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Exercises to Chapter 1

(1) Assume that qi ∈ ∆, i = 1, 2. In the special case q1 = q2 = q, then any point x∗ on
the intersection of the line

{(x1, x2) | q · x = q · ω1

with the Edgeworth box corresponds defines a Walras equilibrium.
Assume that q1 , q2. With linear preferences, consumer demand must be on the

boundary of the consumption set, so that only the two corners of the box, where
each commodity is used only by one consumer, can be equilibrium allocations. For
the north-west corner, the equilibrium price p must be such that q12 ≥ p2 ≥ q22, so
that the endowment of consumer 1 must belong to the cone spanned by the two
lines through the corner defined by q1 and q2, and for the south-east corner, a similar
argument shows that it may occur as the equilibrium allocation at prices p such that
q11 ≥ p1 ≥ q21 when the endowment of consumer 1 is in the cone spanned by the two
lines through this corner.

If the endowment point is not in any of the two cones, there is no Walras equilib-
rium.

(2) We find the demand of the two consumers at the price (1, p): For consumer 1, we
get the Lagrangian

ln x11 + x12 + λ(4 + 6p − x11 − px12),

first order conditions give λ = 1/p and x11 = 1, from which we get that x12 =
3 + 6p

p
=

3
p

+ 6. For consumer 2, we have a Lagrangian

x21 + 2
√

x22 + λ(6 + 4p − x21 − 2x22)

with first order conditions λ = 1 and x22 =
1
p2 , so that x12 = 6 + 4p −

1
p2 . Setting

aggregate demand equal to total endowment, we get the equations

7 + 4p −
1
p2 = 10

3
p

+ 6 +
1
p2 = 10

(1)
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Adding the two equations and multiplying by p, we get that the second order equation

4p2
− 7p + 3 = 0

with roots
6
8

and 1. It is checked that (1) is satisfied by p = 1, and we have a Walras
equilibrium ((1, 9), (9, 1), (1, 1)).

(3) At the price system p = (p1, p2) ∈ ∆, we have the following consumer demands:
Consumer 1 maximizes min{x11, x12} subject to p1(x11 − 1) + p2x12 = p1 + 2p2, with

solution
(x11, x12) = (2 − p1, 2 − p1),

Consumer 2 maximizes x2
21 + x2

22 subject to p1x2
21 + p2x22 = 2p1 + p2 with solution

(x21, x22) =


(
0, 2

p1

p2
+ 1

)
p1 ≥ p2(

2 +
p2

p1
, 0

)
p1 ≤ p2

for p1 , 0, p2 , 0. Aggregate demand is
(
2 − p1, 2

p1

p2
+ 1 + 2 − p1

)
if p1 ≥ p2, and since

aggregate endowment of both commodities is 3, we get that

2
p1

p2
≤ p1

which has no solution. Similarly, if p2 ≥ p1, aggregate demand is
(
2 − p1 + 2 + 2

p2

p1
, 2 − p1

)
,

and the inequality

2
p2

p1
≤ −1

has no solution (p1, p2) ∈ ∆.

(4) We choose l = 2 and illustrate the two price-endowment pairs in the figure below
(from: Levin, J. (2006), General Equilibrium).
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Figure 9: Testable Restrictions of Equilibrium

8 Gross Substitutes

In this section, we consider one particular class of economies – those satisfying the

gross substitutes property – in which it is possible to get affirmative answers to the

uniquencess and stability questions posed above. We then show that economies

satisfying gross substitutes also have very nice comparative statics properties.

Two commodities are said to be gross substitutes if an increase in the price of

good k increases the demand for good l. More generally, a demand function satisfies

the gross substitutes property if an increase in the price of good k increases the

demand for every other good l.

Definition 5 A Marshallian demand function x(p) satisfies the gross substi-
tutes property if, whenever p and p0 are such that p0k > pk and p0l = pl for all

l 6= k, then xl(p
0) > xl(p) for all l 6= k.

Note that I have stated the condition as requiring a strict increase in the de-

mand for each good l. One can also work with the weak gross substitutes property

32

If p is a Walras equilibirum price in the economy with the tall Edgeworth box and
endowments e, then there is some point on the line segment A which is at least as
good as everything on the budget line through e for agent 1. Using monotonicity, we
get that there is a point on A which is better than everything on A′. Repeating the
argument for the other Edgeworth box, we get a contradiction.

