Table of contents

Price competition

- Monopolistic competition (the circular city model)

Competition and risk

- A one-period model
- Oligopoly with risky investments
- Oligopoly with loans to risky investors
Monopolistic competition

The circular city

There are n banks, situated on a circle of total length 1:

Distance between neighboring banks $1/n$.

Depositors spread evenly over circle, each coming with 1 unit.

Transportation cost of t per unit of distance.

Fixed cost of keeping a bank f.

Optimum for society

Minimize sum of (a) travel cost and (b) the fixed cost:

(a) Cost of serving the customers of a given bank is

$$2 \int_{0}^{\frac{1}{n}} tx \, dx = \frac{t}{4n^2} \cdot \left[\frac{1}{2} x^2 \right]_{0}^{\frac{1}{n}}$$

Total cost to society with n banks is

$$C = \frac{t}{4n} + nf.$$

First order conditions for a minimum:

$$\frac{dC}{dn} = -\frac{t}{4n^2} + f = 0$$

with solution

$$n^* = \frac{1}{2} \sqrt{\frac{t}{f}}.$$
Market solution

Assume that our bank has \(r_D \) and all the others have \(r_D' \).

Find the borderline depositor \(x \) from

\[
 r_D - tx = r_D' - t \left(\frac{1}{n} - x \right),
\]

so that the demand \(D = 2x \) is

\[
 D = \frac{1}{n} + \frac{r_D - r_D'}{t} \cdot \frac{1}{n} + \frac{(r - r_D') - (r - r_D)}{t}.
\]

Use standard monopoly price rule

\[
 b \cdot r_D - r_D = \frac{1}{2} \left[\frac{t}{n} + (r - r_D') \right]
\]

In symmetric equilibrium, \(r_D = r_D' \),

\[
 r_D = r - \frac{t}{n}.
\]
Monopolistic competition

Free entry

Bank profits: New banks enter as long as there are nonzero profits, i.e.

\[\frac{1}{n} t - f = \frac{t}{n^2} - f, \]

New banks enter as long as there are nonzero profits, so

\[\frac{t}{n^2} - f = 0 \]

Solving for \(n \):

\[n^0 = \sqrt{\frac{t}{f}}. \]

Too many banks in equilibrium!

Monopolistic competition

Deposits and loans

Assume: Each individual wants to borrow \(L < 1 \).

Transport cost \(t_L \) in loan business.

With the same reasoning as before, we get a symmetric equilibrium with loan rate

\[r_L = r + \frac{t_L}{nL}. \]

Profits are \(\frac{t_L}{n^2} \) in loan business.
Monopolistic competition

An application

We use the model to consider deposit rate regulation:
Keeping deposit rates low in order to obtain lower loan rates

For simplicity: r_D is set to 0

Then deposit business is more profitable, loan as before. No change in loan rates.

Alternative: Allow banks to use contingent contracts (no loans without deposits). Then

$$r^*_L = \left(r - \frac{r}{L} \right) + \frac{t_D + t_L}{nL} = \left(r + \frac{t_L}{nL} \right) - \frac{1}{L} \left(r - \frac{t_D}{n} \right)$$

Loan rates are lower!

Risk-taking in banks

Consider a bank where all engagements run over a single period.

Expected value of loans is fixed at μ but varies with a parameter σ

Loans L at rate \tilde{r}_L are funded by deposits D with rate $r_D(\sigma)$ (assume $L = D$)

Bank fails if $r_L < r_D(\sigma)$

Probability of success is $p(\sigma) = P\{\tilde{r}_L \geq r_D(\sigma)\}$

Value of future bank business (franchise value) V.
Perfect information

Depositors can observe σ

Funding condition is $\mathbb{E}[\min\{\tilde{r}_L, r_D(\sigma)\}] \geq 1$

Expected profit of bank

$\Pi(\sigma) = D \mathbb{E}[\max\{0, \tilde{r}_L - r_D(\sigma)\}]|\sigma]$

Bank chooses σ so as to maximize $\Pi(\sigma) + p(\sigma)V$.

Use $\max\{0, \tilde{r}_L - r_D\} + \min\{\tilde{r}_L, r_D\} = \tilde{r}_L$ to get

$\Pi(\sigma) + D = \mathbb{E}[\tilde{r}_L]|D = \mu D$

Profits and survival

Under perfect information: $\Pi(\sigma) = (\mu - 1)D$ independent of σ but $p(\sigma)$

Consequence: for $V > 0$, the bank chooses minimal σ.

Imperfect information: Depositors expect $\hat{\sigma}$ and will demand a rate $r_D(\hat{\sigma})$ giving at least zero expected return. Banks find

$\max_{\sigma}\{\Pi(\sigma) + p(\sigma)V\}$

and profits

$\Pi(\sigma) = D \mathbb{E}[\max\{0, \tilde{r}_L - r_D(\hat{\sigma})\}]|\sigma]$

increase in σ: Trade-off between profits and survival!
Oligopoly with insured depositors

There are \(n \) banks choosing investment:

Investment with parameter \(s \) yields a payoff \(s \) with probability \(p(s) \).

Deposit rate \(r_D \) depends on \(\sum_{i=1}^{n} D_i \).

Deposits are insured, banks pay a rate \(\alpha \) for this.

Bank \(i \) chooses \((s_i, D_i) \) so as to maximize expected profits

\[
p(s_i) \left(s_i - r_D \left(D_i + \sum_{j \neq i} D_j \right) - \alpha \right) D_i.
\]

Riskiness and number of banks

In a symmetric equilibrium, all choose the same \(D_i(= D) \).

First order conditions

\[
p'(s)(s - r_D(nD) - \alpha) + p(s) = 0,
\]

\[
s - r_D(nD) - r'_D(nD)D - \alpha = 0.
\]

can (in principle) can be solved for \(D \) and \(s \) when \(n \) is fixed.

We are interested in what happens to \(s \) when \(n \) increases.

First order conditions is an equations system which gives \(s \) as implicit function of \(n \).

It can be shown that \(\frac{\partial s}{\partial n} > 0 \).
Banks choosing loan rate

But banks do not invest, they offer loans to entrepreneurs!

Entrepreneurs maximize $p(s)(s - r_L)$, with first order condition

$$s + \frac{p(s)}{p'(s)} = r_L.$$

Gives rise to demand relationship of the form $r_L(L)$

Now banks select D_i

$$p(s) \left[r_L \left(\sum_{j=1}^{n} L_j \right) - r_D \left(\sum_{j=1}^{n} D_j \right) - \alpha \right] D_i.$$

under the constraint $L_i = D_i$.

Equilibrium with many banks

Define $Z = \sum_{j=1}^{n} D_j$.
s is increasing in r_L which decreases in Z, so s is in $\sum_{j=1}^{n} D_j$.

The first order condition is

$$\left(r_L(Z) - r_D(Z) - \alpha \right) \left[p'(s(Z))s'(Z)D_i + p(s(Z)) \right]$$

$$+ \left(r'_L(Z) - r'_D(Z) \right) p(s(Z))D_i = 0.$$

In a symmetric equilibrium we get

$$r_L(Z) - r_D(Z) - \alpha = \frac{(r'_D(Z) - r'_L(Z))p(s(Z))Z}{p'(s(Z))s'(Z)Z + p(s(Z))n}.$$ (1)
Let Φ be right-hand side in (1).

Then implicit function theorem applied to (1) gives

$$\frac{\partial Z}{\partial n} = -\frac{\partial \Phi(Z, n)}{\frac{\partial Z}{\partial n}(Z, n)} > 0.$$

Use now that s is decreasing in Z: More banks reduce risk!