—-06)D; 4 +CZ.
For a general function F' (Y, X) the second-order Taylor approximation can be written as:
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Now, we can rewrite the accumulation equation as:

F(Dy1,Cf) =log [(1=8) Diy + G|

Therefore:
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In turn, the term on the RHS will replace the one on the LHS into the intertemporal loss function.

The next step is to derive a second-order approximation for labor disutility. Recall that:
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Therefore the second-order approximation reads:
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After these preliminary steps, we need to find an expression for /l\? and 2:@1. Given the definition of the

marginal cost, in equilibrium we get:
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Thus, we can report the linear approximation of the expressions above:
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Following the procedure above, it can be shown that:
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Analogous steps in the sector producing durable goods lead us to:
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Following Woodford (2003, Ch. 6, Proposition 6.3), we can obtain a correspondence between cross-
sectional price dispersions in the two sectors and their inflation rates:
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Iterating these expressions forward leads to:
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After iterating forward and substituting the second-order approximation for the accumulation equation
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of durables we get:
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We now employ the following steady-state relationships:
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where the term mﬂcﬂ/’t has been included among the non-linear elements of W;. It is now
possible to show that LW, = 0, using the following steady-state relationships:
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as well as the linearized conditions that express the gross production in the two sectors.
After dropping the linear terms in W; we are left with:
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where
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We next consider the deviation of social welfare from its Pareto-optimal level:
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APPENDIX G: Impulse-responses to Shocks in the Durable Goods
Sector
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APPENDIX H: Domestically Generated Inflation

In policy environments it is customary to build measures of core inflation that remove fluctuations in
the oil price from changes in the general price level (typically CPI/PCE inflation rates). However, in
our model oil only enters as an imported production input. Therefore, to obtain equation (31) in the
manuscript we appeal to the concept of domestically generated inflation, which represents a viable
option to exclude the price of imported goods from a given measure of aggregate inflation. Specifically,
domestically generated inflation, ﬂfg , is defined as the contribution of domestic factor price inflation
to an overall rate of inflation. As a first accounting identity, we define domestically-generated gross
output inflation as a weighted average of domestically generated inflation at the sectoral level:

= o (1) )

where ﬂi’d‘q (1 = m,d) denotes domestically generated inflation in sector and » = Y"/ (Y” + Yd)
accounts for the relative size of the non-durable goods sector. In turn, to disentangle the effect of
the price inflation of imported and domestic input materials, one can define the inflation rate the it"
sector as

=y (L= ) MY, i=n,d. (60)
where Wi’m (1 = m,d) denotes the price inflation rate of imported input materials by sector i and
7; is the cost share of imported input materials in the production of sector i. Given that oil is the
only imported good by both sectors (i.e., 7" = W;l’m), it is natural to set y; = ap, and 7, can be
replaced with TI'tO . Thus, rearranging terms in the Equation one obtains the following definition
for the domestically generated inflation rate at the sectoral level:
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Once we isolate the domestically generated part of sectoral inflation in each of the two sectors, we
obtain 7% as
ng = ! Ty — 20n 79 ) + (1 — %) #T{'? - %ﬂ'to (62)
1-ap, 1—-ap, 1—-ag, 1—ap,

17



APPENDIX I: Optimal Rules in Models without Factor Demand
Linkages

The present appendix reports further results from the implementation of a contemporaneous data
rule and an inertial rule. Table I1 reports the coefficients of the optimal rule and the associated loss
within a model economy without factor demand linkages. Moreover, as we restrict our focus to the
comparison between aggregate and sticky-price inflation, we also eliminate oil from the production
technology, without loss of generality. As a preliminary check, we can note that the standard result
reported by Woodford| (2003), according to which targeting sticky-price inflation is preferable to
focusing on aggregate inflation, is confirmed in the model without factor demand linkages, conditional
on the economy being perturbated by technology shocks only.

Notably, in a model where input materials are disregarded but sectors remain fundamentally
asymmetric, policy inertia is only accepted when the policy maker targets sticky-price inflation and
the economy is perturbated by all the three types of shock. This is due to various structural and
exogenous factors inducing sectoral asymmetry and contributing to shift the relative price, even in
the absence of factor demand linkages. Under these circumstances, when targeting aggregate inflation
the policy maker seeks to attach the highest possible response to general price changes, while featuring
no reaction to the output gap. By contrast, sticky-price inflation targeting needs to be complemented
by a certain degree of inertia. How to explain this finding? When the policy maker targets Wftwky,
inflation in the durable goods sector receives a rather low weight, both because this is relatively smaller
and because it features lower price rigidity: this allows the central bank to adopt a certain degree
of policy inertia, so as deal with the intersectoral stabilization trade-off that emerges due to various
factors inducing sectors to co-move negatively. By contrast, when targeting a measure of general price
inflation that merely considers the relative size of each sector, durable goods inflation is necessarily
overweighed: to balance this bias, interest rate inertia is rejected, so as to avoid attributing too much
importance to the durable sector, whose reaction in the face of both cost-push and technology shocks
typically calls for a persistent response of the policy instrument (see Erceg and Levin, 2006). This
intuition is confirmed by comparing Table I1 with the welfare outcomes of a perfectly symmetric model
where neither input materials nor oil are employed (i.e., ar; = ar; = 1, i = {n,d}), consumption
goods feature the same expenditure share (i.e., p,, = p4), both sectors produce a non-durable good
(i.e., 6 = 1), labor is perfectly mobile across sectors (i.e., A\ — 00) and sectoral shocks are perfectly
correlated. As predicted by [Schmitt-Grohe and Uribe, (2007)), interest rate inertia is accepted in this
case. In fact, p = 0.73 and ¢, = ¢, = 5 conditional on a technology shock only, while p = 0.25 and
¢ =5, ¢, = 0, conditional on all shocks.

TABLE I1: OPTIMAL INTEREST RATE RULES - NO FACTOR DEMAND LINKAGES
Technology shock Technology shock

o 6, IF LT b b 6, LP LT
Aggregate 3.2940 5 0.0022 0.0072 0 3.2940 5 0.0022 0.0072
Sticky-price 5 5 0.0020 0.0072 0 5 5 0.0020 0.0072
All shocks All shocks
6, ¢, LRF LT b 6. ¢, LE LT
Aggregate 5 0 0.1676 0.5095 0 5 0 0.1676 0.5095
Sticky-price 5 0 0.2353 0.5095 0.5416 4.9919 0 0.1196 0.5095

Notes: Table I1 reports — conditional on different shock configurations — the reaction coefficients under the contem-
poraneous data rule and the inertial rule in the absence of factor demand linkages and oil (i.e., apr; = ap; = 0,
1= {n, d}) The parameters p, ¢, and ¢y are computed so as to minimize the loss of social welfare (Eq. 18). The

table also reports the loss under timeless perspective, LT, as well as LR7 which denotes the log-deviation of the loss
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under the optimal rule and the loss under timeless perspective. All losses are expressed as a percentage of steady state
consumption. The average duration of the price of non-durables is set at 4 quarters, while durable prices are re-set every

1.3 quarters.
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