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Abstract. In this paper we propose novel techniques for the empirical analysis of

adaptive learning and sticky information in in�ation expectations. These methodologies are

applied to the distribution of households�in�ation expectations collected by the University of

Michigan Survey Research Center. In order to account for the evolution of the cross-section

of in�ation forecasts over time and to measure the degree of heterogeneity in private agents�

forecasts, we explore time series of percentiles from the empirical distribution. Our results

show that heterogeneity is pervasive in the process of in�ation expectation formation. We

identify three regions of the distribution that correspond to di¤erent underlying mechanisms

of expectation formation: a static or highly autoregressive region on the left hand side of the

median, a nearly rational region around the median and a fraction of forecasts on the right

hand side of the median formed in accordance with adaptive learning and sticky information.
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Introduction

This paper deals with the analysis of private agents� in�ation expectations. Despite the fact

central banks claim that managing in�ation expectations is one of the most important prereq-

uisites for attaining price stability and promoting sustainable growth, still very little is known

about consumers�process of expectation formation. As noted by Bernanke (2007), reported

private sector in�ation expectations are important because they signal future in�ationary risks

and provide indications about agents�perception of these risks. Private in�ation expectations

often diverge from those of the central bank, and may represent a distinct source of information

as well as a potential intermediate target for the conduct of monetary policy. We argue that

valuable information can be extracted by analyzing the distribution of households� in�ation

forecasts, whereas a substantial number of studies have typically focused on measures of central

tendency, such as the mean or the median forecast.

Our analysis is centered on the development of novel techniques for the assessment of di¤er-

ent mechanisms of expectation formation which have been recently advanced in the theoretical

literature. The common trait of these theories is to relax the hypothesis of perfectly informed

agents, as assumed in the rational expectations paradigm. Some of these theories postulate

the existence of informational frictions generating sticky expectations, while others conjecture

that agents might act as econometricians when forecasting. The latter approach, widely known

as adaptive learning, is extensively discussed in Evans and Honkapohja (2001). As to sticky

expectations, a number of papers (e.g. Carroll 2003a, and Mankiw and Reis, 2002) show how

to generate time dependent rules under which expectations are updated only at �xed intervals.

Carroll (2003a, 2003b) proposes an epidemiological framework where consumers update their

in�ation expectations from the media, which are assumed to transmit the expectations of the

professional forecasters. Mankiw and Reis (2002) suggests that agents update information more

frequently when in�ation matters. We put forward novel techniques for the empirical assessment

of adaptive learning and inattentiveness in in�ation expectations.

We apply our methodologies, along with traditional tests for rational and adaptive expec-

tations,1 to the distribution of households�in�ation expectations collected by the University of

Michigan Survey Research Center. Our focus on the cross section of private agents�forecasts is

aimed at assessing di¤erent sources of heterogeneity in the process of expectation formation. In

order to account for the evolution of the cross-section of in�ation forecasts over time, we compute

percentiles of the empirical distribution in each period. Therefore, we retrieve monthly time

series for each percentile, which convey information on the individuals comprised in di¤erent

parts of the empirical density. We �nd that the null hypothesis of rationality cannot be rejected

just for few percentiles, which are generally placed around or slightly above the median forecast.

Only less than 10% of households�forecasts re�ect regular information updating. We augment

the epidemiological framework proposed by Carroll (2003a, 2003b) to account for the impact

of the level of in�ation on the frequency of information updating. The resulting framework is

based on the assumption that agents are more likely to regularly update their information set

1See, for a review of these tests, Pesaran (1987), Mankiw, Reis, and Wolfers (2004), and Bakhshi and Yates
(1998).
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when in�ation matters. This is found to be a plausible explanation for the forecast range in the

upper end of the distribution, where greater attentiveness is paid in periods of high and volatile

in�ation.

We put forward a novel technique to detect the presence of adaptive learning in the dis-

tribution of forecasts. The initialization of the learning algorithm is of crucial importance in

the estimation of the gain parameter that indexes the speed of learning. Previous estimation

techniques of models under adaptive learning (Milani, 2007) have generally been pursued by

splitting the time series into two subsamples. Thus, the �rst subsample is used to estimate the

set of initial values in the Perceived Law of Motion (PLM). In turn, the initial values represent

the starting point for the recursive estimation of the gain parameter in the second subsam-

ple. Clearly, the main practical inconvenience of this approach is that it does not allow the

researcher to fully exploit the data available. In addition, this approach still bears the risk that

learning dynamics could just result as a statistical artifact due to non-optimal initialization.

Our approach abstracts from this criticism, as we search for the combination of initial values

and gain parameter that provides the closest explanation of the empirical density, thus pre-

serving the sample structure and optimizing the initialization procedure.2 Our results suggest

that consumers�forecasts on the right hand side of the median (RHS) display adaptive learning,

whereas forecasts on the left hand side of the median (LHS) do not exhibit such behavior.

We propose an alternative mechanism of expectation formation, whereby households are

assumed to update their forecasts with respect to (expected) future errors, which are re�ected

in the di¤erence between their forecasts and the predictions of the professional forecasters. This

mechanism draws on the epidemiological view advanced by Carroll (2003a), and represents a

combination of adaptive learning and sticky information.

Additional time series techniques take into account a wider set of explanatory variables

for in�ation forecasts and con�rm a signi�cant degree of heterogeneity and asymmetry in the

underlying information structure. The forecast range at the center of the distribution is generally

unbiased. However, our results suggest that forecasts on the LHS are highly static and entail

systematic errors. It can be argued that expectations in this region of the empirical density are

stable around certain digits and that they do not re�ect movements in any of the macroeconomic

variables considered as relevant for the forecasting process. Conversely, RHS forecasts tend to

overreact to changes in actual in�ation. These �ndings are in line with the evidence carried

out by Curtin (2005), who points out that negative changes in in�ation exert twice the impact

as positive changes. As noted above, RHS in�ation expectations are consistent with adaptive

behavior. In this forecast range information is updated only from time to time.

Three di¤erent roots of heterogeneity have been traditionally explored in the literature.

Heterogeneous forecasts might be the consequence of agents (i) employing di¤erent models,3

(ii) relying on di¤erent information sets or (iii) entailing di¤erent capacities to process in-

2Orphanides and Williams (2003, 2005a, 2005b) and Milani (2007) have provided some empirical support for
adaptive learning dynamics in DSGE models. They provide an estimate of the gain parameter.

3Namely, agents could have di¤erent underlying assumptions about the structure of the economy or di¤erent
parameterizations (or priors) of the same model.
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formation. Some theoretical studies have introduced heterogeneous expectations in standard

macroeconomic models, such as in the New Keynesian model (Branch and McGough, 2006).

Branch (2004, 2007) assesses the importance of the �rst two roots of heterogeneity and �nds

that data are consistent with both of them. He replicates some of the inherent characteristics

of the Michigan Survey Households�Expectations empirical distribution, designing a switching

mechanism between alternative models of prediction and di¤erent frequencies of information

updating, based on their relative historical performance. Nevertheless, as mentioned above,

most of these studies only focus on measures of central tendency to assess the degree of het-

erogeneity in private forecasts. We show that this approach entails some fundamental fallacies

if forecast distributions are not time invariant and display substantial asymmetry. We provide

evidence on the cross-sectional dynamics of in�ation forecasts, showing that di¤erent regions of

the distribution re�ect di¤erent forecasting mechanisms. Compared to Branch (2004, 2007), we

allow for a wider range of forecasting mechanisms, including a combination of adaptive learning

and information stickiness.

