Table of contents

Closing or reorganizing banks

• The Dewatripont-Tirole model (firing the bank manager)
• Who should close down a bank? (The Repullo model)
• The bank-regulator game (Mailath-Mester)
Firing the manager?

When banks have serious problems (wrt. liquidity or solvency:)

First line of defence: Than bank itself – what can it do?

The Dewatripont-Tirole model investigates whether trouble should give rise to

- Reorganization?
- Closure?

The model

Three periods, \(t = 0, 1, 2 \).

At \(t = 0 \), it uses deposits and equity to finance loans.

Quality of loans depends on manager effort \(e \rightarrow \begin{cases} e_H \\ e_L \end{cases} \) cost: \(h(e) \).

At date \(t = 1 \), first repayment \(\tilde{v} \) of loan and signal \(\tilde{u} \) about final repayment.

The two random variables \(\tilde{v} \) and \(\tilde{u} \) are independent, but depend on \(e \), densities \(h(v|e), g(u|e) \). At \(t = 2 \), final repayment \(\tilde{v} + \tilde{\eta} \). Manager gets bonus \(B \).
Close down at $t = 1$?

Probability of η given u is $F_d(\eta|u)$, $d = 1$ (continue) or $d = 0$ (stop).

$$\Pi(u) = \begin{cases} \int_0^\infty \eta \ dF_1(\eta|u) - \int_0^\infty \eta \ dF_0(\eta|u) & \text{if cont.} \\ \int_0^\infty [F_0(\eta|u) - F_1(\eta|u)] \ d\eta, & \text{if stop} \end{cases}$$

where using integration by parts,

$$\int_0^\infty \eta \ dF_d(\eta|u) = [\eta F_d(\eta|u)]_0^\infty - \int_0^\infty F_d(\eta|u) \ d\eta,$$

$d = 1$ is best if $\Pi(u) \geq 0$.

If $\Pi(u)$ is increasing in u, then there is \hat{u} so that bank continues if $u > \hat{u}$.
With manager incentives

Decision rule \(x(u, v) \) (probability of continuing). Expected profit is now

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(u, v) \Pi(u) g(u|e_H) h(v|e_H) \, du \, dv
\]

under constraint

\[
B \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(u, v) [g(u|e_H) h(v|e_H) - g(u|e_L) h(v|e_L)] \, du \, dv \geq h(e_H) - h(e_L).
\]

The Lagrangian is (except for a constant)

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(u, v) \left[\left(\Pi(u) + \mu B \right) g(u|e_H) h(v|e_H) - \mu B g(u|e_L) h(v|e_L) \right] \, du \, dv,
\]

and maximum is attained by

\[
x(u, v) = 1 \text{ if } \Pi(u) + \mu B \geq \frac{g(u|e_H) h(v|e_H)}{g(u|e_L) h(v|e_L)},
\]
\[
x(u, v) = 0 \text{ otherwise.}
\]

Characterizing the optimum

Continuation is optimal if

\[
\frac{g(u|e_H)}{g(u|e_L)} \left[1 + \frac{\Pi(u)}{\mu B} \right] \geq \frac{h(v|e_L)}{h(u|e_H)}.
\]

If equality, then \(u \) is an implicit function \(u^0 \) of \(v \).

We let \(\tilde{v} \) be the value of \(v \) such that \(\hat{u} = u^0(\tilde{v}) \).

If we assume:

\[
\frac{g(\cdot|e_H)}{g(\cdot|e_L)} \cdot \frac{h(\cdot|e_H)}{h(\cdot|e_L)}
\]

are increasing functions, then:

\(u^0(v) \) is decreasing in \(v \).
Closing banks
Reorganization – Dewatripont-Tirole

Who should close the bank

When it is no longer enough to reorganize:

Who should decide?

- Central bank?
- Deposit insurer?

... and what is best for society?
The Repullo model

The model

Bank obtains deposits 1 at $t = 0$, invested over two periods.

At $t = 1$, two signals are received:

- v: withdrawals of depositors at $t = 1$
- u: probability of success of the investment

Investment has random payoff

$$\tilde{R} = \begin{cases} R & \text{with probability } u, \\ 0 & \text{with probability } 1 - u. \end{cases}$$

Liquidation value is $L < 1$ liquidation cost c.