(5) Let (x, p) be a quasi-equilibrium, and suppose that i0 satisfies the minimum wealth
condition. Choose i1 , i0 arbitrarily. Since i0 is resource related to i1 at (x, p), there is
an allocation x′ = (x′1, . . . , x

′

m) and a bundle x′′i1 such that

m∑
i=1

(xi − ωi) + (xi1 − ωi1) = 0

x′i0 ∈ Pi0(xi0), x
′

i ∈ cl Pi(xi), all i.

(2)

Given that i0 satisfies minimum-wealth at (x, p), we have that p · x′i0 > p · ωi0 , and by
the quasi-equilibrium properties, we get that

∑m
i=1 p · (x′i − ωi) > 0, and from (2) we

get that
p · x′′i1 < p · ωi1 ,

showing that the minimum-wealth condition holds also for 1. Since i1 was chosen
arbitrarily, we get the result.

(6) If x = (x1, . . . , xm) maximizes (p1
· x1)θ1 · · · (pm

· xm)θm under the constraint
∑m

i=1 xi =∑m
i=1ωi, then we have a Lagrangian

(p1
· x1)θ1 · · · (pm

· xm)θm −

l∑
h=1

λh

∑
i∈M

(ωih − xih)
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with first order conditions

S
θi

pi · xi
pi

h − λh = 0, i = 1, . . . ,m, h = 1, . . . , l,

with S = (p1
· x1)θ1 · · · (pm

· xm)θm , so that

θipi
h

pi · xi
=
λ
S

= ph

is independent of i.
We have then for each i that

l∑
h=1

phxih =

l∑
h=1

(
θi

pi
h

pi · xih

)
xih =

θi

pi · xi

l∑
h=1

pi
hxih = θi,

and if x′i ∈ Pi(xi), that is pi
· x′i > pi

· xi, then

p · x′i =

l∑
h=1

(
θi

pi
h

pi · xih

)
x′ih = θi

pi
· x′i

pi · xi
> θi,

showing that properties (i) and (ii) are satisfied.

(7) Suppose w.l.o.g. that ϕi is uhc with nonempty, closed and convex values for i =

1, . . . , r1, andϕi has open graph and convex, possibly empty values for i = r1+1, . . . , r2.
For each of the correspondences ϕi which are convex-valued with open graph, we
define a uhc corrrespondence ϕ̂i : K⇒ Ki as follows: Let Di = {x ∈ K : ϕ1(x) , ∅}, and
for each x ∈ Di choose some x̂i ∈ ϕi(x) and a neighborhood Ux of x such that x̂ ∈ ϕi(x′)
for x′ ∈ Ux. The family (Ux)x∈Di is an open covering of the paracompact space Di, so
that it has a point-finite refinement U with a subordinated continuous partition of
unity (ψU)U∈U. It follows that the function fi : Di → Ki defined by

fi(x) =
∑

U∈U:x∈U

ψU(x)x̂U,

where x̂U is the element of Ki corresponding to U (or its relevant superset), is contin-
uous, so that the correspondence φ̂i defined by

φ̂i(x) =

{ fi(x) i ∈ Di

Ki x < Di
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Now we may apply Kakutani’s fixed point theorem to the correspondence

varphi1,× · · · × ϕr1 × ϕ̂r1+1 × · · · × ϕ̂r2

to obtain a point x∗ such that

x∗i ∈ ϕi(x∗) for i = 1, . . . , xr1

x∗i ∈ ϕ̂i(x∗) for i = r1 + 1, . . . , r2.

It is easily verified that x∗ has the desired properties.

(8) Choose K such that xi,h < K for any feasible allocation-price pair (x, p). Let ϕi for
i = 0, 1, . . . ,m be the correspondences defined in the proof of Theorem 1.1 (p.30), and
let ϕ̂i be defined by

ϕ̂i(x) =

ϕ(x) ϕi(x) , ∅

{x′ ∈ Rl
+ | xh ≤ K, all h} otherwise

.

Define the correspondence P from {v ∈ R(m+1)l
+ | vh ≤ K, all h} to itself by

P(x1, . . . , xm, p) =


{v ∈ R(m+1)l

+ | vh ≤ K, all h, v , 0} p = 0,

∅ ϕi(x) = ∅, i = 0, 1, . . . ,m,

ϕ̂1(x, p) × · · · × ϕ̂m(x, p) × ϕ̂0(x, p) otherwise.

Then it is easily checked that P(x, p) = ∅ exactly when (x, p) is a Walras equilibrium.
Moreover, P is irreflexive with convex values and P has open graph.

Conversely, if P is a correspondence satisfying the condition, then P(x, p) = ∅

exactly when φi(x) = ∅ for i = 1, . . . ,m and φ0(x, p) = ∅, and otherwise there are no
restrictions on P.