The remainder of the paper reads as follows: Section 1 overviews the Survey of Consumer

Attitudes and Behavior; Section 2 reports some preliminary descriptive statistics; Section 3 fo-

cuses on the methodology developed in the paper, reporting some applications of our techniques

on adaptive learning and informational stickiness; Section 4 summarizes and discusses the main

empirical results; last section concludes.

1. The Survey of Consumer Attitudes and Behavior

The Survey of Consumer Attitudes and Behavior, conducted by the Survey Research Center

(SRC) at the University of Michigan, has been available on a monthly basis since January

1978. The survey comprises a cross-section of about 500 households per month.4 After the

�rst interview, each respondent is re-interviewed within six months. The sampling method is

designed in a way that, in any given month, approximately 45% of prior respondents are re-

interviewed, while the remaining 55% are new households. There are two relevant questions

about price level changes: (i) �rstly, households are asked whether they expect prices to go

up, down or to stay the same in the next 12 months; (ii) secondly, they are asked to provide a

quantitative answer about the expected change.5

Publicly available data are summarized in intervals (e.g. "go down", "stay the same or

down", go up by 1�2%, 3�4%, 5%, 6�9%, 10�14%, 15+%). There might be some confusion
about the category "stay the same or down". We follow Curtin (1996) and regard this response

as 0. A word of caution is in order for households that expect prices to go up without providing

any quantitative statement. In this case, we redistribute their response across the six ranges of

price change, depending on their relative size with respect to the overall sample size. Only a

negligible proportion of "do not know" responses is excluded.

4A peak of 1,479 households occurs in November 1978 and a minimum of 492 in November 1992. An average
of approximately 500 respondents is sampled since January 1987.

5 In case the respondent expects prices to stay the same, the interviewer must make sure that the respondent
does not actually have in mind a change in the price level which is assimilable to the one measured at the time
of the interview.
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As agents report unbounded in�ation forecasts, we need to determine point at both ends of

the distribution beyond which observations should be excluded.6 Curtin (1996) suggests two

alternative truncations, namely at �10% and +50% and at �5% and +30%.7 The analysis

carried out on the distribution obtained from di¤erent truncation intervals does not produce

any major discrepancy. Thus, in the remainder of the paper we only present evidence derived

under the second truncation rule.

2. A Preliminary Look at the Data

We consider the time window between 1978.01 and 2005.02. Within this period, we explore the

dynamic pattern of the moments of the Michigan Survey Households�Expectations distribution

(MSHE hereafter). To account for the presence of a structural break, we pursue a parallel

investigation on two subsamples, namely pre- and post-1988.12. This choice allows us to take

into adequate account the highly in�ationary period characterizing the �rst part of the sample

and the subsequent disin�ation. No signi�cant di¤erences can be highlighted.

2.1. Descriptive Statistics. In the remainder time series on expectational variables are

plotted at the realized date and not at the time the forecast has been produced. Figure 1(a)

plots mean and median of the MSHE distribution against actual in�ation. It is evident how

both measures of central tendency constantly underestimate the rise in in�ation in the �rst part

of the sample, although the forecasting performance improves remarkably during the subsequent

disin�ation. This is probably due to the fact that the Federal Reserve (FED) has acquired more

credibility in �ghting in�ationary pressures. In the post-1988 subsample, expectations appear

to be quite stable, although they almost systematically over-estimate in�ation. Furthermore,

we can observe how expectations fail to account for the marked rise in price level during the

�rst Gulf War, by reacting with a consistent delay. This over-reaction is also present after 9/11,

although with opposite sign.

Higher empirical moments, together with the median forecast, are reported in Figures 1(b)-

(c). Not surprisingly, higher expectations are usually associated with higher volatility. Opposite

evidence holds for skewness and kurtosis, although both statistics tend to �uctuate around a

lower level in the highly in�ationary period (opposite evidence holds for the variance).

Figure 1(d) displays the 25th, the 50th and the 75th percentiles. Marked di¤erences can be

observed in the degree of volatility of di¤erent parts of the distribution. The 75th percentile

appears to be remarkably stable after 1988, compared to the other series. At the same time,

the median forecast reacts less and with a marked delay to the in�ationary pressures triggered

by the �rst Gulf War, while it is rather reactive in the aftermath of the 9/11. A possible

explanation for agents in the center of the distribution to react more is that they perceived a

threat of de�ation as credible.
6 It is important to recall that the exact speci�cation of the truncation rule only in�uences the mean and the

variance of the distribution, but has no e¤ect on the median. It is also important to take into account that the
upper tail of the distribution is not only long but also sparse, frequently with large gaps between observations.
Technical considerations regarding the cut-o¤ procedure are outlined in Curtin (1996).

7Curtin (1996) also suggests that there is not compelling evidence supporting the choice of one truncation
rule over the other.
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Insert Figure 1 about here

Figure 1(e) reports the mean of the MSHE distribution and of the Survey of Professional

Forecasters (SPF) forecasts against actual in�ation. It is striking how professional forecasts,

generally more accurate in the second part of the sample, are more biased than households�

expectations during the period of high in�ation. The two predictions are remarkably similar

from 1984 to 1990 and from this point onward the SPF provides a more accurate prediction.

Figures 1(f)-(g) report higher moments of the distribution against two di¤erent cycle indi-

cators.8 The variance displays a marked counter-cyclical behavior, while skewness and kurtosis

are pro-cyclical. Moreover, the third and fourth moments display higher variability in the post-

1988 period. Kurtosis exhibits increasing variability when the cycle peaks. This re�ects rising

uncertainty about the future after the turning point. The skewness dynamics is qualitatively

similar to the one featuring kurtosis. This evidence signals the existence of a long and sparse

positive tail characterized by high variability.9

3. Percentile Time Series Analysis

The remainder of the paper develops formal procedures to assess recent theories of expectation

formation, such as information stickiness and adaptive learning. Particular attention is paid to

the information retrievable from the entire distribution of responses. The approach pursued,

aimed at tracking the evolution of the cross-sectional dimension, relies on the use of time series

of percentiles. Percentile time series analysis is not only motivated by its suitability to account

for asymmetric responses in the MSHE distribution, but also by a more practical consideration.

The panel under scrutiny is highly unbalanced, as every respondent is interviewed only twice.

Computing percentiles for each year provides us with time series of equidistant statistics that

describe the distribution both under a dynamic and a longitudinal perspective. We regard

the expected change in price level in the next 12 months as a random variable
�
�tjt+12

�
with

distribution F (�). The kth percentile
�
�ktjt+12

�
is the value below which k% of the responses

lie.10 Therefore, we retrieve a set of ordered statistics for each month, i.e. 99 time series of

percentiles.11

A number of studies in the past have employed the mean or median forecasts from the

Michigan Survey.12 Implicitly, one motivation for focusing on measures of central tendency is

to remove any idiosyncratic component in the cross-section of forecasts. This principle applies

8These consist of a HP detrended industrial production index (IPI) and an interpolated estimate of Kuttner
(1994) model of multivariate Kalman �ltering.

