Table of contents

Diverse topics

- Cryptocurrencies
- Negative interest rates and banking
- Islamic Banking

Competition and pricing

- Banking under perfect competition
- The monopolistic Bank
- Oligopolistic banks
Cryptocurrencies

BitCoin

First electronic means of payments **without intermedation**

Introduced by Nakamoto 2008, now other cryptocurrencies have been developed.

Fundamental problem for means of payment:

How can it be guaranteed that the money is used only once?

BitCoin: Internet community check that money is used correctly.

Blockchain

Transactions are recorded in special data structure:

A new block of transactions can be checked by any individual (a “miner”), showing that it is ok.

To perform this, the miner must solve a complicated (time and energy consuming) problem (find the inverse of a specific cryptographic function).

Blockchain technology is interesting also for banks (and central banks).
Pros and Cons of BitCoin

No (or almost no) cost of money transfers

Decentralized system (not subject to monetary policy)

But:

BitCoin has limited capacity

Transfer is slow (up to 10 minutes before a transfer is confirmed)

The mining process is energy-intensive

Negative interest rates

Interest rates have been moving downwards for decades

Currently many interest rates are negative

Combined with small annual growth rates

What are the implications for:

- Macroeconomic stability (to be dealt with in Macro)
- Monetary policy (to be considered in Monetary Economics)
- Financial intermediation?
Theory of banking with negative interest rates?

Model of bank with negative interest rates (Chen, Katagiri, Surti, IMF WP/18/192, 2018):

Bank has loans L, deposits D, net funding W, equity E, with

$$L = D + W + E.$$ \hfill (1)

Bank chooses repayment rates R_L, R_D on loans and deposits, interbank rate R_M is given, so profits are

$$\pi = R_L L - R_D D + R_M W - k L = (R_L - R_M - k) L + (R_M - R_D) D - R_M E$$

(after inserting (1)) with k the administration cost of lending.

Optimum

We assume that demand for loans and deposits are given by

$$L = \alpha \left(\frac{R_L}{g} \right)^{-\beta}, \quad D = \gamma \left(\frac{R_D}{g} \right)^{\delta},$$

with g the growth rate.

Maximizing π wrt. R_L and R_D gives

$$R_L^* = \frac{\beta}{\beta - 1} (R_M + k), \quad R_D^* = \frac{\delta}{\delta - 1} R_M$$

with associated quantities

$$L^* = \alpha \left(\frac{\beta (R_M + k)}{(\beta - 1)g} \right)^{-\beta}, \quad D^* = \gamma \left(\frac{\delta R_M}{(\delta - 1)g} \right)^{\delta}.$$
Effect of negative interest rates

What happens when g gets smaller?

Two possible scenarios:
1. ZLB: deposit interest rates are not allowed to be negative
2. No ZLB: deposit interest rates can be negative

In case 2, assuming $R_M = g$, we get that

Loans and deposits independent of g, loan and deposit rates change with g

(essentially, banking activity independent of g)

Case 1. Suppose that with $R_M = g$ we would have $R_D^* < 1$.

Then R_M must be kept above g, so that $\frac{R_M}{g} > 1$.

If R_M is such that $R_D^* = 1$, then L^* smaller, D^* larger, profits smaller.
Islamic Banking

Islamic Banks

Banking without interest payments:

Basic principles:

1. risk-sharing: symmetric distribution of risk and return,
2. materiality: linkage to real activity,
3. no exploitation
4. no financing of prohibited activities.

Main forms of financing:

- Participatory form: Bank is business partner (more or less active)
- Non-participatory form (trade-based): Bank initiates investment and allows the investor buys it back

Islamic banks quite succesful (70% of financial assets in selected countries)

Perfect competition

Given: loan (interest) rate r_L, the deposit rate r_D, interbank rate r

Bank chooses loans L and deposits D to maximize profits

$$\pi(D, L) = r_LL + rC - r_DD - c(D, L),$$

(with C net position in the interbank market, $c(D, L)$ managing cost)

If $0 < \alpha < 1$ of deposits are kept as reserve, then $C = (1 - \alpha)D - L$, and

$$\pi(D, L) = (r_L - r)L + ((1 - \alpha)r - r_D)D - c(D, L),$$

First order conditions are

$$\frac{\partial \pi}{\partial L} = r_L - r - c'_L = 0, \quad \frac{\partial \pi}{\partial D} = (1 - \alpha)r - r_D - c'_D = 0$$
Market equilibrium

How is \(r \) determined?

There are \(n \) banks, demand for loans comes from investment function \(I(r_L) \), so that

\[
I(r_L) = \sum_{j=1}^{n} L_j(r_L, r_D, r).
\]

Household saving depends on \(r_D \), so

\[
S(r_D) = B + \sum_{j=1}^{n} D_j(r_L, r_D, r).
\]

where \(B \) is bond issue (by government).

