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Exercises to Chapter 6

(1) For every economy E = (Xi,Pi, ωi)m
i=1, there is an economy with the measure

space [0, 1[ endowed with Lebesgue measure, such that (Xt,Pt, ωt) = (Xi,Pi, ωi) for
t ∈

[
i−1
m ,

i
m

]
. Clearly, a Walras equilibrium (x, p) in E induces a Walras equilibrium in

the infinite economy, since∫ 1

0
x(t) dt =

m∑
i=1

1
m

xi =
1
m

m∑
i=1

xi =
1
m

m∑
i=1

ωi =

∫ 1

0
ω(t)

and for each t, x(t) is individually optimal given p.
In view of this, it is clear that there are atomless economies with more than one

Walras equilibrium (for example, the atomless version of the economy depicted in
Box 1).

(2) The figur in Box 1, reproduced below, can be used to express the case considered:
Assume that initial endowment in the box is at a point C on the continuation of th
e line segment from B2 to A beyond A. Then B2 is a Walras equilibrium, but if C is
moved to a point D southwest of C on the line through A and B1, the point B1 will be
Walras equilibrium strictly preferred to B2 by consumer 1.
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Box 1. Economies with many equilibria. The Edgeworth box provides a
tool for a first investigation of the question of whether a Walras equilibrium,
if it exists, will be unique. The answer to this question is no, as can be
seen from the example. The initial endowment is A, and there are common
tangents to the indifference curves at both B1 and B2, corresponding to two
Walras equilibria with different bundles to the consumers and prices which
are not proportional to each other. Thus, we have an economy with (at least)
two different Walras equilibria (Fig. 1).
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Fig. 1. An exchange economy with at least two Walras equilibria.

In the above example, there are at least two Walras equilibria; there might
be more than two. Actually, it may happen that the common tangent to the
indifference curves at every point between B1 and B2 passes through A, so
that the economy under consideration has infinitely many equilibria.

This latter case is, however, a very special one — moving the point A an
arbitrarily small distance away, one may still have more than one, but not
infinitely many, equilibria.

Incidentally, the so-called transfer paradox (a consumer can benefit from
giving away goods before trade) can occur in this economy. We leave the
details to the exercises.

Moreover, we assume that the assumptions in Box 1 are satisfied.
Then the excess demand functions ζi of each consumer and the

The situation generalizes to more than two commodities and agents: Suppose
that in the economy E = (Rl

+,Pi, ωi)m
i=1, there are two consumers, say 1 and 2, such
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that if 1 transfers to 2 some amount of all commodities before trading in the market,
thus changing the endowment from ω1 to ω′1, then consumer 1 will be better off in
the resulting Walras equilibrium. Let p and p′ be Walras equilibrium prices without
and with the transfer, respectively.

Let A be a 2-dimensional affine subspace containing ω1, ω′1, and ω1 + ω2. Then
intersections with A of the hyperplanes {x | p · x = p · ω1} and {x | p′ · x = p · ω′1} are
straight lines intersecting each other in some point A. Let A define the endowment
ω′′1 of consumer 1, and let ω′′2 = (ω1 + ω2) − ω′′2 . Then both p and p′ with be Walras
equilibrium prices af the economy E′′ where ωi has been replaced by ω′′i for i = 1, 2.

[There are several contributions to the literature, following Chichilnisky (1980),
which show that a local version of the transfer paradox can be occur even when the
Walras equilibrium is locally unique.]

(3) By symmetry it is enough to show that aggregate demand for one commodity, say
commodity 1, increases when the price of another commodity, say commodity 2, is
increased.

We find the demand of consumer 1, by maximizing utility 23/2√x1+
√

x2+23/2√x3+
√

x4 under the budget constraint
∑4

h=1 phxh =
∑4

h=1ω1h. The first order conditions are

√
2
√

x1
= λp1,

1
2

1
√

x2
= λp2,

√
2
√

x3
= λp3,

1
2

1
√

x4
= λp4,

which may be rewritten as

x1 =
2
λ2p2

1

, x2 =
1

4λ2p2
2

, x3 =
2
λ2p2

3

, x2 =
1

4λ2p2
2

.

Using the budget constraint we find that

λ2 =

2
p1

+
1

4p2
+

2
p3

+
1

4p4

p1ω11 + p2ω12 + p3ω13 + p4ω14
.

We can now find the derivative of the demand for commodity 1 w.r.t. p2 as

∂ξ11

∂p2
=

dx1

dλ2

dλ2

dp2
=

(
−

2
p2

1λ
4

)
dλ2

dp2
,

and since the derivative of λ2 w.r.t. p2 is negative (easily checked by performing the

differentiation in (??)), we get that
∂ξ11

∂p2
> 0. Repeating the argument for consumer

2, one gets the desired result.

(4) We show that ζ satisfies the following condition used in the proof of Theorem 6.5:
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If p0 is an equiliibrium price, and p(t) · ζ(p0) = 0 and p1 , p0, then p0
· ζ(p1) > 0.

We consider first the case l = 2. Changing units if necessary, we may assume that
p0 = (1, 1) so that ζ1(p0) = ζ2(p0), and multiplying p1 by a scalar and changing labels
of commodities if necessary we may assume that p1

1 = 1, p1
2 > 1. Increasing p2 from

1 we have by gross substition that
dζ1

dp2
> 0, and since Walras’ law must be satisfied

at all p, we have that
dζ2

dp2
> 0, but since p2 has become larger than p1, the numerical

value of
dζ1

dp2
> 0 must exceed that of

dζ2

dp2
> 0, so that

ζ1(p0) +
dζ1

dp2
dp2 > ζ2(p0) +

dζ2

dp2
dp2.

Repeating the argument for arbitrary p2 ∈ [1, p1
2], we may conclude that p0

· ζ(p1) > 0.
For l > 2 a similar argumentation can be carried out, it is however rather lengthy,

instead we refer to Arrow, Block and Hurwicz (1959).

(5) For the problem to be meaningful, we assume that all pk are different. Choose
a system of open sets (Upk)r

k=1 in 4 such that ph < Upk for h , k, each k, such that 4
is covered by the family (Upk)r

k=1, and let (ψk)r
k=1 be a continuous partition of unity

subordinated this covering (i.e., each ψk is a continuous map from Upk to [0, 1], and∑r
k=1ψk(p) = 1 for each p ∈ 4. Then the map f : 4 → Rl defined by

f (p) =

r∑
k=1

ψk(p)zk

is continuous and satisfies p · f (p) = 0 for all p ∈ 4, and the graph of f contains the
points (pk, zk) for k = 1, . . . , r. Now an application of Theorem 6.6 gives the desired
result.

(6) Actually Newton’s method works well in the case considered: The Jacobian of
the function is 

2x1 2x2 2x3

2x1 2x2 −1
1 1 1

 ,
which assessed at x = (1, 0, 1) gives the matrix

J =


2 0 2
2 0 −1
1 1 1

 with inverse J−1 =


1
6

1
3 0

−
1
2 0 1

1
3 −

1
3 0

 .
The value of the function at (1, 0, 1) is (−1,−1,−1) and the first step can be found by
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multiplying this vector by the matrix J−1, giving the first step
(1
2
,

1
2
, 0

)
, adding this

steo to (1, 0, 1) gives the new point
(3
2
,

1
2
, 1

)
. The procedure can now be repeated at

this point to define a sequence of points converging to (1, 1, 1) which is indeed a root
of the system of equations.

The method may will fail at other initial values, e.g. for x = (0, 0, 0), where the
Jacobian is singular.
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