9Time series analysis on higher moments of the distribution of in�ation forecasts con�rms our visual impression.
10Thus F (�ktjt+12) = k.
11We are aware of the methodological limits implicit in this approach, as the survey is not conducted on

the same households� throughout the time window considered. Nevertheless, some empirical (e.g. Pfajfar and
Santoro, 2008a and Curtin, 2005) support the view that agents with analogous characteristics tend to behave
similarly. In�ation forecasting is common in every-day life and not just when households are asked to provide their
forecasts. We can argue that when one respondent is replaced by another with similar intrinsic characteristics,
her information set is likely to be nested within the newcomer�s one. This argument is in line with the conceptual
structure of overlapping generation models.
12Often, the median forecast is preferred over the mean, given that extreme observations are not considered to

be particularly informative. This is detailed in Mankiw, Reis, and Wolfers (2004).
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when dealing with symmetric and unimodal densities. However, it can be shown that the median

in�ation forecast of the Michigan Survey may not be an appropriate measure of central tendency,

given that both pooled and time series data display substantial asymmetry and multimodality.

3.1. Rationality Tests. The rational expectations hypothesis (REH) can be interestingly

tested with survey expectations data13 to allow for di¤erent degrees of forecast e¢ ciency across

the distribution of responses. To satisfy the REH, the forecasting procedure should not yield

predictable errors. A test of bias can be applied by regressing the expectation error of each

percentile on a constant.14 This allows us to verify whether in�ation expectations are centred

around the right value:

�t � �ktjt�12 = �+ "t; (1)

where �t is in�ation at time t and �ktjt�12 is the k
th percentile from the MSHE. The following

regression represents a second test for rationality:

�t = a+ b�
k
tjt�12 + "t; (2)

where rationality implies that conditions a = 0 and b = 1 are jointly satis�ed. Equation (2) can

be simply augmented to test whether available information is fully exploited:

�t � �ktjt�12 = a+ (b� 1)�
k
tjt�12 + "t: (3)

Under the null of rationality, these regressions are meant to have no predictive power.15

Results. Regressions based on equation (1) suggest that only the 51st�55th (52nd�54th)
percentile range is not biased at a 5% (1%) level of signi�cance. Testing for bias has been often

conducted on survey data. Among others, Croushore (1998), Roberts (1997), and Mankiw, Reis,

and Wolfers (2004) test for rationality in the Michigan Survey. They focus on the mean and

median forecast and tend to reject the null hypothesis.16 We cannot reject the null of rationality

for some percentiles placed slightly above the median. When splitting the sample into pre-1988

and post-1988, we �nd that forecasts between the 55th and 63rd percentile (56th� 62nd) are not
biased at a 5% (1%) level of signi�cance. In the 1989� 2005 period, forecasts in the 47th� 50th

(48th�50th) percentile range are not biased at a 5% (1%) level of signi�cance. A greater share of
rational forecasts can be estimated in the �rst subsample, when in�ation is higher and induces

a higher level of attentiveness. The second test for rationality (3) always leads to rejection of

the null hypothesis of rationality.

13See Pesaran (1987), Mankiw, Reis, and Wolfers (2004) and Bakhshi and Yates (1998) for a review of these
tests.
14See, for an application, Jonung and Laidler (1988) and Mankiw, Reis, and Wolfers (2004).
15An alternative test for rationality takes into account that in�ation and in�ation expectation data are I(1). The

REH suggests that these series cointegrate, i.e. expectations errors are stationary. Moreover, the cointegrating
vector has no constant terms and the coe¢ cients on expected and actual in�ation should be equal in absolute
value (Bakhshi and Yates, 1998).
16Roberts (1997) tests for the REH in survey expectations. He concludes that both Michigan and Livingston

forecasts display an intermediate degrre of rationality, being nor fully rational, neither entirely adaptive.
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3.2. A further Investigation on the Forecast Error. The results reported above suggest

that a substantial part of households�in�ation forecasts are not rational. To explore further the

nature and the determinants of the forecast error we estimate model (4). Regressing forecast

errors on di¤erent determinants, such as changes in actual in�ation and errors of the professional

forecasters,17 provides us with valuable information on the degree of heterogeneity in the data:

�t � �ktjt�12 = �+ �
�
�t�13 � �kt�13jt�25

�
+ �(�t � �Ftjt�12) + 
�Xt + "t; (4)

k = 1; :::; 99; Xt =
h
yt �t (it � rt)

i0
:

where �ktjt�12 denotes the the k
th percentile of the 12 months ahead expected change in prices,

while �Ftjt�12 denotes the mean of the 12 months ahead expected change in prices of the SPF.

Moreover, yt, �t, it and rt denote output gap, actual in�ation, real short term interest rate

(3-month t-bill coupon rate) and long term interest rate (10-year t-bond yield), respectively.

Mankiw, Reis, and Wolfers (2004) and Ball and Croushore (2003) employ models similar to (4).

They regress forecast errors on the variables introduced in our set of regressors. However, our

model features past errors and changes in the relevant regressors as determinants of the current

forecast error. Evidence of serial correlation in the forecast error process indicates that there is

ine¢ cient exploitation of information from last year�s forecast. In this case the RE hypothesis

is violated. Figure 2 reports the total R2 for each regression as well as the contribution of each

regressor to the explanation of the variation of a dependent variable (Scherrer, 1984).18 Table

A2 and Figure A1 in the appendix report the estimated coe¢ cients.

Insert Figure 2 about here

It turns out that the coe¢ cients associated with the horizontal spread and the cycle indicator

are never signi�cantly di¤erent from zero. Below this level, the cycle indicator exerts a negative

e¤ect. The response associated with the last observed forecast error is fairly constant up to the

30th percentile (see Figure A1c), declining thereafter and then assuming a U-shaped pattern,

with a minimum occurring around the at the 55th percentile. On a priori grounds, only the error

of the professional forecasters is expected to be positive and signi�cantly di¤erent from zero to

con�rm rationality. Our results show that the response is �rst constant, then hump-shaped

around the 55th percentile, while it decreases in the last deciles. As to the e¤ect of ��t, our

estimates show that the response increases monotonically from the 51st percentile onwards, thus

displaying a substantial degree of overreaction to changes in current in�ation.
17This equation could also be considered as a test of rationality. The test would be based on the null hypothesis

that � = � = 
 = 0. To assess Carroll�s (2003a, 2003b) �nding that the transmission e¤ect from professional
forecasters to households is quite slow, we also add several lags of the SPF. However, these turn out to have no
explanatory power.
18The coe¢ cient of multiple determination measures the proportion of the variance of a dependent variable

y explained by a set of explanatory variables. It can be computed as R2 =
Pk

j=1 ajryxj , where aj is the

standardized regression coe¢ cient of the jth explanatory variable and ryxj is the simple correlation coe¢ cient
(Pearson�s r) between y and xj . Scherrer de�nes ajryxj as the contribution of the j

th variable to the explanation
of the variance of y.
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The coe¢ cient of determination declines as we move towards the upper end of the distribu-

tion. Nevertheless, it does not follow a monotonic pattern, but displays a marked hump-shaped

behavior in the middle forecast range and a U-shaped pattern from the 70th percentile onward.