Society’s point of view

The bank should be liquidated when value of continuing

$$uR - (1 - u)c$$

is smaller than the value if liquidated,

$$L - c.$$

Gives a threshold value

$$u^* = \frac{L}{R + c}$$

for liquidation.
Central bank

Central bank covers only the fraction β of the liquidation costs.

Then will offer a loan ν, if expected values of losses is \leq loss from liquidating now:

$$(1 - u)(\nu + \beta c) \leq \beta c.$$

Threshold for u now depends on ν:

$$\hat{u}(\nu) = \frac{\nu}{\nu + \beta c},$$

if $u < \hat{u}(\nu)$ the central bank will close down the bank.

Deposit insurance

Deposit insurer covers fraction γ of the liquidation cost

It will close down if costs of closing now are smaller than cost of continuing:

$$\gamma c + 1 - L \leq (1 - u)(1 + \gamma c).$$

This gives threshold value

$$\bar{u} = \frac{L}{1 + \gamma c},$$

below which the deposit insurer will liquidate the bank.
Closing banks

The Repullo model

Decision maker depends on signal

For large v deposit insurer is closer to social optimum than central bank.

For small v the central bank is closer than the deposit insurer.

The competence to close a bank should therefore depend on v!
Why are regulators reluctant to close banks?

In many cases, banks should have been closed down but remain open.

This may be caused by the high cost of closing a bank.

If banks know this, they may get away with acting in a way which would otherwise lead to closure.

The model

There are two rounds with start $t = 0$, $t = 1$.

Bank receives deposit 1 and invests in project, either

- safe (G) with payoff $1 + r$ with certainty, or
- risky (B), with random payoff $1 + \tilde{\rho}$, where

$$f + \tilde{\rho} = \begin{cases}
\rho & \text{with probability } p, \\
0 & \text{otherwise},
\end{cases}$$

$\rho > r$ but $p(1 + \rho) < 1 + r$.

Banks prefer B: $p \rho > r$.

Once the investment has been chosen, regular observes type and decide between closing the bank (C) or leaving it open (O).

Regulator must reimburse losses to the creditors of the bank pay the cost C of liquidation.
Closing banks The Mailath-Mester model

Game tree

Payoffs in game tree

(1) there is a gain \(r \) to the bank and a cost \(C \) to the regulator.

(2) payoff to the bank is \(p\rho \) and \(\xi \) cost to the regulator \(C + (1 - p) \).

(3) payoff to bank is \(2r \) and cost to regulator 0.

(4) payoff to bank is \(p(\rho + r) \), cost to regulator \((1 - p)[C + (1 - r)] \).

(5) payoff is \(p^2(2\rho) \) and cost is \((1 - \rho^2)C + (1 - p)^22 + 2p(1 - p)[1 - \rho] \).
Closing banks The Mailath-Mester model

Equilibrium I

Case 1. Bank prefers one risky and one safe to two risky:

\[p(\rho + r) > 2\rho^2 \rho \text{ or } p < \frac{\rho + r}{2\rho} \]

If bank has chosen \(B \), then kept open it will choose \(G \), and then better to keep the bank open.

If the bank has chosen \(G \), then again cost is bigger if closing down now than if waiting, so bank is kept open.

Equilibrium II

Case 2: Bank prefers two risky to one risky and one safe.

Bank chooses \(B \) if it gets to the second round. If first choice was \(B \), then better to close only if

\[C + (1 - p) < C(1 - p^2) + 2(1 - p)^2 + 2p(1 - p)(1 - \rho) \]

or, equivalently, if \(C < \frac{(1-p)(1-2p\rho)}{p^2} \).

If bank chooses \(G \) initially, then regulator will keep the bank open unless

\[C < C(1 - p) + (1 - p)(1 - r), \]

which can also be stated as \(C < \frac{1-p}{p}(1 - r) \).
Equilibrium III

- When Bank: BG, R: O, BB > BG
- Bank: B, R: C, D
- Society prefers B

The Mailath-Mester model

Closing banks