Finally, the interbank market must be balanced:

\[
\sum_{j=1}^{n} L_j(r_L, r_D, r) = (1 - \alpha) \sum_{j=1}^{n} D_j(r_L, r_D, r).
\]

Three equations give the equilibrium values of \(r_L \), \(r_D \) and \(r_D \).

A Digression: The money multiplier

Simple version: Bond changed by \(\Delta B \), then deposits change by the same amount.

Then banks can expand credits by \((1 - \alpha) \Delta B \), again changing deposits, and summing all:

\[
\Delta D = \Delta B(1 + (1 - \alpha) + (1 - \alpha)^2 + \cdots) = \frac{1}{\alpha} \Delta B.
\]

More sophisticated version, using our model:

Inserting the first two equations in the last one:

\[
S(r(1 - \alpha) - c_D') - \frac{I(r + c_L')}{1 - \alpha} - B = 0
\]

Determines \(r \) as an implicit function of \(B \).
Open market policies

Use implicit function theorem:

\[
\frac{dr}{dB} = \frac{1}{(1 - \alpha)S' - \frac{l'}{1 - \alpha}}.
\]

Then

\[
\frac{\partial D}{\partial B} = (1 - \alpha)S' \frac{dr}{dB} - 1 = \frac{(1 - \alpha)S'}{(1 - \alpha)S' - \frac{l'}{1 - \alpha}} - 1 = \frac{1}{(1 - \alpha)^2 S' \frac{l'}{1 - \alpha} - 1}.
\]

If \(S' > 0, l' < 0 \), then

\[
\frac{\partial D}{\partial B} < 0
\]

as expected, but

\[
\left| \frac{\partial D}{\partial B} \right| < 1
\]

Money multiplier is small!

The Monti-Klein model

Bank maximizes profits

\[
\pi(D, L) = (r_L(L - r)L + ((1 - \alpha)r - r_D(D))D - c(D, L).
\]

First order conditions are

\[
\frac{\partial \pi}{\partial L} = r'_L L + r_L - r - c'_L = 0,
\]

\[
\frac{\partial \pi}{\partial D} = -r'_D D + (1 - \alpha)r - r_D - c'_D = 0,
\]

Can be reformulated in several ways:
Lerner index

(1.) 1st order conditions using Lerner indices:

\[
\frac{r_L - (r + c'_L)}{r_L} = -r'_L \frac{r}{r_L} = \frac{1}{r_L} = \frac{1}{\varepsilon_L},
\]

where

\[
\varepsilon_L = -\frac{L'}{r_L}
\]

Similarly for the deposit rate

\[
\frac{r(1 - \alpha) - r_D - c'_D}{r_D} = \frac{1}{\varepsilon_D},
\]

with \(\varepsilon_D = r_D D' / D\).

Amoroso-Robinson

(2.). 1st order condition expressed using the Amoroso-Robinson formula:

For the loan rate:

\[
r_L = \frac{r + c'_L}{1 - \frac{1}{\varepsilon_L}}
\]

and for the deposit rate:

\[
r_D = \frac{(1 - \alpha)r - c'_D}{1 + \frac{1}{\varepsilon_D}}
\]
Application: Taxing banks

Proposed as a way of making banks more secure (after the crisis 2007-8)
Suppose that a tax is collected as a fixed percentage t of the loans L.
Then profits are
$$\pi(D, L) = (r_L(L) - (r + t))L + ((1 - \alpha)r - r_D(D))D - c(D, L),$$
and 1st order condition wrt L become
$$\frac{r_L - (r + t + c'_L)}{r_L} = \frac{1}{\varepsilon_L},$$
1st order condition wrt r_D is as before.
The Lerner index is unchanged if ε_L is constant: The tax is shifted to the borrowers.
Depositors are unaffected if c'_D is independent of L ($c(D; L)$ separable in D and L)

Oligopoly

Suppose that there are not one but a few (namely N) banks.
Banks choose quantities (Cournot oligopoly) to maximize
$$\pi_i(D, L) = (r_L(L) - r)L_i + ((1 - \alpha)r - r_D(D))D_i - c(D_i, L_i),$$
with $L = \sum_{i=1}^N L_i$, $D = \sum_{i=1}^N D_i$.
First order conditions:
$$\frac{\partial \pi}{\partial L} = r'_L L_i + r_L - r - c'_L = 0,$$
$$\frac{\partial \pi}{\partial D} = -r'_D D_i + (1 - \alpha)r - r_D - c'_D = 0.$$
Symmetric case: Lerner indexes are
$$\frac{r_L - (r + c'_L)}{r_L} = \frac{1}{N\varepsilon_L}, \quad \frac{r(1 - \alpha) - r_D - c'_D}{r_D} = \frac{1}{N\varepsilon_D}.$$