It appears that the last observed error captures substantial variance in the LHS forecasts, which

display a market degree of backward lookingness. Forecasts in this range do not rely on current

in�ation. The variance of the forecast error on the RHS is almost exclusively explained by the

variance of the change in actual in�ation. This is a further signal of the pessimism re�ected in

the overreaction of these agents to changes in contemporaneous in�ation.

In the central forecast range the contribution of past errors decreases, while the contribution

of the SPF error acquires further importance. Regarding professional forecasters as rational

agents, we can actually infer that the middle range is the least biased, especially around the

50th � 55th percentile. In this region the error of professional forecasters is almost the only
relevant variable to explain the forecast error.

3.3. Adaptive Expectations. In this section we analyze the degree of adaptiveness in

households�in�ation forecasts. The idea of adaptive expectations originated in Fisher (1930)

and was formally introduced in the 1950s by several authors, e.g. Fisher (1930). Nerlove,

Grether, and Carvalho (1979) were the �rst to model expectations as an autoregressive process

and labelled them as quasi-rational expectations. The following regression model, conceived as

a preliminary assessment of the degree of adaptiveness, is equivalent to an adaptive expectations

formula:

�ktjt�12 = �
k
t�13jt�25 + �

�
�t�13 � �kt�13jt�25

�
+ "t; (5)

Under this rule, agents revise their expectations according to the last observed forecast error.

Parameter � is labelled as the "error-adjustment" coe¢ cient. It captures the speed of adjustment

of present forecasts to past forecast errors. As interviewees are asked to forecast in�ation over

the next year (hence they make their forecast at time t� 12), the revision will be based on the
previous period�s forecast, which has been carried out at time t � 25. A word of caution is in
order at this stage. In the adaptive learning approach, which is discussed in further detail in

the next section, adaptive behavior re�ects in the estimation of the parameters of the Perceived

Law of Motion (PLM). The adjustment of these parameters towards the value consistent with

the REE depends on past forecast errors, while adaptive expectations postulate that agents

revise their current expectation based on past forecast errors. In this case the error-adjustment

coe¢ cient is assumed to be constant.

Results. In Figures 3(a)-(b) we plot, for each percentile, the gain parameter and the

corresponding R2 obtained from (5).

Insert Figure 3 about here

Overall, forecasts on the RHS of the median forecast at least partly behave in an adaptive

manner, while past errors have little or no explanatory power for LHS forecasts.19 As to the
19A negative estimated gain on the LHS could re�ect a divergent behavior, as errors become larger over time.

As displayed in Figure 3(b), this model does not provide a good �t for the LHS of the median forecast.



10

estimated constant gain and the R2, we observe a clear hump-shaped response between the 40th

and 99th percentile, with a peak occurring at the 75th percentile.

3.4. Sticky Information. Carroll (2003a, 2003b) designs an epidemiological framework to

study how the Michigan Survey respondents form their expectations. He models the evolution of

in�ationary expectations based on the assumption that households update their information set

from news reports, which in turn are in�uenced by the expectations of professional forecasters.

His results suggest that the di¤usion process is slow, due to households�inattentiveness. More-

over, SPF in�ation expectations are found to Granger-cause households�in�ation expectations,

whereas the opposite does not hold true.

Testing for Sticky Information �Static Case. We estimate a simple regression in the

vein of Carroll (2003a):

�ktjt�12 = �1�
F
tjt�12 + (1� �1)�

k
t�1jt�13 + "t: (6)

As Carroll (2003a) points out, news about in�ation spread slowly across agents, reaching only

a fraction �1 of the population in each period. The model is estimated under the assumption

that coe¢ cients sum up to 1, although this restriction is not likely to be satis�ed across all

percentiles.20

We also �nd evidence of time-varying degrees of heterogeneity in the frequency of information

updating over the cross-sectional range of responses. We consider two subsamples of forecasts,

namely pre-1988 and post-1988, so that two di¤erent in�ationary regimes are considered. On

the one hand, our results suggest that forecasts slightly below the median entail a higher degree

of unbiasedness in the post-1988 subsample, as they re�ect higher frequency of information

updating.21 On the other hand, forecasts slightly above the median re�ect systematic errors

when in�ation is lower and more stable, thus supporting the inattentiveness argument. This is

explored further in the next subsection.

Results. Figure 4(a) plots, for each percentile, the estimated ��11 . This provides us with

a measure of the average updating period. The estimation con�rms the existence of static

behavior in the informational structure up to the 40th percentile. From this point up to the 91st

percentile, a U-shaped pattern emerges, with a minimum occurring at the 50th percentile. This

translates into an average minimum updating period of 7 months. Carroll (2003a) �nds similar

results: his estimate of ��11 is 11 months for the mean22, while Döpke, Dovern, Fritsche, and

Slacalek (2006a) estimate an average updating period of 18 months for the Euro area. Mankiw,

Reis, and Wolfers (2004) and Branch (2007) set � at 0:1, which for monthly data implies an

20 It should be pointed out that this model is derived under the assumption that: (i) in�ation follows a random
walk process; (ii) �ktjt�13 � �kt�1jt�13 (see Döpke et al., 2006a).
21On the one hand, one could interpret these results as a critique to our approach which does not allow agents

to switch across di¤erent percentiles. On the other hand, our results point out that the intervals identi�ed above
preserve their main characteristics, both in terms of information and in terms of expectation formation.
22Mankiw and Reis (2002) have implemented � = 0:25 (average updating 12 months) in their simulations,

assuming quarterly data.
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average frequency of 10 months. Branch (2007) further investigates the sticky information

argument by allowing for switching between di¤erent updating frequencies.

Testing for Sticky Information - State Dependent Coe¢ cients. When in�ation

matters agents update their information set more frequently, in order to produce more accurate

forecasts. In addition, in periods of marked macroeconomic turmoil the amount of media

coverage is generally higher, hence the cost of acquiring information is lower. We assume that

a higher proportion of agents pays attention to new information when in�ation is higher, as

the opportunity cost of being inattentive is signi�cantly higher during these phases. To test

this hypothesis, we relax the assumption of linearity in equation (6). We assume a non-linear

structure in the form of a logistic smooth-transition autoregressive (LSTAR) model:23

�ktjt�12 = �1F (�t�12)�
F
tjt�12 + [1� �1F (�t�12)]�

k
t�1jt�13 + "t; (7)

where F indicates the following logistic function:24

F (�t�12) =
1

1 + exp [�� (�t�12 � c)]
; (8)

where � can be interpreted as a parameter measuring the speed of responsiveness, whereas c is

a threshold coe¢ cient. The approach consists of estimating �1 by means of least squares while

running a grid search on � and c, in order to �nd the combination of values that minimizes the

SSE for each percentile.

Insert Figure 4 about here

Results. We estimate positive coe¢ cients in the transition function at every percentiles.

Since the SSE is always lower under (7) we can assert that the non-linear version outperforms

the linear version.25 Responses between the 59th and 79th percentile are clearly associated with

the inattentiveness argument. Within this range a higher level of attentiveness is displayed in

periods of high in�ation compared to periods of low in�ation.

Figure 4(b) reports the estimated [�1F (�t�12)]
�1, which is a time-varying estimate of the

average updating period for the 52nd and 63rd percentile. As we can notice, the average updating

period for the 63rd percentile behaves in accordance with the inattentiveness view. At the

beginning of the sample, the average updating period is rather low, as in�ation is higher, as the

opportunity cost of not updating the information set. The optimal coe¢ cients in the transition

function for this percentile are � = 0:21 and c = 2:58: The latter can be interpreted as a perceived

implicit in�ation target of the FED. The dynamics of the average updating period for the 52nd

percentile is quite di¤erent. This percentile displays lower attentiveness only sporadically. The

optimal coe¢ cients in the transition function for the 52nd percentile are � = 3:18 and c = 7:40.

23For details about smooth-transition regression models see Granger and Teräsvirta (1993).
24We have also tried di¤erent forms of transition function, but the symmetric case we present outperforms the

other alternatives in terms of SSE.
25The average di¤erence in the SSE is about 0:595.
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The interpretation of these coe¢ cients is di¤erent from the previous case, as � is higher than

1. Consequently, c cannot be interpreted as a perceived in�ation target. For these agents, the

di¤erence between the linear and non-linear model is negligible. The 50th � 58th percentile
range exhibits a similar response, although for higher percentiles in this range the variability

of the estimated average updating frequency is higher. Thus, when in�ation is low higher

inattentiveness is observed. Analogous evidence applies above the 80th percentile, although this

area is associated with a much higher average time to update information.

Model (7) can also be interpreted as an alternative speci�cation to the one proposed by

Branch (2007). In this case the choice between di¤erent updating frequencies is modelled

through a mechanism á la Brock and Hommes (1997). Results indicate that the majority

of agents update their information set every 3 � 6 months, while fewer agents update their
information set every month. Some agents update every 9 months or even less frequently.

Our results stand in partial contrast to Branch (2007). We provide evidence that information

updating is less frequent on the LHS of the median forecast. RHS forecasts are formed in

accordance with the inattentiveness argument and generally display lower updating frequency

in periods of stable in�ation (approximately every two years). Conversely, the frequency of

information updating increases when in�ation is higher.

3.5. Adaptive Learning. This section is designed to assess the empirical signi�cance of

adaptive learning in the MSHE distribution. Di¤erent learning rules are considered to test

for convergence to rational expectations (perfect foresight) and to measure the speed of learn-

ing. For a comprehensive discussion on di¤erent learning rules and convergence to rational

expectations see Evans and Honkapohja (2001).

The adaptive expectations model (5) has been designed to provide a preliminary assessment

of the degree of adaptiveness in the data. In the adaptive learning literature, it is assumed that

agents behave like econometricians, using the available information at the time of the forecast.

Let us assume that the forecasters considers the following perceived law of motion (PLM):

�tjt�12 = �0;t�1 + �1;t�1�t�13 + "t; (9)

whose coe¢ cients are assumed to be time-varying and follow a speci�c updating mechanism that

will be brie�y detailed. When agents estimate their PLM, they exploit the available information

up to period t � 1. As new data become available, they update their estimates according to a
constant gain learning (CGL) rule or a decreasing gain learning (DGL) rule. First, we focus

on stochastic gradient learning and then on least squares learning, both under constant gain

(CG) or decreasing gain (DG). Let Xt and b�t be the following vectors: Xt = �
1 �t

�
andb�t = �

�0;t �1;t

�0
. When relying on stochastic gradient learning, agents update coe¢ cients

according to the following rule (see Evans, Honkapohja and Williams, 2005):

b�t = b�t�1 + #X 0
t�25

�
�t�12 �Xt�25b�t�13� : (10)
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In the updating algorithm for DGL, we replace # with �
t . When using least squares learning,

agents also take into account the matrix of second moments of Xt, Rt. Under CGL, coe¢ cients

are updated according to:

b�t = b�t�1 + #R�1t�1X 0
t�25

�
�t�12 �Xt�25b�t�13� ; (11)

Rt = Rt�1 + #
�
Xt�25X

0
t�25 �Rt�1

�
: (12)

Alternatively, when specifying the updating algorithm under decreasing gain learning we simply

replace # with �
t :

A Standard Updating Mechanism. In order to implement the adaptive learning ap-

proach to MSHE data, we specify the following PLM:

�stjt�12 = �0;t�1 + �1;t�1�t�13 + "t; (13)

where superscript "s" stands for simulated forecast. Our exercise is designed to search for the

combination of initial values and gain parameter that replicates each percentile as closely as

possible. The drawback implicit in this approach is that initial values of b�t for 12 periods have
to be assumed. In the recursive estimation of the gain parameter setting initial values represent

the main problem: this is extensively discussed in Carceles-Poveda and Giannitsarou (2007).

Previous estimations of models under adaptive learning (e.g. Milani, 2005) have generally split

the time series into two subsamples. Thus, the �rst subsample is only used to estimate the set of

initial values for the parameters in the PLM which are then employed for the recursive estimation

of the gain parameter in the second subsample. Clearly, the main practical drawback of this

approach is that it does not allow the researcher to fully exploit the data available. Moreover,

this approach does not abstract from the risk that learning dynamics could just result as a

statistical artifact due to a non-optimal initialization.

Our approach abstracts from this criticism, as we search for the optimal combination of the

initial values and the gain parameter, thus preserving the sample structure and optimizing the

initialization procedure. In practice, several forecast series (�stjt�12) are simulated, by means of

a multidimensional grid search, under di¤erent combinations of # and b�. We then select the
gain parameter # (or � under DGL) and the set of initial values b� that minimize the sum of

squared errors (SSE), i.e.
�
�stjt�12 � �

k
tjt�12

�2
.26 This strategy can also be regarded as a test for

learning dynamics. If the gain is found to be positive under this method of initialization, then

the series would exhibit learning for all other initialization methods with a higher (or equal)

gain.

Results. The 65th-98th percentile range displays evidence in line with CG gradient learn-

ing. The estimated gain, reported in Figure 5(a), displays a hump over this forecast range,

with a peak at 2:1� 10�4. This maximum is located between the 71st and 73rd percentile. The

26However, this approach has an obvious practical inconvenience, as running a grid search on several variables
is computationally very intensive.
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DG version of gradient learning turns out to be signi�cant for the 70th � 96th percentile range.
Within this range, the estimated gain displays properties similar to those detected under CGL.

Both CGL and DGL exhibit a second minor hump in the RHS of the distribution. This is more

pronounced under DGL [see Figure 5(a)]. The highest gain is estimated around the 76th� 77th

percentile (0:007t�1). To compare both versions of gradient learning, we plot their SSEs in

Figure 5(b). Our results suggest that the CG version of gradient learning generally provides a

better description of agents�behavior, especially around the 70th percentile.

Orphanides and Williams (2005a) suggest a value of the gain coe¢ cient between 0:01 and

0:04, whereas Milani (2007) estimates a gain of 0:0183. These estimates are obtained from

quarterly data. An estimated gain of 0:02means that agents rely on 12:5 years of data to produce

their forecast. As in this study we explore monthly data, an estimate of 2:1� 10�4 implies that
roughly 400 years of data are employed to produce a forecast. However, our estimates should

only be regarded as the lower bound of the gain coe¢ cient for the reasons exposed above.

Furthermore, Eusepi and Preston (2008) suggest that the gain might be comprised between

0:0015 and 0:0029. This value is closer to our estimates.

Insert Figure 5 about here

When taking into account the matrix of second moments,27 we �nd very similar results,

as covariance terms are found to be rather small. We also consider alternative PLMs. In the

following formulation previous period in�ation is replaced by previous period forecast:

�stjt�12 = �0;t�1 + �1;t�1�
k
t�1jt�13 + "t: (14)

This formulation is found to provide a better �t compared to (13) [see Figure 5(d), where we

compare the SSE under the two updating algorithms]. Moreover, in this case some learning

dynamics can also be detected on the LHS of the distribution. The 1st�9th and the 63rd�99th

percentile range display adaptive behavior consistent with CGL dynamics. We obtain similar

results under DGL, as evidence of learning is detected for the 1st � 9th and the 69th � 99th

percentile range. In the CG case, the response pattern on the RHS is bell-shaped, with the

highest gain occurring at the 78th�79th percentile
�
5:5� 10�5

�
. The response under DG is also

hump-shaped on the RHS, reaching the highest gain at the 75th � 76th percentile
�
0:0067t�1

�
.

An Iterative Representation of the PLM. We now introduce a PLM featuring the

last observed rate of in�ation:

�stjt�1 = �0;t�1 + �1;t�1�t�1 + "t: (15)

We implement the following gradient learning updating algorithm:

b�t = b�t�1 + #X 0
t�1

�
�t �Xt�1b�t�1� : (16)

27We set this matrix to be constant and equal to the sample average. In this case RLS estimates are approx-
imately linear combinations of the gains obtained under stochastic gradient learning, as covariance terms are
quite small.
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As we consider 12 months ahead forecasts, agents are assumed to implement the following rule:

�st+12jt = �0;t�1

h
1 + �1;t�1 +

�
�1;t�1

�2
+ :::+

�
�1;t�1

�12i
+
�
�1;t�1

�13
�t�1: (17)

The advantage of this approach is that we only need to assume initial values for 1 period.

Results. This recursive algorithm delivers results analogous to those obtained under (9).

However, this learning method provides a slightly less accurate explanation of in�ation forecasts.

Our estimates suggest that the 65th-99th percentile range displays CGL dynamics. In this case,

optimal gains exhibit a marked hump-shaped pattern. The peak occurs at 2:35 � 10�4, between
the 79th and 82nd percentile [see Figure 5(e)].In the DG case, the gain peaks at 0:0125t�1,

between the 74th and 75th percentile. As in the previous version, CGL constantly outperforms

DGL [see Figure 5(f)].

An Updating Mechanism Based on Expected Future Errors. In the next updating

mechanism we allow for a higher degree of forward lookingness compared to the one traditionally

assumed in the adaptive learning literature. We introduce a novel mechanism of expectation

formation which presumes that agents update their coe¢ cient estimates with respect to new

information about future in�ation. In this case, new information is proxied by SPF forecasts.

Implicitly, this model states that agents update their information set from the media, which

are assumed to transmit the expectations of the professional forecasters. The underlying mech-

anism is consistent with the epidemiological view advanced by Carroll (2003a), and implicitly

represents a combination of adaptive learning and sticky information. We assume a PLM of the

following form:

�st+12jt = �0;t�1 + �1;t�1�t�1 + "t: (18)

The following gradient learning updating algorithm is considered:

b�t = b�t�1 + #X 0
t�1

�
�Ft+12jt �Xt�1b�t�1� : (19)

Results. Our results suggest that learning dynamics is displayed above the 52nd percentile

under CG and the 51st percentile under DG. The highest gain is 7:40 � 10�4 under CG and

0:0200t�1 under DG. As we can observe in Figure 6(b), CGL signi�cantly outperforms DGL

after the 65th percentile.

Insert Figure 6 about here

Interestingly, this approach produces a cross-sectional pattern of the gain parameter which

is more in line with what we should expect on a priori grounds. The highest gain is reached

slightly above the median and declines thereafter. Also, compared to the previous updating

algorithms, a wider proportion of forecasts are consistent with (19). This signals that, despite

the fact updating dynamics can be detected, substantial forward lookingness characterizes the

updating procedure. Moreover, as it will emerge in the next updating rule, the distribution of
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forecasts re�ects a higher informational content compared the one proxied by the prediction of

the professional forecasters.

An Updating Mechanism Based on Future Errors. Consistent with the view ad-

vanced above, we allow for the possibility that agents access more information about future

developments of in�ation compared to what re�ected in SPF forecasts. One motivation for

this concern is that several studies have documented the presence of herding behavior in the

predictions of professional forecasters.28 We proxy this information with next period�s in�ation.
The PLM reads as in (18). We implement a gradient learning updating algorithm:

b�t = b�t�1 + #X 0
t�1

�
�t+12 �Xt�1b�t�1� : (20)

We also consider a least squares learning version of (20).

Insert Table 1 and Figure 7 about here

Results. The forward-looking updating mechanism (20) allows us to assess the importance

of learning from new information, compared to previous versions characterized by a backward-

looking perspective. Our results suggest that RHS forecasts can be associated with this version

of adaptive learning. In order to support this evidence, we also explore a wider set of potential

PLMs. We start with (13). Results suggest that data display learning dynamics from the 55th

percentile under CG and the 56th percentile under DG. In both cases, the gain immediately

jumps to the highest value and decreasing thereafter. The highest gain is estimated at 1:125 �
10�3 and the lowest SSE is reached at the 68th percentile [see Figures 7(a)-(b)]. Compared

to estimates obtained under the �rst version, this gain can be regarded as more realistic, as it

suggests that about 74 years of data are used to produce forecasts. Nonetheless, this estimate

is still quite high. Under DGL, the highest gain is 0:0445t�1 while the SSEs are very similar

to those obtained under CGL. Strictly speaking, CGL performs slightly better for most of the

percentiles, except for those between the 63rd and 69th percentile.

As to least squares learning, we set the variance-covariance matrix in line with the sample

average. The results in this case are very similar to those obtained under stochastic gradient

learning. The maximum optimal gain is 8:5 � 10�8 under CGL and 3:5 � 10�6t�1 under DGL.
We also explore learning with PLMs that alternatively feature the second lag of in�ation,

output gap and SPF in�ation forecasts. We �nd that the PLM implementing SPF in�ation

forecasts performs better compared to other options, especially under DGL [see Figure 7(d)].

The pattern of the optimal gain is quite similar across competing PLMs. These PLMs indicate

that agents between the 54th and 98th percentile behave in accordance to adaptive learning

based on SPF forecasts. Figure 7(f) plots the SSEs, whereas Table 1 reports the maximum

gains. The optimal gain under CGL is estimated between 0 and 0:051. In addition, we can

claim that DGL provides a better �t.

28This e¤ect, studied by Scharfstein and Stein (1990), Banerjee (1992) and Zwiebel (1995), is based on the
people who make forecasts occasionally being afraid of deviating from the majority or consensus opinion. Pons-
Novell (2003) documents this fact empirically.
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Overall, these results con�rm that forecasts on the RHS are more in line with this version

of learning dynamics, compared to classical models of learning.

4. Discussion

Our analysis highlights the presence of a marked degree of heterogeneity in the process of

expectation formation. Our results allow us to identify three regions of the distribution that

correspond to di¤erent underlying mechanisms of expectation formation. On the one hand, we

can consider the interval on the LHS of the distribution as the one characterized by forecasts

that do not exploit the relevant information. On the other hand, predictions on the RHS of the

median forecast re�ect signi�cant overreaction to information about future in�ation. Intuitively,

forecasts in the middle range of the density are unbiased. Table 2 reports, for each range of

responses, the models of expectation formation that are consistent with the data. Moreover, we

report the variables exploited in the prediction of future in�ation for each of these models and

the degree of reliance on these variables (partial reliance =P ; full reliance=F ; over-reaction=O).

Insert Table 2 about here

LHS forecasts display a substantial degree of backward lookingness. As shown in Table 2,

this forecast range can be divided into three further sub-intervals. In the �rst sub-interval (up to

the 10th percentile), forecasts are nearly static, as the information set is virtually never updated.

Past in�ation is not taken into account. Only past forecasts are considered and, to some extent,

the cycle indicator. Moreover, we �nd some support for adaptive learning, where parameters are

updated with respect to past errors. To conclude, forecasts in this sub-interval mainly display

some form of AR(1) rule and, from time to time, coe¢ cients are updated with respect to the

last observed error. A second sub-interval on the LHS can be identi�ed between the 11th and

30th percentile. Also in this range forecasts do not re�ect any systematic information updating.

Compared to the previous sub-interval, past in�ation in the PLM is now signi�cant. No form

of adaptive behavior is signi�cant. We could characterize this sub-interval through a PLM

featuring an intercept, past forecasts and past in�ation. The third sub-interval incorporates

forecasts lying between the 31th and 49th percentile. Information updating occurs on a more

regular basis, especially after the 40th percentile. Past in�ation is fully exploited into the PLM,

as well as information on future developments in in�ation dynamics through the predictions

of professional forecasters. In this interval, the dependence of the forecast error on past errors

gradually decreases as we move toward the RHS. The dynamics of the percentiles in this forecast

range could be characterized by a PLM featuring the intercept, past forecast, past in�ation and

SPF forecasts.

Forecasts in the central range of the empirical distribution are generally unbiased. Moreover,

the
�
50th; 55th

�
percentile interval displays regular information updating. As expected, the SPF

forecast error is the only explanatory variable for errors in this range.

The RHS of the distribution displays forecasts in line with theories of adaptive learning

and inattentiveness. Predictions above the 56th percentile can be further divided into four sub-

intervals. The �rst sub-interval can be identi�ed between the 56th and 66th percentile. Forecasts
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comprised in this range of responses display inattentiveness. The average updating frequency

ranges between 8months and 30months. Adaptive learning is also a plausible explanation of the

process of expectation formation in this forecast range, as coe¢ cients in the PLM are updated

with respect to new information. Some degree of pessimism characterizes these forecasts, as

prediction errors are increasingly associated with changes in the current in�ation as we move

towards the RHS. The second sub-interval on the RHS of the distribution encompasses forecasts

between the 67th and 72nd percentile. This region of the empirical density behaves in line with

a version of adaptive learning featuring updating with respect to new information (SPF in the

PLM). Forecasts between the 73rd and 90th percentile can be grouped in the third sub-interval

on the RHS. Their dynamics can be replicated under a CGL algorithm with a PLM featuring

past forecasts. Coe¢ cients in the PLM are updated with respect to the last observed error.

Forecasts in this group re�ect information updating at a lower frequency, compared to what

detected in the previous regions of the empirical density. Moreover, changes in actual in�ation

acquire a predominant role in the determination of forecast errors in this area. The last range

of forecasts on the RHS can be placed above the 91st percentile. This is associated with a DG

version of learning, where coe¢ cients are updated with respect to new information. Information

is updated rather infrequently and forecast errors are almost exclusively explained by changes

in current in�ation.

Concluding Remarks

This paper deals with the development of techniques for the empirical analysis of adaptive

learning and information stickiness. These methodologies are applied to the distribution of

households� in�ation expectations collected by the University of Michigan Survey Research

Center. In order to account for the degree of asymmetry and multimodality in the empirical

density, we apply our techniques to the entire cross-sectional range of forecasts.

First, we extend the epidemiological framework proposed by Carroll (2003a) to account for

the possibility that agents are more likely to update their information set on a regular basis in

periods of high in�ation. The resulting LSTAR model provides a reasonable description of the

forecasts range in the upper end of the distribution of in�ation forecasts. This region displays

greater attentiveness in periods of high and volatile in�ation.

We then introduce a novel technique to detect adaptive learning in the distribution of fore-

casts. We tackle the problem of initializing the learning algorithm and propose a computational

technique to search for the optimal combination of initial values (for the parameters of the

PLM) and gain parameter, thus preserving the sample structure and optimizing the initializa-

tion procedure. This procedure allows us to fully exploit the data available and to avoid that

the detection of learning dynamics results as a mere statistical artifact due to a non-optimal

initialization. We also propose an alternative mechanism of expectation formation, whereby

households are assumed to update their forecast with respect to (expected) future errors, which

are re�ected in the di¤erence between their forecasts and the predictions of the professional

forecasters. This model draws on the epidemiological view advanced by Carroll (2003a), and

represents a combination of adaptive learning and sticky information.
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The implementation of these techniques generates a set of stylized facts that allows us to

identify three regions of the distribution that correspond to di¤erent underlying mechanisms

of expectation formation: a static or highly autoregressive region on the left hand side of the

median, a nearly rational region around the median, and a fraction of forecasts on the right

hand side of the median forecast produced in accordance with adaptive learning and sticky

information.
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Figures 1(a)-1(g): Empirical moments of the MSHE distribution (realized date).
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Figure 2: Determinants of the forecast error.
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Figures 3(a)-(b): Adaptive expectations.
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Figures 4(a)-(b): Sticky information: static and dynamic case
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Figures 5(a)-(f): Adaptive learning - standard updating and iterative representation.
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Figures 6(a)-(b): Adaptive learning - updating mechanism based on expected future errors.
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Figures 7(a)-(f): Adaptive learning - updating mechanism based on future errors.
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Adaptive Learning

CGL DGL
Max. Gain Min. SSE Max. Gain Min. SSE

PLM with �t and �Ftjt�12 8.00E-04 60.3 0.035*(1=t) 53.1
PLM with �t and yt 1.15E-03 61.6 0.051*(1=t) 61.4
PLM with �t, �t�1, �t�2 4.75E-04 62.6 0.025*(1=t) 63.3

Table 1: Maximum gain for di¤erent PLMs (constant and decreasing gain learning).

Forecast Range

LHS Center RHS
Expectation Formation Information Set 1 � 10 11 � 30 31 � 49 50 � 55 56 � 66 67 � 72 73 � 90 91 � 100

Rational Exp.
p

Adaptive Exp. S S S
Static Exp.

p
S

Sticky info S S S
Dyn. Sticky info

p
S

Adapt. Learning -V1 S
p

S
Adapt. Learning -V4 S

p

Output Gap P F
In�ation P F F F O O O

Past Forecasts F F F
SPF P F F F

Legend:
p
=best model; S =some evidence; P =partial reliance; F =full reliance; O =over-reaction

Table 2: Heterogeneity in In�ation Expectations.
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6. Appendix

Table A1: Sticky information - LSTAR model.

Perc. Upsilon c Lambda t­test Perc. Upsilon c Lambda t­test Perc. Upsilon c Lambda t­test

1 0.300 9.000 0.009 1.109 34 0.340 12.000 0.024 1.407 67 0.240 2.650 0.062 2.867
2 0.350 9.000 0.011 1.168 35 10.000 4.340 0.019 1.330 68 0.250 2.650 0.060 2.900
3 0.370 9.000 0.009 1.003 36 10.000 4.310 0.023 1.503 69 0.260 2.650 0.059 2.950
4 0.370 9.000 0.007 0.899 37 5.820 8.300 0.028 1.697 70 0.260 2.630 0.060 3.011
5 4.000 7.600 0.005 0.749 38 6.040 8.300 0.033 1.897 71 0.270 2.600 0.060 3.073
6 4.000 7.600 0.003 0.625 39 6.480 8.300 0.038 2.086 72 0.270 2.600 0.061 3.125
7 4.000 7.600 0.003 0.532 40 7.000 8.300 0.044 2.254 73 0.280 2.590 0.061 3.160
8 3.560 7.200 0.002 0.433 41 10.000 6.900 0.051 2.443 74 0.280 2.590 0.062 3.176
9 2.860 7.400 0.001 0.314 42 10.000 6.900 0.059 2.684 75 0.280 2.560 0.062 3.171

10 0.610 3.670 ­0.001 ­0.236 43 10.000 6.900 0.070 2.959 76 0.260 2.050 0.062 3.151
11 0.580 3.670 ­0.001 ­0.261 44 10.000 6.900 0.082 3.245 77 0.250 1.730 0.062 3.122
12 2.690 9.000 ­0.002 ­0.399 45 10.000 6.900 0.094 3.526 78 0.240 1.680 0.062 3.092
13 3.720 9.200 ­0.003 ­0.634 46 10.000 6.900 0.108 3.792 79 1.740 6.500 0.049 3.101
14 3.560 9.200 ­0.003 ­0.620 47 10.000 6.900 0.121 4.039 80 1.770 6.500 0.051 3.119
15 3.640 9.200 ­0.003 ­0.606 48 10.000 6.900 0.133 4.253 81 1.740 6.500 0.052 3.137
16 3.660 9.200 ­0.003 ­0.614 49 10.000 6.900 0.142 4.412 82 1.590 6.500 0.054 3.158
17 3.640 9.200 ­0.003 ­0.612 50 3.690 7.400 0.151 4.509 83 0.800 7.200 0.060 3.200
18 3.640 9.200 ­0.003 ­0.560 51 3.180 7.400 0.154 4.539 84 0.660 7.200 0.064 3.261
19 3.680 9.200 ­0.002 ­0.444 52 2.020 7.500 0.154 4.498 85 0.580 7.200 0.068 3.310
20 2.960 10.500 0.002 0.332 53 1.460 7.500 0.151 4.398 86 0.540 7.200 0.068 3.281
21 2.680 10.500 0.002 0.390 54 1.230 7.500 0.143 4.243 87 0.530 7.100 0.063 3.157
22 2.760 10.700 0.003 0.461 55 1.080 7.500 0.133 4.051 88 0.530 6.800 0.057 2.984
23 3.300 10.700 0.004 0.588 56 0.960 7.400 0.121 3.848 89 0.510 6.600 0.049 2.766
24 4.180 10.700 0.005 0.677 57 0.850 7.400 0.110 3.651 90 0.480 6.500 0.041 2.512
25 5.140 10.700 0.007 0.783 58 0.180 1.730 0.131 3.481 91 0.470 6.500 0.032 2.217
26 5.720 10.700 0.008 0.858 59 0.190 2.050 0.120 3.353 92 0.480 6.500 0.024 1.957
27 6.120 10.700 0.009 0.896 60 0.200 2.360 0.109 3.241 93 0.520 6.500 0.018 1.734
28 6.400 10.700 0.010 0.990 61 0.210 2.560 0.099 3.138 94 0.780 6.500 0.014 1.576
29 10.000 10.700 0.012 1.089 62 0.210 2.580 0.090 3.048 95 1.290 6.500 0.013 1.558
30 10.000 10.700 0.014 1.161 63 0.220 2.590 0.082 2.969 96 8.000 2.810 0.014 1.626
31 10.000 10.700 0.016 1.260 64 0.220 2.590 0.075 2.906 97 8.000 2.820 0.015 1.675
32 10.000 10.700 0.017 1.283 65 0.230 2.630 0.069 2.868 98 8.000 2.820 0.014 1.624
33 0.300 12.000 0.021 1.277 66 0.230 2.650 0.065 2.856 99 8.000 2.820 0.010 1.444

Table A2: Percentile Time Series Regression

Percentile α AR(1) Hor. Spread ΔCycle SPF Forcast Err. ΔInflation Adj R2 DW LM
5 0.725 0.831 ­0.212 ­0.012 0.411 0.569 0.913 0.877 96.006

5.767 31.100 ­9.282 ­0.350 7.493 9.843
0.000 0.739 0.001 0.001 0.161 0.012

20 0.377 0.882 ­0.110 0.039 0.292 0.545 0.878 0.484 177.147
3.598 28.692 ­5.047 1.232 6.058 10.199
0.000 0.749 ­0.005 ­0.004 0.131 0.008

35 0.536 0.714 ­0.130 0.055 0.235 0.530 0.737 0.662 141.077
5.703 15.311 ­4.847 1.431 3.631 7.897
0.000 0.484 ­0.005 ­0.007 0.148 0.121

50 0.098 0.213 ­0.034 0.060 0.493 0.174 0.620 0.526 168.881
1.984 3.634 ­1.333 1.652 6.884 2.503
0.000 0.099 ­0.004 ­0.014 0.449 0.097

65 ­0.888 0.219 ­0.006 0.056 0.254 0.428 0.751 0.534 167.783
­14.176 5.284 ­0.327 2.103 5.494 10.620
0.000 0.070 ­0.001 ­0.019 0.268 0.437

80 ­1.958 0.236 0.000 0.011 0.057 0.815 0.703 0.884 100.847
­16.617 6.523 ­0.003 0.252 1.076 17.487
0.000 0.047 0.000 ­0.003 0.033 0.630

95 ­7.060 0.326 0.047 0.108 ­0.321 1.240 0.619 1.112 67.128
­16.674 8.625 1.007 1.583 ­3.972 17.933
0.000 0.115 0.005 ­0.011 ­0.087 0.603

First row: coefficient; Second row: t­test; Third row: partial contribution to R2
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Figure A1: Coe¢ cients for Percentile Time Series Regression
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